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Abstract 

 

The two-scale asymptotic homogenization method is used to find closed-form formulas for 

effective properties of periodic multi-phase fiber-reinforced composites where constituents have 

complex-valued transport properties and parallelogram unit cells. An antiplane problem relevant 

to linear elasticity is formulated in the frame of transport properties. The application of the 

method leads to the need of solving some local problems whose solution is found using potential 

theory and shear effective coefficients are explicitly obtained for n phase fiber-reinforced 

composites. Simple formulae are explicitly given for three- and four-phase fiber-reinforced 

composites. The broad applicability, accuracy and generality of this model is determined through 

comparison with other methods reported in the literature in relation to shear elastic moduli and 

several transport problems of multi-phase fiber-reinforced composites in their realm, such as 

conductivity in a biological context and permittivity leading to gain and loss enhancement of 

dielectrics. Also, the example of gain enhancement of inertial mass density is looked into. Good 

agreement with other theoretical approaches is obtained. The formulas may be useful as 

benchmarks for checking experimental and numerical results. 

 

1. Introduction  

 

The prediction of effective transport properties of periodic composites, such as shear, electrical 

and thermal conductivities, permittivity, dielectric constant, magnetic permeability, thermal 

expansion, etc., is still important in applications (Giraud et al., 2019; Godin, 2013, 2016; 

Kaddouri et al., 2016; Kolpakov and Kolpakov, 2009; McCullough, 1985). 
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Multi-phase fiber-reinforced composites (FRC) have also received great attention by researches 

due to its wide field for transport problems. For example: Perrins et al. (1979) applied an 

extension of Rayleigh’s method to calculate effective conductivity of FRC with a regular array of 

conductive cylindrical inclusions. The effective conductivity tensor is computed for a two-

dimensional composite with doubly periodic array of circular inclusions (Godin, 2012). Real and 

imaginary parts of particulate homogenized composite material with complex-values constituent 

properties relative to permittivity are reported by (Mackay and Lakhtakia, 2016). The effective 

thermal conductivity of a transversely isotropic multi-phase FRC is predicted using the 

generalized self-consistent method (GSCM) and the energy balance principle (Hassan et al., 

2013). The GSCM is previosly applied to analyze the interfacial contact conductance effect on 

effective thermal conductivity of particulate, transversely isotropic fiber and multi-layered 

composites (Lee et al., 2006). The mechanical deformation response of conductive FRC is 

studied as result of electric fields applications in the fibers’s direction and considering electro-

magneto-thermo-mechanical coupled effects (Perchikov and Aboudi, 2017). 

Models have been developed for study heterogeneous multi-phase FRC. The main challenge of 

these is to establish, from the engineering point of view, a full process to optimize effective 

properties of FRC. Due to the complexity of the microstructure and the material properties, the 

digital twin composite must take into account the nature of two or even multiple scales, the 

constituents’ specific geometrical and physical properties and characteristics of existent phases 

(Görthofer et al., 2019). For example: GSCM is implemented to compute effective transverse 

shear modulus of multi-interphase FRC (Dasgupta and Bhandarkar, 1992). The same scheme is 

applied to predict effective properties of homothetic particle-reinforced composite (Bonfoh et al., 

2014). In that work, a general formulation for n-phase multi-coated composite with ellipsoidal 

inclusion is proposed. The upper and lower bounds of effective magnetic permeability of 

homogeneous and isotropic two-phase composite are derived by variational approach (Hashin 

and Shtrikman, 1962). Analytical expressions of effective coefficients are found by two-scale 

asymptotic homogenization method (AHM) for two-phase elastic fibrous composites with square 

 Rodr  gue -Ramos et al., 2001) and hexagonal (Guinovart-Díaz et al., 2001) unit cells and 

transversely isotropic real-values constituents. A recursive scheme based on AHM is developed 

in order to find effective properties of multiphase unidirectional elastic FRC with transversely 

isotropic constituents and hexagonal symmetry (Guinovart-Díaz et al., 2005). The equivalent 



inclusion concept (Eshelby, 1957) combining with the doubly quasi-periodic Riemann boundary 

value problem (Lu, 1994) is used to solve the problem of doubly periodic cylindrical inclusions 

under longitudinal shear (Jiang et al., 2004). A new micromechanical based on Green’s functions 

technique and integral equation is developed to estimate effective elastic properties of multi-

coated reinforce composite (Dinzart et al., 2016). The thermal conductivities of multiphase 

composites reinforced by carbon fibers is investigated by finite element method (Ahmadi et al., 

2019). The effect of fiber hexagonal and random arrangements on elastic behavior of FRC is 

studied by finite element simulations (Beicha et al., 2016). The linear elastic properties are 

preddicted by mean field and full field approaches for short FRC (Müller et al., 2015). Here, the 

approaches are compared in detail, clearly indicating that the applicability of mean field 

approaches depends on the phase contrast in the phases. Mean field predictions are compared to 

experimental data in (Müller et al., 2016). 

On the other hand, multi-phase models are also frequently used to simulate fiber-matrix adhesion 

regions in FRC. Here, a thin interphase illustrates a fiber–matrix transition zone, as a thin layer 

between them (so called imperfect contact region); see for instance (Hashin, 2001; Hashin, 2002; 

Sevostianov et al., 2012). Descriptions and analysis of imperfect interface conditions have been 

addressed by (Otero et al., 2013; Palla and Stefano, 2016), among others. Effects of non-uniform 

imperfect contact region between fiber and matrix on effective shear moduli are studied by 

(Guinovart-Díaz et al., 2013; 2016; López-Realpozo et al., 2014) 

The main aim of this work is the effective transport complex properties prediction of periodic 

multi-phase FRC with complex-valued constituent properties and parallelogram cell by AHM. In 

addition, the effect of multiple interphases on quality of effective properties is also studied. As a 

particular case of transport complex properties, the analytical expression of antiplane local 

problems and effective shear properties are stated for a periodic n phase FRC. Besides, the 

corresponding simple formulae for three- and four-phase FRC are given. Finally, due to the 

mathematical analogy and applicability of the present model in other transport problems, the 

determination of effective complex permittivity, conductivity of a biological tissue comprising 

by tubular cells, and enhanced permittivity with electromagnetic waves using lossy materials (in 

composites where the unidirectional inclusions are revisited by an annular interphase) are also 

analyzed as a multi-phase composite. Numerical analysis and validations of results are carried 



out for two-, three- and four-phase FRC and discussed. Good agreements are obtained as 

benchmark for further experimental results. 

The novelty of the present model is the extension to n phase FRC with complex-valued 

constituent properties and periodic parallelogram-like cell using AHM.  It generalizes previous 

results obtained by the same method for two-phase composites with periodic square  Rodr  gue -

Ramos et al., 2001), hexagonal (Guinovart-Díaz et al., 2001) and parallelogram (Guinovart-Díaz 

et al., 2011; Rodríguez-Ramos et al., 2011) cells and transversely isotropic real-values 

constituents. 

  

2. General considerations  

 

Let us consider a periodic nphase FRC 3  in the system of coordinates  1 2 3, ,x x xx . 

The composite geometric description   is defined by a parallelepiped-like array of 1n  

concentric, unidirectional and infinitely longs cylinders embedded in matrix, without overlapping 

between them, as shown in Fig. 1(a). The material constituents of matrix and fibers phases 

(central fiber and 2n  coated fibers) are assumed elastic belonging to crystal symmetry class 

6mm. The axes of material and geometric symmetry are parallel. In addition, as a unidirectional 

fibrous composite, it is considered that the microstructure remains constant along fiber 3x  

direction (i.e., perpendicular to plane of cross-section) with complex-valued properties. 

The composite’s structure is characterized by periodicity of its microstructure, then, the 

composite’s fiber cross-section (periodic unit cell Y) is a parallelogram (matrix) with 1n  

concentric circles (fibers), see Fig. 1(b). The parallelogram-like unit cell Y is defined by a 

constant angle   and the principal periods 1w  and 2w  over 1 2O y y -plane in  1 2 3, ,y  y y y  

system. Also, it is satisfied that 
1

Y



n

i

i

S  where 1S  is the region occupied by matrix limited by a 

parallelogram   with a circular hole of radius 1R , contour 1  and volume 1V , rS  of volume Vr  

( 2, , 1)r n   represents the region occupied by the ring (coated fibers) limited by circular 

interfaces 1r  and r  of radius 1rR  and rR  ( 2, , 1)r n  , respectively, and nS  is occupied 

by central fiber limited by 1n  with radius 1nR  and volume Vn . The thickness of the region 



occupied by the 2n  coated fibers is h  and r-th interphase thickness is 1 r r rh R R  (see 

Fig.2). The circular interface s  ( 1, , 1)s n   is defined as  z , 0 2      i

s sR e  and 

the volume V of Y satisfies that 
1

1

=2

V V V V 1


   
n

r n

r

. The macro and micro-scale relation 

/ y x  is measured from a small geometrical parameter / Ll  , which relates the distance 

( )l  between the centers of two neighboring cylinders and the diameter (L)  of the composite. 

 

Fig. 1 

 

Fig. 2 

 

In the forthcoming sections some summary ideas of the antiplane problems and a brief comment 

about AHM are given. The antiplane local problems statement and its corresponding solutions 

are shown. The effective coefficients for multi-phase FRC are calculated analytically and 

numerically in order to obtain effective transport complex-values properties. Analysis of results 

is discussed. 

 

3. Two-scale asymptotic homogenization method (AHM) applied to elasticity problem for a 

multi-phase fiber reinforced composite. Antiplane problems 3L  

 

In material science, the estimation of effective transport properties of periodic composites is a 

field of interest associated to practical situations. Transport problems (for example: problems of 

heat conduction, diffusion, electrostatic, magnetostatic, elasticity theory, among others) is 

represented by an equilibrium linear equation 

div ( )xF f ,                                          (1) 

with the constitutive relation 

Fi ij

i

K
x





,                                  (2) 

where , 1, 2, 3i j . Herein, Fi  is the component of an induced flux F (heat flux, diffusion current 

density, electric displacement, magnetic induction, stress and so on),   represents a harmonic 



potential (temperature, density, electric and magnetic potentials, displacement, etc.) and 

/  ix  their gradient (temperature and density gradients, electric and magnetic fields, strain 

and others). ijK  are components of linear responses tensor (or transport properties) of an 

analyzed medium, i.e., thermal conductivity, diffusivity, dielectric and magnetic permittivity, 

stiffness moduli, and the like. ( )xf  represents the body force vector. Many works focused on 

characterization of composite’s transport properties with different physical and structural 

conditions are reported by (Kolpakov and Kolpakov, 2009; Pal, 2014; Yan et al., 2018), and its 

references.  

In this work, a particular transport problem in linear elasticity is considered. Herein, an antiplane 

mechanical deformation state problem for a multi-phase FRC is solved. Hence, the 

corresponding constitutive equations (Eq. (2)) for a heterogeneous structures are given by 

components as (Nemat-Nasser and Hori, 1993): 

3 3 3 3,C    u ,                                        (3) 

with 1, 2  . In this, the induced flux  3Fi   represents antiplane mechanical stress, the 

linear response tensor  3 3CijK    denotes elastic modulus, and  3u   is the only non-null 

mechanical displacement. The comma denotes partial differentiation relative to x  component.  

Consequently, for a static case and in absences of body forces, the following classical elliptic 

boundary value problem with Y-periodic and rapidly oscillating coefficients is necessary to 

solve: 

 3 3 3, ,
C ( ) 0y    

u ,       in  ,                                              (4) 

subject to perfect conditions at s  together with boundary conditions on    

1313 3,[[C ]] 0

 

s

u n ,   3[[ ]] 0



s

u ,                                  (5) 

3 0 3 0( ) T ,


  j jn u u ,                                                  (6) 

where , 1, 2   . In Eqs. (5) and (6), 0u  (displacement) and 0T  (traction) are infinitely 

differentiable functions on the external boundary of  . The double square brackets notation 

( ) ( 1)[[ ]]
s

s sf f f 


   ( 1, , 1)s n   represents the jump of f  across the circular interface s  

and 1 2( , )n  n n  is the unit normal vector to s . The usual convention index sum is considered. 



The asymptotic solution of elliptic boundary value problem (Eqs. (4)-(6)) is found by 

representing 3u  as an asymptotic series in powers of small parameter   by the ansatz: 

2

3 0 1u ( ) v ( ) v ( , ) O( )x x x y     ,                                    (7) 

where 0v ( )x  is independent of  y  and 1v ( , )x y  is a Y- periodic function respect to local variable 

y . In addition, it is satisfied that 1 3 0,v ( , ) N( )v ( )x y y x   where 3 N( )y  is a Y- periodic local 

function independent of the global variable x.  

Following the methodology developed in the works (Bakhvalov and Panasenko, 1989; Pobedrya, 

1984) the well-known AHM is applied here. Therefore, the determination of the antiplane local 

problems and the associated effective moduli of multi-phase FRC over Y is the main aim of this 

section. Likewise, we consider a heterogeneous material occupying the region Y and the 

properties takes different values in each component of the composite. 

Thus, if Eq. (7) is substituted into Eqs. (4)-(6) taking into account the change of scale relate to x 

and y, and subsequently, the resulting expressions are grouped according to power of  , the 

formulation of antiplane local problems on Y and equivalent homogenized problem, as well as, 

the antiplane effective coefficients
 
formulae are obtained. 

Hence, the mathematical statement of antiplane local problems on Y, denoted as 3L  ( 1,2  ), 

for a n phase FRC can be stated by: 

The Laplace equations, 

 1313 1313 3 ,C C N , 0           in S  ( 1, , )n  ,                                         (8) 

with perfect contact condition at interfaces s   ( 1, , 1)s n  : 

( ) ( 1)

3 3N N
s s

s s

 



 
 ,                            (9) 

    ( ) ( ) ( 1) ( 1) ( ) ( 1)

1313 3 , 1313 3 , 1313 1313 1 1 2 2C N C N C C
s s

s s s s s sn n n         

 

       
    ,              (10) 

and the condition 

( )

3 N 0s

  ,    in Y.                                       (11) 

Here, 3 3N N( )y   is an unknown Yperiodic harmonic local function which it is solution of 

the 3L  problems. The operator f  is the volume average of f  per unit length over the unit 



cell Y, i.e., 1

Y

V (y)dyf f  . ( )

3 ,N 

s  is the derivative of ( )

3 N

s  with respect to the local 

variable y , and 1 2( )    is Kronecker’s delta function related to the local problem 13 23L( L) . 

Consequently, the equivalent homogenized problem is stated, as follows:  

*

3 3 0,C v ( ) 0   x , ( 1,2)                                    (12) 

subject the boundary conditions 0

0v ( ) T ( )x x  on  .  

In Eq. (12), 
*

3 3C   represents the antiplane effective coefficients and they are defined as follows: 

*

3 3 3 3 3 3 3 ,C C ( ) C ( ) N ( )       y y y ,                      (13) 

also, 0v ( )x  is solution of the homogenized equation and 0T ( )x  is an infinitely differential 

function. 

Now, in order to find the antiplane effective coefficients, the unknown local functions 3 N  need 

to be found. Therefore, the analytical solution of Eqs. (8)-(11) is calculated. 

 

4. Solution of the antiplane local problems 3L  for a multi-phase fiber-reinforced 

composite 

 

Considering the mathematical statement of the antiplane local problems (Eqs. (8)-(11)), the 

unknown doubly periodic harmonic local functions 
( )

3 N

s
 are determined by means of  Laurent 

expansion of harmonic functions over the matrix region 1S , such as, 

(1) 1

3 3 0 1 3 1 3 1

1 1 1

N Re o o p p o p p

k kp p

p k p

a z R a R z a R z   
  

  

  

 
   

 
   ,                          (14) 

by the sum of power expansions in rS  

( ) ( ) ( )

3 3 3 1

1 1

N Rer o r p p o r p p

p r p r

p p

b R z b R z  

 
 

 

 

 
  

 
   ,                                                (15) 

and power expansions in nS  

( )

3 3 1

1

N Ren o p p

p n

p

c R z 








 
  

 
 ,                                                              (16) 

where, the undetermined coefficients 3 0 a , 3 pa , 3 ka , ( )

3

r

pb , ( )

3 

r

pb  ( 2, , 1)r n   and 3 pc  



are complex and they depend on the solution of the antiplane local problem 3L  to be solved. 

From Eqs. (14)-(16), it can be emphasized that the summation symbol with superscript 
1





 o

p

 

means that the sum only runs over odd integers, the symbols Re (Im) is the real (imaginary) part 

of the complex number and 1 2 z y iy  is a complex variable on the cell Y. In addition, 

( )

,

( 1)!

!( 1)!

k p k p

kp mn

m n

k p
R

p k
 


   

 


 , such as 1 2 mn mw nw , 2 2 0m n  , 2k p  . 

From the double periodicity condition of 3 N  the following relations are satisfied 

 1

3 3 3 0 1 3 1 1N( ) N( ) Rez w z a R w a R      
    ,                            (17) 

here, ( ) ( ) 2 ( / 2)        z w z w  is the quasi-periodic condition and ( )z  is the 

Weierstrass quasi-periodic Zeta function of periods 1w  and 2w , such that 

 
11 ' 1 2

,( )
       

    m n mn mn mnz z z z , see  Grigolyuk and Fil’shtinskii, 1970). The 

summation symbol with the prime superscript 
'

,m n  means that the summation does not include 

the point ( , ) (0, 0)m n  . Thus, it can be concluded that 
2 2

3 0 1 1 3 1 1 2 3 1    a R H a R H a  with 

   1 1 2 2 1 1 2 2 1/H w w w w w w     and    2 1 2 2 1 1 2 2 1/H w w w w w w    . 

Finally, if the expansions Eqs. (14)-(16) are replaced into Eqs. (9) and (10), and some algebraic 

calculations are developed, the next system is found in order to compute the complex 

undetermined coefficients 1 1( ) ( )

3 3 3 3, , ,    

s s

k p p pa a b b  1( 2, , 2) s n  and 3 pc  that is: 

1 1 1 1

1 1 1 1

(2) (2)

3 0 1 3 3 3 1 2 3

1

( ) ( ) ( 1) ( 1)

3 3 1 3 1 3

              0,

                 0,

                                                  

p p

p k kp p p p

k

s s s sp p p p

p p s s p s s p

a a a b R R b

b b R R b R R b

    

   

 


 





  

   

    

   



 

1 1 1 1

1 1 1 1 1 1

( 1) ( 1)

3 3 2 1 3

(2) (2)

3 0 1 3 3 1 3 1 2 1 3 1 1 1 1 2

1

( ) ( ) ( 1) ( 1)

1 3 3 1 3 1 3

    ,

        ( 1) ,

n n p p

p p n n p

p p

p k kp p p p p

k

s s s sp p p p

s p p s s s p s s p

b b R R c

a a a k b R R k b k R i

k b b R R k b R R b

  

      

   

    

  

  


 





  

    

 

      

     
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(18) 

In Eq. (18), 1 p  is the Kronecker’s delta function, 
( 1) (1)

1313 1313/ s

sk C C  ( 1, , 1)s n   and the 



overbar is the complex conjugate.  As can be seen, the system Eq. (18) is a normal infinity 

system of 2 2n  linear equations, see for instance (Kantorovich and Krylov, 1964). Due to its 

size and complexity, it can be solve by means of truncation orders ( 0N ) to generate 

approximations through 2 2n  blocks with 2 2n  unknown complex coefficients (for 

, 1,3,5,k p ). Then, new blocks (sub-matrix systems) are solved by Gauss’s method. A 

rapidly convergence of successive truncations is guaranteed due to the system regularity 

(Rodríguez-Ramos et al., 2012), so that successive approximations are used. Also, the system 

solutions of each local problem 3L  depend on the elastic material constituents, phase volumes 

and the spatial distributions of fibers in matrix related to the problem. Once we have the 

unknown coefficients 3 ka , 3 pa , 1( )

3

s

pb , 1( )

3 

s

pb  and 3 pc , the effective coefficients are 

computed as below. 

The analytical formulae of the antiplane effective coefficients (Eq. (13)) for multi-phase FRC 

associated with the antiplane local problems 3L  are also shown. They are obtained by means of 

the Green’s theorem for multiple connected regions to the area integrals in plane 1 2Oy y , and 

subsequently, replacing expansions Eq., (14)-(16) into the integrals and taking into account the 

double periodicity of the local functions and orthogonally properties of complex functions 

   cos ,
 


  ine n sinn , see (Guinovart-Díaz et al., 2016; López-Realpozo et al., 2014). 

They are summarized as follows: 

1
* * ( 1)1 11
1313 2313 1313 1313 2 13 1313 13 1313 13 1

3

C C C [[C ]] [[C ]] [[C ]]
V V V

n
ii n

i n

i

R RR
i A B c

  
 



     ,     (19) 

1
* * ( 1)1 11
1323 2323 1313 1313 2 23 1313 23 1313 23 1

3

C C C [[C ]] [[C ]] [[C ]]
V V V

n
ii n

i n

i

R RR
i i A B c

  
 



      , (20) 

where 3 3 0 3 1 3 1

1

k k

k

A a a a   






 
   
 

 ,      1 1 1

3 3 1 3 1 2 1/
i i i

i iB b b R R  

  

  
  
 

 and the symbol 

( ) ( 1)

1313 1 1313 1313[[ ]] 

  s s

sC C C . As can be noted, effective properties are functions of the constituent 

properties, the fraction volumes of each phase, and the fundamental periods of Y  by means of 

the system solutions associated to the antiplane local problem 13L  or 23L . The cell volume is 

1 2V= θw w sen , 
( )

1313 1313

1

C C V



n

i

i

i

 is the Voigt average and 
1

V 1



n

i

i

. 



 

4.1 Solution of the antiplane local problems 3L  and effective properties for a four-phase FRC. 

 

In this section, the solution of the antiplane local problems and the analytical formulae of the 

antiplane effective coefficients for a periodic four-phase FRC (see Fig 2) are shown. 

In this sense, the equivalent system of Eq. (18) is given as 

(2) (2)

3 0 1 3 3 3 1 2 3

1

(2) (2) (3) (3)

3 3 1 2 3 2 3 3

(3) (3)

3 3 2
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                      0,

                                                         

p p

p k kp p p p

k

p p p p
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         ,
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
      

          (21) 

The reduced normal linear system (Eq. (21)) can be represent in matrix form by 6 6  blocks for 

different  k  and  p with unknown coefficients 3 ka , 3 pa , (2)

3 pb , (2)

3  pb , (3)

3 pb , (3)

3  pb , and 3 pc . 

Then, from the relation 
2 2

3 0 1 2 3 1 1 1 3 1    a R H a R H a  and after some recurrent algebraic 

calculations, Eq. (21) can be re-written as follows 

 2 2

3 1 1 1 1 3 1 1 1 2 1 3 1 3 1 1 1 2

1

p p p p k kp p

k

a R H a R H a a W ER i            






     ,           (22) 

where 1

kp kpW pk   and the expressions  p  and E  are summarized in Appendix A. It can be 

proved that (2)

3 pb , (2)

3  pb , (3)

3 pb , (3)

3  pb , and 3 pc  depend on the coefficients 3 ka   and 3 pa . 

The solution of Eq. (22), analogous to (López-Realpozo et al., 2011) is found through two 

separate subsystems of real and imaginary magnitudes. Theses subsystems are obtained by 

replacing the complex variables 3 3 3   k k ka x i y , 1 2 kp kp kpW w iw  and 1 2   H h ih  into 

Eq. (22), with 3 kx , 3 ky , 1kpw , 2kpw , 1h  and 2h  real numbers and 
2 1 i . Consequently, Eq. 

(21) can be rewritten in the matrix form as follows 

 2

1 1 1 1 1p pI R J W X R E B     ,                          (23) 



where I  is unit matrix and 11 12 21 22

21 22 11 12

h h h h
J

h h h h

  
  

   
. The square matrix ( ) kpW W w  is made up 

of different 2 2  blocks 1 2

2 1

kp kp

kp p

kp kp

w w
w

w w


 
  

  

 where k and p are odd natural numbers. The 

transposes of the infinite vectors X  and B  are  T

1 1 3 3, , , ,....X x y x y  and  T

1 2,   B  

respectively.  

In particular, if 1 k p  is considered, the system (Eq. (23)) can be reduced to a simple and 

compact form (so call short formulae), as follows 

 2

1 1 1I R J X R EB  ,                     (24) 

where I  is a unit matrix of order 2 and  T

1 1X x y . Here, kx  and ky  for 3k   are null and 

0W  . This first approximation is equivalent to truncate the system, Eq. (23), to an order 0N  

equal 1, and its solutions is easy to find, 

 
1

2

1 1 1



  X R E I R J B .                                 (25) 

For a higher truncation order (general case), the system (Eq. (23)) can be solved exactly by 

separating of 1p  and 3p , and varying 1,3,k .  

Thus, a closer look at the system (Eq. (23)) for 1p  gives 

 2

1 1 1 1 1I R J X N X R EB   ,                           (26) 

where  T

1 1X x y , 1 1 1( ) kN N w  is an infinite matrix of 2 2  square blocks by rows with 

1 1 2 1

1 1 1

2 1 1 1

( )
 

  
  


k k

k

k k

w w
N w

w w
, 2 1 k t  and  T

1 3 3 2 1 2 1, ,..., , ,...  t tX x y x y . 

Then, for 3p  is computed that, 

  1 2  I W X N X ,                                   (27) 

where 2 2 1( ) pN N w  is an infinite matrix of 2 2  square blocks by columns with 

11 21

2 1

21 11

( )
 

  
  


p p

p p

p p

w w
N w

w w
, 12 1 p t . The usual index sum by 1, 1,2,3,t t  is applied. 

Finally, from Eq. (27), it follows that  
1

1 2X I W N X


    and replacing into Eq. (26) results 



 
12

1 1 1 2 1

    
 

I R J N I W N X R EB .                 (28) 

Therefore, the solution of Eq. (28) is given as 

 
1
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1 1 1 1 1 2


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 
 X R E I R J N I W N B ,                                       (29) 

and this can be re-written as 

      
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 



x
a i R E i I R J N I W N

y
.              (30) 

Consequently, if  
12

1 1 1 1 2Z I R J N I W N 


     and its inverse 1Z   is calculated, the 

explicitly expression of the complex unknown coefficient 3 1a  is determined, i.e., 

   
 T 1 22 211

13 1 1

11 22 12 21

1 1 0


 


R E z iz
a R E i Z

z z z z
,     for the local problem 13L ,         (31) 

   
 T 1 12 111

23 1 1

11 22 12 21

1 1 0

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

R E z iz
a R E i Z

z z z z
,   for the local problem 23L ,       (32) 

where 11z , 12z , 21z  and 22z  are the coefficients of the matrix Z. 

This methodology of solution, firstly, was used by Pobedrya (1984) in a two-phase elastic media, 

and next, it was applied in examples of FRC of alike systems, see for instance (Espinosa-

Almeyda et al., 2017; Guinovart-Díaz et al., 2016; López-Realpozo et al., 2014), among others. 

This procedure allows system to be solved for first order coefficient in Laurent expansion.  

From Eqs. (19) and (20), and taking into account the expression deduced from system (Eq. (22)) 

when 1p  , i.e.,   1

3 0 3 1 1 3 1 1 1 2

1


 



          k k

k

a a a ER i , the equivalent analytical 

formulas of the antiplane effective coefficients for a periodic four-phase FRC as function of each 

phase volume fraction can be computed as 
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where 
4

( )

1313 1313

1

C C V


 i

i

i

 is Voigt’s average. Here, 2V , 3V  and 4V  are volume fractions per unit 

length occupied by the interphases 2S  and 3S  with radius 1R  and 2R  respectively, and by the 

fiber 4S  with radio 3R . The unknowns 3 1 a , (2)

3 1 b , (2)

3 1 b  and 3 1 c  ( 1,2)   are different for 

each antiplane local problem 3L  and the expressions for determining these unknowns are 

summarized in Appendix B. Once these aforementioned unknowns are calculated, the antiplane 

effective coefficients are obtained. 

Focusing on practical applications, like soft tissues, bones and so on, the general analytical 

solution for the antiplane local problems and the effective coefficients are adapted to periodic 

three-phase FRC. Therefore, the Eqs. (18)-(20) of n phase elastic FRC are reduced to the case 

of two concentric circles in a matrix.  

 

4.2 Solution of the antiplane local problems 3L  and effective properties for a three-phase FRC. 

 

Now, the same methodology shown above is applied. Therefore, the equivalent system to Eq. 

(18) for n phases and Eq. (22) for four-phases is defined for three-phase FRC (see Fig.2), as 

follows 

 2 2

3 1 1 1 1 3 1 1 1 2 1 3 1 3 1 1 1 2
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p p p p k kp p
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where 
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p p
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k k k k k k

k k k k k k
 and 1 E . Here, 

(2) (1)

1 1313 1313C / Ck , 

(3) (1)

2 1313 1313C / Ck  and  2 3V V  is the interphase (central fiber) volume fraction. 

Consequently, the system solution 3 1 a  is found by following the steps shown from Eq. (23) to 

Eq. (32), such as, 



22 21
13 1 1 1

11 22 12 21

z iz
a R

z z z z






 and 

12 11
23 1 1 1

11 22 12 21

z iz
a R

z z z z



 


,             (36) 

where ijz  are the coefficients of matrix Z associated to the three-phase model and 3 1 a  is the 

conjugate of 3 1 a . 

Then, the non-null antiplane effective coefficients formulae for three-phase FRC is listed as 

follows 

 * * 2 3 3
1313 2313 1313 1313 2 1 13 1 1 1313 3 13 1
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where (1) (2) (3)

1313 1313 1 1313 2 1313 3C C V C V C V    is the Voigt’s average and 3 1 c  is defined as 
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with 2 2

21 1 1 2 2 1 2 1 2( ) ( ) / 2     A R k k R k k R R .  

Finally, if Eqs. (39) and (36) are replaced into Eqs. (37)-(38), the antiplane effective coefficients 

of a fiber coated by an interphase are achieved in simple closed-form, as follows 
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with 
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.  

 

 



5.  Numerical results  

 

The broad applicability and accuracy of the results obtained from the multi-phase model by 

AHM is determined by comparison with others reported earlier in the literature for two-, three-, 

and four-phase FRC. Limit cases for the n-phase model can be found when Eqs. (19) and (20), 

and its related in Section 4, are simplified to those that represent FRC with isotropic or 

transversely isotropic elastic constituents and parallelogram-like unit cell, as reported in 

(Guinovart-Díaz et al., 2011; Rodríguez-Ramos et al., 2011). 

From now on, for simplicity in the notation we use ( )

1313p C 

 , ( )

2323q C 

  and ( ) ( )

1323 2313r C C  

 , 

and the effective properties *

1313p C , *

2323q C  and * *

1323 2313r C C  . 

 

a) Four-phase FRC.   

 

Eqs. (33) and (34) for four-phase FRC with perfect contact condition at interfaces and 

parallelogram unit cell are now used to study the interesting interphase properties combination 

effect on effective shears.  

Figs. 3 and 4 show plots of effective dimensionless shear moduli 1p / p , 1q / p  and 1r / p  as a 

function of 3 1log (p / p )  for four-phase FRC with either a hard or soft 2 1p / p  interphase and a 

parallelogram unit cell of oθ 45 . Material properties are taken from (Dasgupta and Bhandarkar, 

1992). In both figures 4 1p / p 1.62  and volume interphase fractions are set to 2 3V V 0.1  , 

4V 0.4 , while in Fig. 3 a hard interphase 2 1p / p 11.22  is considered; on the other hand, a 

softer interphase 2 1p / p 0.1122  is analyzed in Fig. 4. Let us analyze initially Fig. 3. It brings to 

notice that an effective isotropic behavior is induced for low 3 1p / p  values, that is, p q  and 

r 0 . In contrast, an effective anisotropic behavior is displayed for high 3 1p / p  values, that is, 

the properties differ noticeably so that 1p p q  , r 0 . The opposite behavior, however, occurs 

in Fig. 4, i.e., an effective anisotropic behavior instead arises for low 3 1p / p  values, that is, 

1p p q  , r 0 . When 3 1p / p  increases, the effective medium becomes isotropic. In 

conclusion, this radical change between isotropic and anisotropic effective behaviors in the 



composite is due to the exchange of 2 1p / p  from a hard to a soft interphase and low and high 

3 1p / p  values. 

 

Fig. 3 

 

Fig. 4 

 

Formulas Eqs. (32) and (33) are here applied to analyze the effect of empty fiber on effective 

properties of a two-phase FRC with complex constituent properties and several parallelogram 

unit cells.  

Firstly let us consider that the periodicity is square o(θ 90 )  and hexagonal o(θ 60 ) .  Here, 

effective complex shear properties p, q and r are calculated considering that the interphases and 

matrix volume fractions are given as 8

2 3V V 10   and 1 2 4V 1 2V V    which are convenient 

for our purposes.  Hence, the void fiber has a very high-volume concentration close to the central 

fiber volume fraction 4V . Also, the matrix constituent material is complex and isotropic, i.e., 

1p 30 0 5  . i GPa whereas isotropic interphases ( 2p , 3p ) and fiber ( 4p ) are set equal to 

610 GPa. Calculation results are shown in Table 1. It displays p, q and r as a function of 4V  from 

4V 0  to 4V 0.7  when oθ 90  and oθ 60 . It can be seen that composite’s effective behavior 

is isotropic for both fiber distributions, that is, p q  and complex, and r 0 . Also, both real and 

imaginary parts of p decrease monotonically as the void volume fraction 4V  increases. This 

weakening effect is due to the pore size increase. It is worthwhile to note that the effective shear 

complex properties for both arrays are very close to each other. It is important to mention that 

(Jiang et al., 2004) in Table 7 carry out calculations for transversely isotropic porous media with 

both fiber distributions and matrix real properties. The relevant one for our purpose here is 

1(p ) . Good agreement is obtained between the real part of the effective shear complex 

properties and the results reported by (Jiang et al., 2004) for all 4V  and both arrays. 

 

Table 1 

 



The effective complex shear properties p, q and r for two-phase FRC with parallelogram unit cell 

of  oθ 45  and oθ 75  are shown in Table 2. Here, p, q and r are found considering the same 

material parameters as Table 1. Note that composite’s effective behavior is monoclinic for both 

fiber distributions, that is, p q  and complex, and r 0 . In addition, it can be observed that 

spatial fiber distribution has a significant effect on composite behavior, that is, the real and 

imaginary parts of r  show noticeably differences from one angle to another.  

 

Table 2 

 

b) Three-phase FRC 

 

In this section, four examples are chosen to show the usefulness of Eqs. (40)-(43) to compute 

effective complex transport properties of periodic two- and three-phase FRC. 

 

Example 1) Now, real and imaginary parts of the effective complex permittivities p, q and r 

versus fiber volume fraction 3V  are plotted for two-phase FRC with square o(θ 90 )  (see Fig. 

5), hexagonal o(θ 60 )  (see Fig. 6) and parallelogram o(θ 67.5 )  (see Fig. 7) unit cells. Herein, 

p, q and r are derived using Eqs. (40)-(43) considering that 2V 0  so that the matrix volume 

fraction is 1 3V 1 V  . The constituent materials of matrix ( 1p ) and fiber ( 3p ) have isotropic 

complex dielectric properties, such as: 1p 1 5  i , 3p 30 0.3  i  (composite A) and 1p 2 0.3  i , 

3p 1 8  i  (composite B). We remark that square or hexagonal fiber distributions induce an 

isotropic effective behavior, that is, p q  and r 0  (as in Figs. 5 and 6) whereas parallelogram 

unit cell of oθ 67.5  brings a monoclinic effective behavior, p q  and r 0  (as in Fig. 7).  

The results displayed on the top two boxes in Fig. 5 and 6 refer to composite A whereas the two 

bottom ones to composite B. In Fig. 5, the real and imaginary parts of the effective complex 

permittivity p, (p)  and (p) , respectively, exhibits interesting different behavior for both 

composites. (p)  corresponding to composite A is a monotone increasing and convex function; 

also, it reaches its highest value near to close-packing condition. On the other hand, for the 

composite B it is worthwhile to mention that (p)  has an inflexion point and also is larger than 



the constituent’s real part in the whole interval. Besides, as 3V  increases, (p)  reaches its 

maximum value near to 3.67 at 3V 0.57  and then begins to weaken rapidly until the close-

packing condition. Otherwise, a different behavior is observed relative to imaginary parts. (p)  

corresponding to composite A has an inflexion point and also is smaller than the imaginary part 

of the constituents in the whole interval. Besides, as 3V  increases, (p)  attains its minimum 

value about -11.82 at 3V 0.63  and then begins to increase up to close-packing condition. Then, 

for the composite B, (p)  is a monotone decreasing and convex function.  

A similar tendency is observed in Fig. 6 for a hexagonal array except that the maximum value of 

(p)  for composite B is near to 3.81 at 3V 0.63  and the minimum value of (p)  for 

composite A is near to 12.65 at 3V 0.69 . In both figures, the AHM results are compared with 

those reported by (Godin, 2013) up to close-packing conditions. Excellent agreement between 

both methods is observed. Figs 5 and 6 also show upper (UB H-S) and lower (LB H-S) Hashin 

and Shtrikman bounds for complex permittivity (Milton, 1980). In addition, it can be seen that 

the results of both, AHM and Godin, methods are always located within the bounds of (Hashin 

and Shtrikman, 1962). Fig. 7 displays results related to composite A.  It can be noticed that, good 

agreement in general is observed between AHM and Godin (2013) for p and q in the whole 

interval of 3V . However, an important discrepancy is observed for r. As far as it can be seen the 

difference between the results of r is probably due to the system truncation order of both 

methods. In addition, the phenomena of gain/loss enhancement in dielectrics are noted in Figs. 5-

7.  

 

Fig. 5 

 

Fig. 6 

 

Fig. 7 

 

Example 2) Here, Eqs. (40)-(43) are applied to calculate effective dielectric properties of 

periodic three-phase FRC with square (Figs. 8) and hexagonal (Figs. 9) arrays. The complex-



values of matrix, interphase and fiber properties of which are taken from Godin (2016), such as 

1p 5 4  i , 2p 80 2  i  and 3p 2 4  i  for square array and 1p 1 , 2p 8 40  i  and 3p 2 4  i  

for hexagonal array, respectively. Figs. 8 and 9 show the real and imaginary parts of complex 

effective isotropic dielectric properties p, (p)  and (p) , respectively, as a function of 

normalized radius 1 /h R l , 1/ 2h , where 1R  is outer interface radius and l  is the least 

distance between the centers of the fibers.  

Fig. 8 displays that (p)  is a monotone increasing and convex function in the whole interval 

whereas (p)  reaches lower values than the constituent properties and in contrast has an 

inflection point, like the behavior present in two-phase FRC, as in Fig. 5 and 6. In Fig. 9, a 

different behavior is present. Here, the result of three-phase model (AHM) are compared with 

those ones reported by (Godin, 2016) showing a small discrepancy near to the close-packing 

condition for a hexagonal array. In both figures, good approximations are displayed. 

 

Fig. 8 

 

Fig. 9 

 

Example 3) The application of the present model to biological tissue is of great interest. In 

particular tissues that are made of growing and non-growing components. Then, an application 

of composites into tissue mechanics is here studied. For that, Eqs. (40)-(43) have been derived 

under the hypothesis that material ratios 2 1p / p , 3 1p / p  and interphase properties are real 

quantities. However, constituent materials and effective properties are complex numbers in 

general, see for instance (Perrins et al., 1979).  

Three-phase FRC models can be a suitable idealization of biological tissue comprising tubular 

cells, such as skeletal muscle. A cell is surrounded by its plasma membrane, which it is made of 

dielectric lipid bilayers. Therefore, plasma membrane can be represented as a two-dimensional 

interfaces in which conductance and capacitance per unit area are given by bilayer conductivity 

and permittivity, respectively, and divided by its thickness h, see (Bisegna and Caselli, 2008). 

In this case, effective complex conductivity p, q and r of a biological specimen (skeletal muscle) 

with interfacial impedance K studied in (Bisegna and Caselli, 2008) for a two-phase composite, 



are calculated here using a variant of AHM for a three-phase FRC (Eq. (40)-(43)) with a very 

thin interphase via Hashin’s approximation (Hashin, 2001; 2002). Herein, interfacial admittance 

per unit area is defined as K B i C   , where B(C)  is conductance (capacitance) per unit area 

and ω is circular frequency. A very thin interphase admittance caused by electric potential jump 

across interfaces can be referred to as an imperfect interface as well as imperfect impedance 

interface (Bisegna and Caselli, 2008). The relationship between K and the interphase property 

2p  is 2 2K p / R h  with 410h  as in (Hashin, 2001; 2002), according to the present three-phase 

model. 

Figs. 10 (a) – (b) and Fig. 11 plots normalized real and imaginary parts of the effective complex 

conductivities p, q and r versus dimensionless circular frequency  , 2ωCL / p  , where  L is 

the microstructural dimension of the composite. Three parallelogram unit cells of o oθ 45 , 50  

and o60  are considered and 1p  is the matrix conductivity. For the computations, the material 

ratio is satisfied 3 1p / p 0.25  and the interphase fiber and matrix volume fractions are 

4

2V 32 10  , 3V 0.62  and 1 2 3V 1 V V   . Also, a comparison with the results obtained by 

(Bisegna and Caselli, 2008) (red circles, BC) and this paper (asterisk) is shown for a isotropic 

composite with hexagonal unit cell. Excellent agreement is obtained.  

From Fig. 10 and 11, it is concluded that the composite has an isotropic behavior when a 

hexagonal unit cell of 
o60   is considered, whereas it has a monoclinic one for parallelogram 

unit cells of 
o45   (denoted by squares) and 

o50   (denoted by triangles). Fig. 10(c) displays 

imaginary parts of dimensionless effective permittivities  1 1(p) / (p ), (q) / (p )     as a 

function of   and Fig. 10(d) shows normalized imaginary parts  1 1(p) / p , (q) / p   versus 

normalized real parts  1 1(p) / p , (q) / p   of effective complex conductivities p and q. In 

addition, as shown in Fig. 11, normalized real part of r, 1(r) / p , exhibits an increasing 

monotonic behavior for all  , moreover, normalized imaginary part 1(r) / p  attains a 

maximum value. The novelty of this contribution in comparison with the results reported by 

(Bisegna and Caselli, 2008) is the fiber distribution effect on the effective complex 

conductivities. This result revealed that a small change in periodicity of composite induces a 



different global behavior of effective complex conductivity. It provides information about 

optimal design of composites.  

Although this example considers electrical conductivity its results easily translates into the 

elastic realm, that is, in a three-phase FRC, a very thin interphase models very well, via the well-

known Hashin’s approximation, the so-called imperfect condition at the interface in an elastic 

two-phase FRC. 

 

Fig. 10 

 

Fig. 11 

 

Example 4) From now, the problem of enhancement of the homogenized quasi-static effective 

mass densities p is analyzed by means of the three-phase model. The theoretical phenomenon of 

enhanced permittivity with electromagnetic waves using lossy materials is studied by Guild et al. 

(2014) as applied to mass density and so that acoustic waves representing inertial enhancements. 

In that work, the fundamental results of Godin (2013) are adapted to acoustics when the 

frequency 0  and then, they are used to find the effective mass density of fluid cylinders in 

the quasi-static limit. 

Therefore, Eq. (39)-(42) are used to calculate the quasi-static effective mass densities p, q and r 

of a FRC with fluid constituents. Here, the matrix phase and inclusions (interphase and fiber 

phases, respectively) occupy the regions 1S , 2S  and 3S , in that order (see Fig. 2(a)). In the 

theoretical model developed by (Guild et al., 2014), the case of FRC with multi-fiber inclusions 

embedded into a matrix is not considered. 

Fig. 12 illustrates the enhancement of the real part of p, (p) , for a composite with different 

annular inclusions and hexagonal unit cell o( 60 )   as function of reduced filling fraction 2V  

(discontinues lines).  Here, an enhancement of p  is obtained when the annular inclusions have a 

fixed fraction 2 3V V  in each configuration and filling fraction. In addition, the effective mass 

density augmentation can be observed in comparison with the effective mass density of a 

composite with a circular fluid inclusion reported in (Guild et al., 2014) (solid line). For this 

example, the matrix and inclusions have complex densities, such as: 1 3p p 1   i  and 



2 9p 0.9 0.5  i  (Fig. 12(a)) or 2 1p 1.0 0.5  i  (Fig. 12(b)).  They are chosen so that they attain 

an interval of realistic physical properties (Guild et al., 2014). 

From Fig. 12, it is remarked that, the case 3V 0  reproduces the results reported in Fig. 3(c) and 

(d) of (Guild et al., 2014) (solid line). When 30 V 1  , the result shows an enhancement of 

(p)  as a function of 2V . Besides, (p)  increases as the fluid inclusions volume fraction 

2 3V V  increases. From the numerical experiments we can conclude that imaginary part values 

vary monotonically between the bounds of the host fluid and fluid inclusions values and the real 

part values exceed the bounds of either of the individual components and even the composite 

without interphase, i.e., 3V 0 . Here, the red dashdot line represents the value of the real part of 

host fluid 1p  and the blue dashed line the corresponding to fluid inclusion 2p .    

 

Fig. 12 

 

Conclusions 

 

Effective properties of periodic multi-phase fiber-reinforced composites with complex-valued 

constituents transport properties and parallelogram unit cells are found by means of the two-scale 

asymptotic homogenization method. The general analytical formulae of antiplane local problems 

and associated effective shear properties are derived for a n phase fiber-reinforced composites.  

It is required to solve a convergent normal infinite system of equations. It leads to simple closed-

form formulas are obtained for three- and four-phase fiber-reinforced composites.  

Based on the numerical results, the following conclusions can be drawn: 

i) Macroscopically, the effect of the fiber spatial distributions on the complex effective 

behavior induces three point group symmetry classes: tetragonal 4mm (square cell), 

hexagonal 6mm (hexagonal cell) and monoclinic (other parallelogram cells). It also pertains 

to real and imaginary parts as well.  

ii) Increasing porosity produces a weaker composite. It confirms a well-known result.   

iii) A radical change from isotropic to anisotropic effective behavior is observed in a four-phase 

composite when one interphase is hard and the other one varies from a softer material to a 

harder one, while matrix and fiber properties and all volume fractions are fixed. The opposite 



takes place when former interphase is soft, that is, the composite effective behavior changes 

from anisotropic to isotropic, see Figs. 3 and 4. 

iv)  A three-phase FRC with a very thin interphase provides indeed a very good estimation for 

effective conductivity of biological specimens with imperfect interfacial impedance via 

Hashin’s approximation. 

v) In the case of three-phase FRC with fluid constituents, it is found that both real and 

imaginary parts of effective mass density may be slightly enhance relative to two-phase FRC 

by the addition of an interphase where the constituents mass properties are chosen so that 

they attain an interval of realistic physical properties. 

The broad applicability and efficiency of the present model are tested against results obtained 

using other methods for periodic two-, three and four-phase fiber-reinforced composites. Good 

agreement is obtained. Formulas may be useful as benchmarks for checking experimental and 

numerical results. 
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Appendix A 

 

The magnitudes involved in the system Eq. (22) are summarized 
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Appendix B 

 

The expressions used to determine the unknown coefficients (2)

3 1 b , (2)

3 1 b  and 3 1 c  involved in 

the effective coefficients Eqs. (33)-(34) are given as follows: 
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Figure caption 

 

Fig. 1 Periodic multi-phase FRC and its corresponding parallelogram-like unit cell Y. 

Fig. 2 Parallelogram-like unit cells: (a) three-phase and (b) four-phase FRC. 

Fig. 3 Dimensionless effective shear moduli as a function of 3 1log (p / p )  with a hard interphase 

2 1p / p . 

Fig. 4 As in Fig.3 but for a soft interphase 2 1p / p . 

Fig. 5 Real and imaginary parts of effective complex permittivity p q  for a two-phase FRC 

with square unit cell. Hashin-Shtrikman upper and lower bounds are shown. 

Fig. 6 Real and imaginary parts of the effective complex permittivity p q  for a two-phase FRC 

with hexagonal unit cell. Hashin-Shtrikman upper and lower bounds are displayed. 

Fig. 7 Real and imaginary parts of the effective complex permittivities p, q and r for a two-phase 

FRC with parallelogram unit cell of o67.5   for AHM and Godin’s technique.  

Fig. 8 Real and imaginary parts of the complex effective dielectric property p  for a three-phase 

FRC with square unit cell. 

Fig. 9 Same as Fig. 8 except that the array is hexagonal. 

Fig. 10 Normalized real and imaginary parts of effective complex conductivities p  and q  

versus dimensionless circular frequency for different parallelogram unit cells. 

Fig. 11 Normalized real and imaginary parts of effective complex coefficient r  versus 

dimensionless circular frequency for two parallelogram unit cells of o45   and o50  . 

Fig. 12 Enhancement of the real part of effective mass density p as function of filling fraction V2 

for a composite with annular inclusions (black discontinues lines) and hexagonal unit cell related 

to a composite with circular fluid inclusion (black solid line).  

 

 

 

 

 

 



Table caption 

 

Table 1. Porosity effect on effective shear complex moduli of two-phase FRC with square and 

hexagonal unit cell. 

Table 2. As in Table 1 but for parallelogram unit cells of oθ 45  and oθ 75 . 

 



 

 

 

 

 

 

 

Table 1 

 

4V
 

Effective shear complex properties (GPa)  

(square unit cell, oθ 90 ) 

Effective shear complex properties (GPa)  

(hexagonal unit cell, oθ 60 ) 

p  r   q   p r  q  

0 300.5i 0 30-0.5i 300.5i 0 30-0.5i 

0.1
 

24.54530.40909i
 

0 24.54530.40909i
 

24.5455i 0 24.5455i 

0.2 19.99590.33327i 0 19.99590.33327i 20.0000i
 

0 20.0000i
 

0.3 16.12740.26879i 0 16.12740.26879i 16.1533i
 

0 16.1533i
 

0.4 12.76050.21268i 0 12.76050.21268i 12.8534i
 

0 12.8534i
 

0.5 9.739640.16233i 0 9.739640.16233i 9.98427i 0 9.98427i 

0.6 6.909540.11516i 0 6.909540.11516i 7.45029i 0 7.45029i 

0.7 4.036210.06727i 0 4.036210.06727i 5.16251i 0 5.16251i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table(s)



 

Table 2 

 

4V
 

Effective shear complex properties (GPa) 

(parallelogram unit cell of oθ 45 ) 

p  r   q   

0 300.5i 0 i

0.1
 

24.4440.4074i i i

0.2 i i i

0.3 i i i

0.4 i i i

0.5 i i i

0.6 i i i

0.7 i i i

4V
 

Effective shear complex properties (GPa) 

(parallelogram unit cell of oθ = 75 ) 

p  r   q   

0 300.5i 0 i

0.1
 

i i i

0.2 i i i

0.3 i i i

0.4 i i i

0.5 i i i

0.6 i i i

0.7 i i i
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