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a b s t r a c t

Deep Neural Networks (DNNs) have achieved state-of-the-art accuracy performance in many tasks.
However, recent works have pointed out that the outputs provided by these models are not well-
calibrated, seriously limiting their use in critical decision scenarios. In this work, we propose to use a
decoupled Bayesian stage, implemented with a Bayesian Neural Network (BNN), to map the uncalibrated
probabilities provided by a DNN to calibrated ones, consistently improving calibration. Our results evi-
dence that incorporating uncertainty provides more reliable probabilistic models, a critical condition
for achieving good calibration. We report a generous collection of experimental results using high-
accuracy DNNs in standardized image classification benchmarks, showing the good performance, flexibil-
ity and robust behaviour of our approach with respect to several state-of-the-art calibration methods.
Code for reproducibility is provided.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Deep Neural Networks (DNNs) represent the state-of-the-art
performance in many tasks such as image classification [1], lan-
guage modeling [2], machine translation [3] or speech recognition
[4]. As a consequence, DNNs are nowadays used as important parts
of complex and critical decision systems.

However, although accuracy is a suitable measure of the perfor-
mance of DNNs in numerous scenarios, there are many applica-
tions in which the probabilities provided by a DNN must be also
reliable, i.e. well-calibrated [5]. This is mainly because well-
calibrated DNN output probabilities present two important and
interrelated properties: First, they can be reliably interpreted as
probabilities [5] enabling its adequate use in Bayesian decision
making. Second, calibrated probabilities lead to optimal expected
costs in any Bayesian decision scenario, regardless of the choice
of the costs of wrong decisions [6].

As an example, if we assist a critical decision process, e.g. a
medical diagnosis pipeline where a human practitioner uses the
information of a machine learning model, the human needs that
the probabilities provided by the model are interpretable [7]. In
such cases, supporting the decision of an expert practitioner with
an uncalibrated probability (e.g. 0:9 probability that a medical
image does not present a malign brain tumor) can have drastic
consequences as our model will not be reflecting the true propor-
tion of real outcomes.

Apart from themedical field, see [7] for details,many other appli-
cations can benefit from well-calibrated probabilities, which has
motivated the machine learning community towards exploring dif-
ferent techniques to improve calibration performance in different
contexts [7–9]. For instance,applicationswherepredictionsconsider
differentprobabilisticmodels thatmustbe combined, suchasneural
networks and language models for machine translation [10]; appli-
cationswith a bigmismatchbetween training and test distributions,
as in speaker and language recognition [11]; self-driving cars [12];
out-of-distribution sample detection [13]; and so on.

One classical way of improving calibration is by optimizing an
expected value of a proper scoring rule (PSR) [9,14,15], such as
the logarithmic scoring rule (whose average value is the cross-
entropy or negative log-likelihood, NLL) and the Brier scoring rule
(whose average value is an estimate of the mean squared error).
However, a proper scoring rule not only measures calibration,
but also the ability of a classifier to discriminate between different
classes, a magnitude known as discrimination or refinement [14],
which is necessary to achieve good accuracy values. Both quanti-
ties are indeed additive up to the value of the average PSR. Thus,
optimizing the average PSR is not a guarantee of improving calibra-
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tion, because the optimization process could lead to worse calibra-
tion at the benefit of an improved refinement. This effect has been
recently pointed-out in DNNs [16], where models trained to opti-
mize the NNL have outstanding accuracy but are bad calibrated
towards the direction of over-confident probabilities. Here, over-
confidence means that, for instance, all samples of a given class
where the confidence given by the DNN was around 0:99, are cor-
rectly classified in much less than 99% of the cases.

Motivated by this observation, several techniques have been
recently proposed to improve the calibration of DNNs while aiming
at preserving their accuracy [15–19], basing their design choice on
point estimate approaches, e.g. maximum likelihood. However, as
we will justify in the next section, a proper address of uncertainty,
as done by Bayesian approaches, is a clear advantage towards reli-
able probabilistic modelling; a fact that has been recently shown
for example in the context of computer vision [20]. Despite these
well-known properties of Bayesian statistics, they have received
major criticisms when they are used in DNN pipelines, mainly
due to important limitations such as prior selection, memory and
computational costs, and inaccurate approximations to the distri-
butions involved [15,17,18,21].

In this work we aim at bridging this gap, i.e. being able to com-
bine the state-of-the-art accuracy performance provided by DNNs,
with the good properties of Bayesian approaches towards princi-
pled probabilistic modelling. Following this objective, we propose
a new procedure to use Bayesian statistics in DNN pipelines, with-
out compromising the whole system performance. The main idea is
to re-calibrate the outputs (in the form of logits) of a pre-trained
Fig. 1. A graphical description o
DNN, using a decoupled Bayesian stage which we implement with
a Bayesian Neural Network (BNN), as shown in Fig. 1.

This approach presents clear advantages, including: better
performance than other state-of-the-art calibration techniques
for DNNs, such as Temperature Scaling (TS) [16] (see Fig. 2);
scalability with the data size and the complexity of the pre-
trained DNN both during training and test phases, as BNNs can
be trained to re-calibrate any pre-trained DNN regardless of its
architecture or type; and robustness, since the approach works
consistently well in a numerous variety of experimental set-
ups and training hyperparameters. One important conclusion
drawn from this work is that as long as the uncertainty is prop-
erly addressed, we can improve the calibration performance
making use of complex models. This observation contrasts with
the main argument from [16], where the authors argue that
TS, their best-performing method, worked better than complex
models because the calibration space is inherently simple, and
complex models tend to over-fit. It should be noted that this
observation can be wrong in its origin, as the calibration space
can be application-dependent, which motivates the necessity of
developing complex models that can perform in different
scenarios.

The work is organized as follows. We begin by introducing and
motivating the Bayesian framework for reliable probabilistic
modelling in the classification scenario. We then describe the
steps involved in the BNN-based approach considered in this
work. We finally report a wide set of experiments to support
our hypotheses.
f the proposed architecture.



Fig. 2. Reliability diagrams [16] for two DNNs trained on two computer vision benchmarks, namely CIFAR-100 (top row) and CIFAR-10 (bottom row). Column titles indicate
the calibration technique. The red x ¼ y line represents perfect calibration. The closer the histogram to the line, the better the calibration of the technique. We complement
the plot with the Expected Calibration Error (ECE %) for 15 bins. The lower the ECE value, the better the calibration of the technique. See experimental section for a more
detailed description of this performance measure.
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2. Related work

From a list of classical methods to improve calibration (such as
Histogram Binning [22], Isotonic Regression [8], Platt Scaling [23],
Bayesian Binning into Quantiles [24]); TS [16] has been reported as
one of the best techniques for the computer vision tasks of interest
in our current work. On the other hand, there are several works
that study overconfident predictions and model uncertainty in dif-
ferent contexts, but without reporting an explicit measurement of
calibration performance in DNNs. For instance, [25] link Gaussian
processes with classical dropout regularized networks, showing
how uncertainty estimates can be obtained from these networks.
Indeed, the authors themselves state that these Bayesian outputs
are not calibrated. In [26], an entropy term is added to the log-
likelihood to relax overconfidence. [15] propose training network
ensembles with adversarial noise samples to output confident
scores. In [27], a confidence score is obtained by using the probes
of the individual layers of the neural network classifier. In [28],
the authors propose to train a second confident output, obtained
from the penultimate layer of the classifier, by interpolation of
the softmax output and the true value, scaled by this score. [13]
propose a generative approach for detecting out-of-distribution
samples but evaluate calibration performance comparing their
method with TS as the decoupled calibration technique.

On the side of BNNs, [29] connect Bernoulli dropout with BNNs,
and [30] formalize Gaussian dropout as a Bayesian approach. In
[31], novel BNNs are proposed, using RealNVP [32] to implement
a normalizing flow [33], auxiliary variables [34] and local reparam-
eterization [30]. None of these approaches measure calibration
performance explicitly on DNNs, as we do. For instance, [31,15]
evaluate uncertainty by training on one dataset and use it on
another, expecting a maximum entropy output distribution. More
recently, [21] propose a deterministic way of computing the ELBO
to reduce the variance of the estimator to 0, allowing for faster con-
vergence. They also propose a hierarchical prior on the parameters.
2 We adopt this maximum-a posteriori (MAP) decision scheme for simplicity
lthough, in a strict Bayesian decision scenario, MAP assumes equal losses for each
rong class decision, and prior probabilities equal to the empirical proportions of
ach class in the training data. In scenarios where classes have different importance
r the empirical proportions of training and testing datasets differ, this MAP decision
le can be wrong in origin.
3. Bayesian modelling and calibration

We start by describing calibration in a class-conditional classi-
fication scenario as the one explored in this work and highlighting
the importance of using Bayesian modelling. This will allow us to
motivate our proposed framework, introduced in the next section.
Although we focus on class-conditional modelling, many of the
claims covered in this section apply to any probability distribution
we wish to assign from data.

In a classification scenario, calibration can be intuitively
described as the agreement between the class probabilities
assigned by a model to a set of samples, and the proportion of
those classified samples where that class is actually the true one.
In other words, if a model assigns a class t, with probability 0:8
to each sample x in a set of samples, we expect that 80% of these
samples actually belong to class t [5,8]. In addition, we require
our probability distributions to be sharpened, meaning that the
probability mass is concentrated only in some of the classes (ide-
ally only in the correct class for each sample). This allows the clas-
sifier to separate the different classes efficiently. It should be noted
that a classifier that presents bad discrimination can be useless
even if it is perfectly calibrated, for instance, a prior classifier. On
the other hand, uncertainty quantification (for instance for out-
of-distribution-samples (ood) or for input-corrupted-samples
detection) has strong relations with calibrated distributions. Note
that for a set of ood samples evaluated over a C-class problem,
where on average we have 1

C accuracy, a calibrated model will
assign probability 1

C. Thus, the average entropy would be the max-
imum entropy, and thus uncertainty about this input would be
maximal, as expected from a good uncertainty quantifier.

Formally, our objective is to assign a probability distribution
p̂ðtjxÞ having observed a set O ¼ fðxi; tiÞgNi¼1 of training samples,
where i denotes the training sample index. With this model, we
then assign a categorical label t� to a test sample x�, a decision
made taking into account the probability distribution of the differ-
ent class labels given the sample. For simplicity we assign the label
t� to the most probable category2. The value of p̂ðt�jx�Þ for the
selected class is also referred to as the confidence on the decision
of the classifier.
a
w
e
o
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Our main objective is providing a model p̂ðtjxÞ that is most con-
sistent with the data distribution pðtjxÞ as it is well known that the
lower the gap between p̂ðtjxÞ and pðtjxÞ, the closer we are to an
optimal Bayesian decision rule. This better representation of
pðtjxÞwill be reflected as better probability estimates and thus bet-
ter calibration properties; and can be achieved by incorporating
parameter uncertainty in the predictions, which is the difference
between Bayesian and point-estimate models.

We denote h as the model parameters vector from a parameter
space H, e.g. the weights of a neural network. A point-estimate
approach assigns p̂ðtjxÞ by selecting the value ĥ that optimizes a
criterion given the observations O. Thus, the probability is assigned
through:
3 This claim can be done
here for simplicity.
ĥ ¼ argmax
h2H

Lðh;OÞ

p̂ðtjxÞ ¼ pðtjx; ĥÞ
ð1Þ
Here, Lðh;OÞ is the maximum likelihood (ML) or the maximum a
posterior (MAP) distributions. For MAP optimization we have:
Lðh;OÞ ¼ 1
N

XN

i

CEðxi; ti; hÞ þ log pðhÞ; ð2Þ
where for ML the logpðhÞ is removed from the loss function. CE
denotes the cross-entropy function, which is derived from the
assumption of a categorical likelihood i.e. t � CatðtjxÞ. As a conse-
quence, the prediction is entirely based on a particular choice of
the value of the parameter vector h, even though the loss function
can have several different local minima in different values in H.

On the other hand, in a Bayesian paradigm, predictions are done
by marginalizing all the model parameters:
p̂ðtjxÞ ¼ pðtjx;OÞ ¼ EpðhjOÞ½pðtjx; hÞ�; ð3Þ

Fig. 3. Decision thresholds learned by a neural network on a 2-D toy dataset
problem where four classes are considered, each one represented with a different
colour and marker style. The plot represents the confidence assigned by the model
towards the most probable class, in each region of the input space. Darker colours
which is no more than the expected value of all the likelihood mod-
els pðtjx; hÞ under the posterior distribution pðhjOÞ of the parameters
given the observations:

Y
 represent higher confidences. The subfigure on the top row left corner represents
the decisions learned by a point-estimate model obtained by minimizing the loss
function given by Eq. 2; and the figure on the top row, right corner, represents the
confidences learned by a Bayesian model that uses Hamiltonian Monte Carlo to
draw samples of the posterior distribution, which are used to approximate the
pðhjOÞ ¼ i

pðtijxi; hÞ � pðhÞ
R
H dh

Y

i

pðtijxi; hÞ � pðhÞ
ð4Þ
posterior predictive, see [35] for details. Bottom rows represent zooms to different
regions of the input space, showing the decision thresholds learned by the Bayesian
model. Each figure represents the Accuracy (ACC) (the higher the better); and the
Expected Calibration Error (ECE) (the lower the better). With markers, we plot the
observed data O. Figure best viewed in colour.
Here, we assume that the input distribution pðxjhÞ is not mod-
elled. From both Eqs. 3 and 4, it is clear that the Bayesian model
incorporates parameter uncertainty, given by the posterior distri-
bution, through a weighted average of the different likelihoods in
Eq. 3. The importance given to each likelihood is directly related
to its consistency with the observations (as given by the likelihood
term in the numerator from Eq. 4)3.

Considering just Bayesian class-conditional models and keeping
in mind the expressions involved in computing the posterior, we
should expect the following behaviour: models that are likely to
represent a region of the input space where only samples from a
particular class are present will end up assigning high confidence
to that particular class in that region, because increasing the den-
sity towards other classes will not raise the likelihood from the
numerator in Eq. 4. On the other hand, models that are likely to
explain regions where features from two or more classes overlap
will be forced to increase the probability density of both classes,
thus relaxing the ultimate confidence provided to those classes in
that region of the input space. This behaviour will favour probabil-
ities that closely reflect the patterns showed in the data, and thus
we will be achieving our ultimate goal discussed at the beginning
of this section. Moreover, note that apart from providing more
by considering a non-informative prior pðhÞ, which we do
accurate confidence values, Bayesian models will also consider
underrepresented parts of the input space, as given by the corre-
sponding amount of density placed by the posterior on the set of
parameters that explain these regions. By definition, point estimate
approaches will not present any of these mentioned effects.

To illustrate these claims, Fig. 3 shows the confidences respec-
tively assigned by Bayesian and point-estimate models based on
a neural network (NN) architecture in the different parts of the
input space, alongside the training data points. The problem con-
sists of a 2-D toy dataset where four classes are considered, each
one represented with a different colour. We can see two important
aspects. The first one is that the Bayesian model assigns better
probabilities, thus being closer to the optimal decision rule. This
is reflected by the values of the accuracy and the expected calibra-
tion error (ECE) (details on these metrics are provided in the exper-
imental section). Second, it can be seen how the different models
assign different confidences on each region of the input space.
For the sake of illustration, in the bottom row, we present two dif-
ferent concrete parts of the input space. We can clearly see how the
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Bayesian model assigns confidence being coherent with what the
input distribution presents: highest confidence (close to 1:0) in
regions where only one class is presented and moderate probabil-
ities in regions where the data from different classes overlap. The
point-estimate does not present this behaviour.

Finally, considering likelihood models parameterized by Neural
Networks with ReLU activations, one can expect that the predic-
tions made by the Bayesian and Point Estimate approaches do
not necessarily converge to the same model as the number of
observations tend to infinity, contrary to other simple approaches,
e.g. Bayesian linear regression (see [36] chapter 3). This means
that, even with larger datasets, the predictions done by a BNN
can be substantially different from the ones performed by a point
estimate one, which justifies the use of Bayesianmodels in the con-
text of large-scale machine learning. We provide evidence on this
observation in the experimental section.
4. Bayesian models and deep learning

Having motivated the good properties of the Bayesian reliable
probabilistic modelling, in this section we introduce our approach,
showing how we overcome many of the limitations that make
Bayesian models unpractical when applied to DNNs, and thus
how we combine the best of Bayesian inference and deep learning.
The approximations presented in this section are motivated by our
interest in providing a solution that is both efficient and scalable
with dataset size. Therefore, it is expected that much better results
will be obtained by using BNNs with more sophisticated approxi-
mations, with independence of the pre-trained DNN to calibrate.
However, this is outwith the scope of the present work, as our
main motivation is providing evidence that the presented
approach, a Bayesian stage for recalibration, can consistently
improve the calibration. Future work will be concerned with the
analysis of different Bayesian stages for this purpose.
4.1. Proposed framework

Our proposal is divided into two steps. First, we train a DNN on
a specific task. After training is finished we project each input sam-
ple to the logit space, i.e., the pre-softmax, by forwarding the
inputs through the DNN. Second, a Bayesian stage is applied, which
is responsible for mapping the uncalibrated logit vector of values
provided by the DNN, to a calibrated one. Note that once the
DNN is trained and the forward step is done for a given sample,
the Bayesian stage does not require further access to the previous
DNN to be trained, which is why our method is decoupled. A graph-
ical depiction is given in Fig. 1.

One should expect this approach to work because of the follow-
ing reason. DNNs provide high discriminative performance on
many complex tasks. However, they overfit the likelihood [16].
To correct this uncalibrated probabilistic information, we incorpo-
rate a Bayesian stage, which will adjust these confidences, but
instead of starting from raw data, it starts from the representation
already learned by the DNN in the form of the logit values. As this
is a much simpler task than mapping directly the real inputs to
class probabilities, we can benefit from the properties of Bayesian
inference even though the current state-of-the-art presents many
limitations that would not allow us to achieve the same represen-
tations learned by a point estimate DNN using the Bayesian
counterpart4.
4 Monte Carlo (MC) Dropout [25] is an exception that will be discussed in the
experimental section.
We now describe our design choices for the Bayesian stage,
which includes the selection of the likelihood and the prior distri-
bution; and the set of approximations derived from these choices.

4.2. Likelihood model

In this work, we focus on finite parametric likelihood models
pðtjx; hÞ, i.e. Bayesian Neural Networks (BNNs), implemented with
fully-connected neural networks with ReLU activations for the hid-
den layers, and a softmax activation for the output layer. Note that
one can adapt the complexity and flexibility of this stage depend-
ing on the context, for instance by using recurrent architectures.

Although Gaussian Processes (GPs) have been recently used for
calibration, we discard their study for two reasons. First, their cal-
ibration properties depend on the choice of the covariance function
[37]. Second both GPs and BNNs present similar limitations in a
classification context: approximation of the predictive distribution
and sampling from (and sometimes approximating) the posterior
distribution. However, GPs require additional approximations
when dealing with large datasets, e.g. by choosing inducing points
[38] to parameterize the covariance functions; alongside with
heavy matrix computations and huge amounts of memory
resources to store data. Moreover, in BNNs inference can be done
by simple ancestral sampling, even if we make our models deeper
or recurrent; but the current state-of-the-art inference technique
in Deep-GPs [39] is based on the Stochastic Gradient Hamiltonian
Monte Carlo algorithm [40], which is impractical for the purpose of
this work.

4.3. Inference

In order to predict a label t� over a new unseen sample x� we
need to compute the expectation described in Eq. 3. The form of
the likelihood pðtjx; hÞ as described above makes unfeasible the
computation of an analytic solution for the predictive p̂ðtjxÞ. Thus,
this integral is approximated using a Monte Carlo estimator, given
by:
p̂ðt�jx�Þ � 1
K

XK

k¼1

pðt�jx�; hkÞ; hk � pðhjOÞ ð5Þ
As we choose a categorical likelihood pðtjx; hÞ, this approxima-
tion relies on averaging the softmax output from the different for-
ward steps. In a deep learning context, this likelihood would be a
DNN, e.g. a DenseNet-169 [1]; and this would require to perform
K forward steps through it in order to make predictions, which is
very costly in terms of computation. However, in our proposed
framework, predictions only require one forward step through
the DNN, and K forward steps through a much lighter likelihood
model. It is worth to say that these predictions are independent
and can be totally paralellized. Thus, computational efficiency is
not compromised.

4.4. Sampling from the posterior

In order to perform inference as described in Eq. 5 we need to
draw samples hk from the posterior distribution pðhjOÞ, which
can be done in two ways. First: by computing an analytic expres-
sion or an approximation to the posterior, that will allow us, hope-
fully, straightforward sampling. Second: using Markov Chain
Monte Carlo (MCMC) algorithms that provide exact samples from
the posterior without requiring access to it. In this work, we
attempt for the first option, as the common MCMC algorithm in
BNN, Hamiltonian Monte Carlo (HMC) [35], requires careful hyper-
parameter tuning, among other drawbacks. This tuning process has
become unfeasible for such an extensive battery of experiments
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like the one in this work; and thus, it will be only used as an illus-
trative tool in a toy experiment in the experimental section.

Based on the choice of the likelihood, the posterior distribution
from Eq. 4 cannot be computed analytically. For that reason, we
approximate this posterior distribution in terms of simple and
tractable distribution q/ðhÞ 2 Q where / denotes the parameters.
In order to perform this approximation, we follow a classical pro-
cedure in variational inference, by optimizing a bound on the mar-
ginal likelihood commonly referred as the Evidence Lower Bound
(ELBO) [36], which ensures that the variational distribution is
approximated to the intractable posterior pðhjOÞ in terms of the
Kullback-Liebler divergence DKL½q/ðhÞjjpðhjOÞ�. Our choice for the
variational distribution family Q is the factorized Gaussian distri-
bution. The choice of the prior pðhÞ is the standard Gaussian. With
this, our training criteria is given by:

q�
/ðhÞ ¼ argmax

q/ðhÞ2Q
M�1

XM

m¼1

log pðtjx; hmÞ � bDKL½q/ðhÞjjpðhÞ�; hm � q/ðhÞ

ð6Þ
where b is a hyperparameter controlling the importance provided
to the DKL. We use the recently proposed reparameterization trick
[41,42] and the local reparameterization trick [30] to allow for unbi-
ased low-variance gradient estimators. We call the first approach as
Mean Field Variational Inference (MFVI), and MFVILR (after local
reparameterization) to the latter. The motivation below experi-
menting with these two approaches is made explicitly in the next
section. It should be noted that both approximations leave the vari-
ational distribution unchanged, i.e. it is still factorized Gaussian.
Remark that this approach might be inaccurate and costly to train
if applied directly to recover a Bayesian DNN, even if we choose
to approximate the posterior distribution using more complex fam-
ilies. However, as supported by our experimental results, it is
enough to provide state-of-the-art calibration performance when
used under the proposed framework, thus manifesting the ability
to combine the best of DNNs and Bayesian modelling.

As a consequence of the choices presented in this section, pre-
dictions will be now done by substituting the intractable posterior
with the variational approximation. Thus, and after training is fin-
ished, the whole pipeline to make a prediction is given by:
logit� ¼ DNNðx�Þ

p̂ðtjlogit�Þ � 1
K

XK

k¼1

pðtjlogit�; hkÞ; hk � qðhÞ

t� ¼ argmax
t

p̂ðtjlogit�Þ
ð7Þ
5 Github: https://github.com/jmaronas/DecoupledBayesianCalibration.pytorch.
4.5. Variance under-estimation

One of the drawbacks that this particular Bayesian approxima-
tion presents is variance under-estimation (VUE), which is due to
the expression of the DKL being minimized as a consequence of
optimizing the ELBO (see[36] page 469). This makes the variational
distribution q�

/ðhÞ avoid placing high density over regions where
pðhjOÞ presents low density. Or, in other words, if pðhjOÞ is highly
multimodal the variational distribution will tend to cover only
one mode from the intractable distribution. This effect is also
known as mode collapse.

In practice, we realize that this effect affects the performance of
the proposed approach in two ways. On one side, consider a highly
multimodal intractable posterior that presents a single high-
density mode, alongside with different bumps over the parameter
space. As a result of the optimization process, if the variational dis-
tribution accounts for this high mode, the set of weights sampled
could resemble those of MAP estimation, and thus we will be pro-
viding over-confidence predictions. To overcome this last limita-
tion, we propose to select the optimal value of K in Eq. 5 on a
validation set. While this approach contrasts with the theory,
which states that K should tend to infinity, we find it an effective
solution to overcome this limitation in our experiments for this
particular mean-field approach.

On the other hand, if our intractable posterior presents several
bumps with equal probable density, or our approximate distribu-
tion accounts for a non-highly probable mode of the intractable
posterior, the set of weights sampled could not be enough repre-
sentative of the data distribution. The confidences assigned by
model parameterized with these set of sampled weights could
affect the accuracy and the calibration error. This can only be
solved by using more sophisticated approximations of the varia-
tional distribution as the MFVI approach can only recover uni-
modal Gaussian distributions. We realized that this effect only
affects the most complex tasks. For complexity, we refer, on one
side, to the particular task to solve (which will mainly depend on
the number of classes and number of samples) and, on the other
to how well the variational distribution is able to fit the intractable
posterior. This will depend on the choice of likelihood pðtjx; hÞ and
the prior pðhÞ; and the set of observations O. Thus, both the number
of classes, the representations learned by a DNN and the number of
training points play a major role in the final performance of the
proposed approach. We will illustrate these claims in the next
section.
5. Experiments

We conduct several experiments to illustrate the different prop-
erties of the proposed approach. We provide code for reproducibil-
ity and Supplementary material for details on different results5.

5.1. Set-up

Datasets: We choose datasets with a different number of
classes and sizes to analyze the influence of the complexity of
the calibration space and the robustness of the model. In parenthe-
sis, we provide the number of classes: Caltech-BIRDS (200),
Standford-CARS (196), CIFAR100 (100), CIFAR10 (10), SVHN (10),
VGGFACE2 (2), and ADIENCE (2). We use all the training set to train
the Bayesian models except for VGGFACE, where we use a random
subset of 200000 samples, which is 15 times fewer than the origi-
nal. This was enough to outperform the state-of-the-art.

Models:We evaluate our model on several state-of-the-art con-
figurations of computer vision neural networks, over the men-
tioned datasets: VGG, Residual Networks, Wide Residual
Networks, Pre-Activation Residual Networks, Densely Connected
Neural Networks, Dual Path Networks, ResNext, MobileNet and
SeNet.

Performance Measures: In order to evaluate our model, we use
the Expected Calibration Error (ECE) [16] and the classification
accuracy. The ECE is a calibration measure computed as:
ECE ¼
X15

i¼1

jBij
N

jaccðBiÞ � confðBiÞj ð8Þ
where the ½0;1� confidence range is equally divided in bins Bi, over
which the accuracy accðBiÞ and the average confidence confðBiÞ are
computed.

Training specifications: We optimize the ELBO using Adam
optimization as it performed better than Stochastic Gradient Des-
cent (SGD) in a pilot study, and we select b in Eq. 6 from the set

https://github.com/jmaronas/DecoupledBayesianCalibration.pytorch
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f10ig4i¼0 , depending on the BNN architecture. We use a batch size
of 100 and both step and linear learning rate annealing. More
details provided in the Supplementary material.

Calibration Techniques: We evaluate our model against
recently proposed calibration techniques. Regarding explicit tech-
niques, we compare against Temperature Scaling (TS) [16] as to
our knowledge is the state-of-the-art in decoupled calibration
techniques. TS maximizes the log-likelihood of the conditional dis-
tribution pðtjl=TÞ w.r.t. the parameter T. l stands for the logit, i.e.
pre-softmax of the DNN model (same input as our approach). As
all the logits are scaled by the same value, TS is a technique that
does not change the accuracy. We also compare with a modified
version of Network Ensembles (NE) [15]. This is an implicit calibra-
tion technique that proposes to average the output of several DNNs
with adversarial noise regularization, different random initializa-
tion and randomized training batches. Due to the high computa-
tion cost, we train decoupled NE, i.e, NE that maps the logit from
the DNN.

On the other hand, regarding implicit calibration techniques, we
compare against NE in their original form; and also against MMCE
[18], which proposes a calibration cost which is computed using
kernels; and with Monte Carlo Dropout [25], that averages several
stochastic forward passes through a Neural Network.
5.2. Bayesian vs point estimate and variance under estimation

We begin by conducting a series of experiments comparing
Bayesian and non-Bayesian approaches using the same toy dataset
used in Section 3. We aim at illustrating the good calibration prop-
erties of the chosen Bayesian model, and its better performance
when compared to point-estimate approaches in the presence of
bigger training sets. We further illustrate the influence of VUE in
the approximate Bayesian model.

We start by evaluating the calibration performance of Bayesian
and non-Bayesian models when the number of training samples is
large. For this experiment, we use 4000 training samples, which we
consider to be a large dataset due to the simplicity of this toy dis-
tribution. This toy problem allows using HMC to draw samples
from the intractable posterior used to approximate the predictive
distribution in the Bayesian model. For the point estimate, we
use a MAP training criteria optimized with SGD and momentum.
Results are shown in Table 1, where we compare different induced
posterior distributions showing how the calibration error of the
Bayesian HMC model is one order of magnitude below the point
Table 1
A comparison between HMC MFVILR and MAP using 4000 training samples. Prior specifie

Posterior specs HMC

Prior Likelihood ACC ECE

16 0/– 85 0.05
16 1/25 86 0.05
16 1/50 86.5 0.05
32 0/– 85 0.05
32 1/25 87 0.04
32 1/50 86.5 0.05

Table 2
Calibration ECE (%), and accuracy (ACC) (%) performance for averages of several logistic m
better, ECE the lower the better.

CIFAR100

ECE ACC

Point Estimate 33.90 62.67
Bayesian 3.66 72.36
estimate MAP. Thus, one should expect that for more complex
distributions than this of our toy dataset will be further improved
by a Bayesian approach.

We then illustrate the effect of variance under-estimation
(VUE). As we argued above, in the context of BNNs for classifica-
tion, this VUE effect can cause accuracy degradation and bad cali-
brated predictions. Using the results from Table 1 we compare the
performance of the Bayesian model using HMC and MFVILR. As
expected, MFVILR is providing worse calibration and accuracy than
HMC, clearly due to a bad approximation to the intractable poste-
rior. We can further highlight this effect by taking a look at the 0-
hidden layer likelihood model. Under this parameterization, the
intractable posterior is a non-Gaussian unimodal distribution
and, even though our approximation is also unimodal, it cannot
correctly fit the intractable posterior.
5.3. Bayesian vs non-bayesian linear regression

In this section, we compare Bayesian and non-Bayesian Linear
Logistic Regression under the proposed framework. We train sev-
eral DNNs on different datasets and then use a Linear Logistic
model with a Bayesian and a Non-Bayesian approximation. In this
setting, the likelihood is given by:
s prior variance. Likeliho

MFV

ACC

61.0
67.0
67
66.0
79.5
81.0

odels trained for three

SVHN

ECE

1.13
1.03
pðtjx; hÞ ¼ f ðxT �W þ bÞ; ð9Þ
where W and b are parameters, f ðÞ is the softmax function and x
represents the logit computed from the DNN.

The motivation below this comparison is based on the observa-
tion that, as shown in Table 1, one could think that our approach
(MFVILR) provides worse results than a point estimate model.
However, as we now show, when combined with a DNN it outper-
forms the point estimate approach. Moreover, we want to show
that the poor calibration capabilities of complex techniques, as
strengthened by [16], are due to bad treatment of uncertainty,
and not because the calibration space is inherently simple.

Table 2 shows a comparison of both methods where it is clear
that the Bayesian model provides better performance both in accu-
racy and calibration. It should be noted that the solution of this
optimization problem under the non-Bayesian estimation is
unique, while the MFVILR admits several steps of improvement
just by using more sophisticated approximated distribution, that
could capture non-Gaussian or multimodal posteriors. Thus, it is
clear that our main claim, combining the powerfulness of DNNs
and BNNs can be achieved.
od specifies hidden-layers/neurons-per-layer.

ILR MAP

ECE ACC ECE

0.25 83 0.29
0.19 85 0.26
0.21 84.5 0.26
0.23 86 0.26
0.19 85.5 0.19
0.22 86 0.18

of the databases considered in this work. ACC the higher the

CARS

ACC ECE ACC

96.72 23.50 76.14
96.72 1.88 74.31
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5.4. Selecting optimal MC samples on validation

We then illustrate why selecting the optimal value of Monte
Carlo predictive samples with a validation set is necessary. One
of the problems of VUE is that we can fit our approximation to a
high-probable mode of the intractable posterior density, sampling
set of weights that could resemble those of MAP estimation, with
overconfidence probability estimates as a result. In this work we
show that this effect can be controlled by searching for the optimal
value of Monte Carlo predictive samples, K in Eq. 5, using a valida-
tion set.

As an illustration of this over-sampling effect, Fig. 4 shows the
calibration error when increasing the number of MC samples. By
looking at the figure in the middle and in the left we can see
how the calibration error is kept constant (or even increased) when
more samples are drawn. This suggests that the variational distri-
bution is coupling to a particular part of the intractable posterior.
As a consequence, the ultimate confidence assigned by the model
is not being consistent with the ideal estimation. In the case of
being coupled to high probability regions of the intractable poste-
rior, the generated samples could resemble those of map estima-
tion, having overconfidence predictions as a consequence, which
links with the observations provided by [16] in which complex
models provide overconfidence predictions. However, this effect
can be more or less present, as seen for instance in the right figure,
where the behaviour resembles what one should expect, i.e. better
performance when increasing the number of MC samples. How-
ever, even without selecting for the optimal value of K on valida-
tion, we observed that most of the models outperformed the
baseline uncalibrated DNN and provide competitive or even better
results than the state-of-the-art as K increases.

5.5. Calibration performance of BNNs

In this subsection, we discuss the calibration performance of the
proposed framework. We start by evaluating the proposed method
against a baseline uncalibrated network in several datasets. Results
are shown in Table 3, where we compare the results with MFVILR
and MFVI. For VGGFACE2 we only run the experiments with
MFVILR due to computational restrictions.
Fig. 4. ECE measure on validation and test set varying the number of Monte Carlo Predic
cifar100 ResNet-101.

Table 3
Average ECE 15(%) and ACC(%) on the test set comparing the uncalibrated model, and the m
ACC the higher the better. ‘‘degr” means degraded.

Uncalibrated

Acc ECE A

CIFAR10 94.81 3.19 9
SVHN 96.59 1.35 9

CIFAR100 76.36 11.39 7
VGGFACE2 96.19 1.33
ADIENCE 94.25 4.55 9
BIRDS 76.27 13.22 d
CARS 88.79 5.81 d
As shown in the table, the proposed technique improves the cal-
ibration performance by a wide margin over the baseline even
though we are using a mean-field approximation to the intractable
posterior distribution with well-known established limitations.
Regarding the accuracy performance, we see a slight accuracy
degradation which is only relevant in highly complex tasks, such
as CIFAR100, BIRDS and CARS. Our hypothesis is that this degrada-
tion is not due to a limitation of the BNN algorithm, but due to
inaccurate approximations to the true posterior in some settings.
In fact, in some cases, we improve the accuracy over the baseline,
as in the two-class problem. This degradation can also give us fur-
ther insight into the complexity of the calibration task.

Aswestated, accuracydegradationcanbeexplainedbymodecol-
lapse. To illustrate this claim,we compare theperformanceprovided
byMFVI andMFVILR, as both these approximations only differ in the
convergence rate of the training criteria from Eq. 6, i.e, both approx-
imations provide factorized Gaussian approximations q/ðhÞ as
approximate distributions. As shown by the table, better results
were obtained by the MFVILR, both regarding calibration and accu-
racy performance, which means that an inaccurate approximation
to the true posterior is responsible for this degradation. This is justi-
fied by the fact that, as theMFVILR provides better convergence rate,
we are able to fit a better approximation to the intractable posterior.
This sameeffect is showedwhenone trains the sameDNNusing SGD
andSGDwithmomentum.Even themodelsand the initializationcan
be the same, the results providedby SGDwithmomentumare better
due to the lower noisy gradients.

On the other hand, as we see from the results, this degradation
is noticeable in more complex tasks. This suggests that the com-
plexity of the intractable posterior increases with the complexity
of the task, and thus, a mean-field approximation is not able to pro-
vide the same performance as it does in simpler ones. It should be
noted that more complex decision regions will induce more com-
plex posteriors, through the likelihood term in Eq. 4. This follows
our claim that complex techniques overfit due to a bad uncertainty
treatment and not because the calibration space is inherently sim-
ple, as noted in [16]. To provide further insight, Table 4 compares
MFVI and MFVILR with different models and CIFAR100. The first
two rows of the table show how the accuracy degradation is clearly
improved just by using MFVILR, which is a general tendency in the
tive samples. From left to right: cifar10 WideResnet-40x10, cifar100 DenseNet-121,

odel calibrated with MFVI and MFVILR for each database. ECE15 the lower the better,

MFVI MFVILR

cc ECE Acc ECE

4.70 0.58 94.64 0.50
6.50 0.87 96.55 0.85
3.87 2.52 74.44 2.52
– – 96.20 0.37
4.28 0.53 94.27 0.51
egr degr 74.32 1.88
egr degr 85.34 1.59



Table 4
MFVI compared to MFVILR in CIFAR100. * means best model on validation.

CIFAR100

MFVI MFVILR

ACC ECE ACC ECE

DenseNet 169 75.58 2.39 77.22* 2.45
ResNet 101 68.59 1.61 70.31* 1.75

Wide ResNet 40 � 10 76.17 1.88 76.51* 1.79
Preactivation ResNet 18 74.30 1.76 74.51* 1.59

Preactivation ResNet 164 70.77* 1.46 71.16 2.20
ResNext 29_8 � 16 73.97* 2.58 71.13 3.77

Table 5
Average number of parameters (in thousands).

MFVI MFVILR

CIFAR100 24018.7 430.5
CIFAR10 696.6 65.6
SVHN 606.9 7.6
ADIENCE 0.470 4.482

Average 6331.2 126.1
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experiments (see the Supplementary material). However, one can
not expect that using MFVILR should always achieve better results,
as a good convergence of MFVI should make us recover similar
approximate posteriors, reflected as no performance increases.
This is shown in the third and fourth rows. Moreover, if the approx-
imate posterior is a bad approximation to the true posterior, we
can dig into an undesirable local minimum, as shown in the fifth
and sixth rows. We found that models where MFVILR worsened
the performance w.r.t. MVFI were those more difficult to calibrate
in general, which can be explained by the fact that the complexity
of the true posterior cannot be captured by the factorized Gaussian
approximation, and more sophisticated approximations need to be
employed.

On the other hand, we can also provide evidence on the com-
plexity of the calibration space as being dependent on the com-
plexity of the task by analyzing another effect observed in the
experiments carried out. Again, and only in complex tasks:
CIFAR100, BIRDS and CARS, we experimented an accuracy degrada-
tion during training with the MFVI. This means that even although
the ELBO was correctly maximized, i.e. the likelihood correctly
increases over the course of learning, the accuracy provided was
totally degraded. In CIFAR100 we solve it by progressively increas-
ing the expressiveness of the likelihood model for the MFVI, as
illustrated in the Supplementary material. However, on BIRDS
and CARS it could only be solved when using MFVILR, as shown
in Table 3 where ‘‘degr” stands for degradation, and it refers to this
effect. This suggests that the factorized Gaussian is unable to give a
reasonable approximation to the intractable posterior under nois-
ier gradients. As this effect is only present in a more complex task,
this again suggests that when the complexity of the task increases,
so does it the calibration space.

On the other hand and based on the previous observation, one
could argue that accuracy degradation is due to a lack of expres-
siveness in the likelihood model. However, we still emphasize that
VUE is responsible for this effect. This is because, first, increasing
the expressiveness of the likelihood model in MFVI on BIRDS and
CARS did not solve the problem. Second, it is because we observed
that by using MFVILR we were able to reduce the topologies, in
general, of the likelihood model as compared with MFVI. This is
illustrated in Table 5 where we show a comparison between the
average number of parameters used for each task6.

To end with, we surprisingly found that in some models that
achieved good calibration and accuracy properties, both the
negative-log-likelihood and the accuracy increased over the course
of learning. This means that the network is unable to correctly raise
the probability toward the correct class for the miss-classified
samples.
6 In ADIENCE MFVILR was not able to reduce the topologies due to instabilities
when computing derivatives. We provide a justification in the Supplementary
material
5.6. Comparison against state-of-the-art calibration techniques

We then compare the calibration performance of our method
against other proposed techniques for calibration, both implicit
and explicit. For the comparison, we use the hyperparameters as
provided in the original works. Results are shown in Table 6 for
explicit methods and in Table 7 for implicit methods. Results on
the same dataset might differ as due to the high computational
cost of some of the explicit calibration techniques, we only perform
a subset of the experiments. Details on the models used to com-
pute these results are provided in the Supplementary material.
5.6.1. Explicit calibration techniques
Comparing against explicit calibration techniques we first see

that all the methods increase the calibration performance over
the baseline (see Table 3 and 6), with a clear improvement of the
BNNs over the rest in all the tasks. These results demonstrate the
two main hypotheses of this work: Bayesian statistics provide
more reliable probabilities, and complex models improve calibra-
tion over simple ones. This observation is consistent in all the
experiments presented, where the ECE is the lowest for the pro-
posed model, manifesting the robustness of the BNN approach in
terms of calibration. Therefore, our results support the hypothesis
that point-estimate complex approaches for re-calibration overfit
[16] because uncertainty is not incorporated and not because cal-
ibration is inherently a simple task. This conclusion can also be
supported by the fact that as the complexity of the task increases,
the number of parameters of the Bayesian model that yields better
results also increases. For instance, the calibration BNN for
CIFAR100 needs much more parameters than the BNNs for simpler
tasks such as CIFAR10, as shown in Table 5. Second, it is important
to remark that in some models TS has degraded calibration by a
factor of three in the worst case while BNNs do not, as seen in
the results provided in the Supplementary material. On the other
hand, Bayesian model average clearly outperforms standard model
averaging as performed by NE. In fact, NE are not suitable for the
calibration of deep models, because training directly an ensemble
of DNNs is computationally hard and training NE over the logit
space does not perform as well as TS. In addition, NE is the one that
uses more parameters.

All these observations manifest the suitability of the proposed
decoupled Bayesian stage for recalibration, as even a mean-field
approximation to the intractable posterior performs better in
terms of calibration than the state-of-the-art in many scenarios.
This motivates future work to study more complex variational
approximations and different Bayesian-based stages, in order to
mitigate the accuracy degradation observed in these experiments.

To end with, one important aspect we observed is the robust-
ness of BNNs. We obtained a calibration improvement over TS on
the first hyperparameter search in many of the experiments per-
formed. Only some exceptions required further hyperparameter
search, which is explained by having to approximate more com-
plex posterior distributions. However, in general, the mean-field
approach provides good results, as illustrated in Fig. 5, where we
show how many of the tested configurations outperformed TS.
More figures are provided in the Supplementary material.



Table 6
Average ECE results compared against explicit calibration techniques.

CIFAR10 CIFAR100 SVHN BIRDS CARS VGGFACE2 ADIENCE

NE decoupled 2.55 10.17 1.02 5.25 5.51 0.79 2.64
TS [16] 0.90 3.29 1.04 2.41 1.80 0.55 0.87
ours 0.50 2.52 0.85 1.88 1.59 0.37 0.51

Table 7
Average ECE results compared against implicit calibration techniques.

CIFAR10 CIFAR100 SVHN

VWCI [19]* – 4.90 –
MMCE [18] 1.79 6.72 1.12
TS [16] 0.82 3.84 1.11
MCDROP [25] 1.38 3.49 0.92
NE [15] 0.61 3.27 0.71
Ours 0.43 2.28 0.83

* indicates that the results are taken from the original works. We also include TS.
Results from TS and our approach differ from Table 6 as we only pick the DNNs used
in the explicit techniques.
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5.6.2. Implicit calibration techniques
We then compare against implicit calibration techniques. Look-

ing at the results in Table 7 we see that Network Ensembles pro-
vide competitive results but at a higher computational cost. This
is because this method requires to train several DNN to search
for the optimal parameters (number of ensembles, the factor of
adversarial noise, topologies of the ensembles. . .), while we only
require to reach good discrimination as provided by the DNN,
and then search hyperparameters on a much lighter model.

On the other hand, we briefly discuss other potential advan-
tages of our method against implicit techniques. First, we see
how our Bayesian method outperforms the other Bayesian method
provided, named Monte Carlo dropout (MCDROP). We should
expect these results as the main authors clearly state in their work
that the probabilities provided by this method should not be
necessarily calibrated as the dropout parameter has to be adapted
as a variational parameter depending on the data at hand [43]. In
fact, many works that aim at reporting that Bayesian methods do
not provide calibrated outputs [15,17] only provide results com-
paring with this technique. However, this work has clearly shown
that Bayesian methods are able to improve the calibration perfor-
mance over point estimate techniques.

Moreover, while our method does not compromise the previous
DNN architecture, both MC dropout and VWCI require sampling-
based stages, e.g. dropout, to be applied to the DNN. Despite the
improvement of [19] over a baseline uncalibrated model, our
method is clearly better, as shown in the table. Moreover, it seems
Fig. 5. Comparison of ECE performance between TS and BNN in test and validation. O
parameters. As an example, 30MC_ 500 means that the ELBO was optimized using 30 MC
On the right (CIFAR100) we show the performance of a BNN trained with a different num
The number of samples to evaluate the predictions is chosen on a validation set to avoi
unclear how scalable this method is when applied to Deep Learn-
ing models, as to compute the cost function, this approach requires
several forwards through the DNN. While their deeper model is a
DenseNet-40 we provide results here for a DenseNet-169. On the
other hand, our method is clearly more efficient than MC dropout
or other Bayesian implicit methods [44] as these requires perform-
ing several forwards through the DNN.

Finally, developing techniques to recalibrate the outputs of a
model is indeed interesting, as they can be combined with implicit
techniques. As an example, the best results reported by [18] are a
combination with their method with TS. Furthermore, [13] also
uses TS as the calibration technique, and [17] proposes a method
for re-calibrating outputs in regression problems; which manifest
the interest and power of developing techniques that aim at re-
calibrating outputs of a model.
5.7. Qualitative analysis

We have also performed a qualitative analysis of the output of
the Bayesian model in comparison with TS. We realized that on
the misclassified samples made by TS and BNNs, the BNN assigns
lower confidence than TS, which is a desirable property. On the
other hand, regarding the correctly classified samples, the BNN
not only adjusts the confidence better but also classifies these sam-
ples with higher confidence than TS. This may mean that TS cali-
brates by pushing samples to lower confidence regions, an
observation that has been also noted in previous works [18]. More-
over, we analyzed the samples where the BNN decided a different
class w.r.t. the DNN. On the one hand, we analyzed the set of these
samples where the class assigned by the BNN was correct, i.e. 100%
accuracy. First, in this set, the original decision made by the DNN
was incorrect, i.e. 0% accuracy. Second, the DNN assigned very high
incorrect confidence (over 0.9) to some of these miss-classified
samples. Third, the new confidence assigned by the BNN was not
extreme, which means that the BNN ‘‘carefully” changes the deci-
sion made by the DNN. On the other hand, we analyze the set of
samples where the BNN assigned a different class from the DNN,
and this newly assigned class was incorrect. First, we realize that
the DNN only had a 50% of accuracy on this set. Second, the original
n the left (CIFAR10) we show the performance of models trained with different
samples to estimate expectation under q/ðhÞ and 500 epochs of Adam optimization.
ber of epochs up to 2000, showing the performance against the course of learning.
d variance under-estimation.
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confidence assigned by the DNN to these samples was below 0.5.
This means that the BNN does not make wrong decisions on a
set of high-confidence, well-classified samples by the DNN.
6. Discussion

Having presented and evaluated the proposed approach, herewe
enumerateand summarize anumberof their advantages and lines of
improvement. First, the Bayesian stage is only compromised by the
dimensionality of the logit space, nomatter howchallenging the ini-
tial task is, or the type and complexity of the pre-trained DNN. Sec-
ond, the approach is efficient, since the initial DNN model does not
need to be re-trained for re-calibration. Some approaches that
attempt to directly train a deep calibrated model [18,19] increase
the training time over the initial DNN. In this sense, hyperparameter
search is quicker with our proposal, as we only need to focus on get-
ting good accuracy from the DNN. Third, we can incorporate future
improvements to the BNN calibration stage without affecting the
previous DNN model. For instance, recent proposals such as [21] or
Bayesian stages based on Gaussian processes [39]. Fourth, our pro-
posal is extremely flexible, as the proposed BNN calibration stage
will work with any probabilistic model, including models that are
designed to be implicitly calibrated [18,19], with potential addi-
tional benefits on calibration performance. For instance, the best
results reported by [18] are a combination of their method with TS.
Fifth, we do not compromise the architecture of the previous stage.
Other proposals that attempt to calibrate implicitly [19], or tomodel
uncertainty in a Bayesian way [25], require certain architectures in
the previous stage. Finally, we showed that our approximation is
robust, i.e, we provide below better calibration than the current
state-of-the-art in many different configurations of the BNNs and
optimization hyperparameters.

On the other hand, the disadvantages discussed in Section 4.5
are not a limitation of our approach. We can still improve the
approximate posterior by applying normalizing flows [33], auxil-
iary variables [34], combinations of all of them [31] or determinis-
tic models [21]. Also, [45] has recently pointed out that amortized
inference leads to an additional gap in the bound, in addition to the
DKL gap between the true and variational posteriors; and we can
also use other proposals to mitigate this effect [46]. However,
including all these improvements is not the aim of this work, but
to show the adequacy of the proposed decoupled BNN and its
potential for future improvements. This is because the true poste-
rior distribution can be highly variable, as it not only depends on
the parameterization of the likelihood model and the prior but also
on the observed dataset, which itself depends on the input training
distribution and the set of representations learned by the specific
DNN. Thus we decided to validate our proposal restricting our-
selves to the Gaussian approximation and to show that it works
in a numerous set of different configurations.
7. Conclusions and future work

This work has shown that Bayesian Neural Networks with
mean-field variational approximations can robustly provide
state-of-the-art calibration performance in Deep Learning frame-
works, overcoming the limitations of applying Bayesian techniques
directly to them. This suggests that using more sophisticated
approximations to the intractable posterior should even yield bet-
ter results than the ones reported in this work.

We have also shown that as long as uncertainty is properly
addressed we can make use of complex models that do not overfit,
showing that probability assignments of DNN outputs suppose a
more complex task than what previous work argued. Also, we have
shown that, in contrast to previous work, Bayesian models param-
eterized with Neural Networks can be successfully used for the
task of calibration. Moreover, our approach is a clear alternative
to the development of Bayesian techniques directly applied to
DNN, such as concrete dropout [43], as we do it at a much lower
computational cost.

On the other hand, we have analyzed and justified the draw-
backs found in this work: slight accuracy degradation in complex
tasks and the selection of the number of Monte Carlo predictive
samples using a validation set. Future work will be focused on
the exploration and analysis of different Bayesian models for the
task of calibration, and different approximations to the intractable
posterior distribution. With all this, we aim at reducing and deeply
analyze the influence of the aforementioned drawbacks.
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