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 Abstract–The LM-EM algorithm has the advantage to 
calculate the emission probabilities needed for the reconstruction 
process on the fly, without the need of a pre-calculated system 
matrix. The reconstruction time for this algorithm strongly 
depends on the used backprojector and the available statistics. 
This algorithm when implemented in systems using monolithic 
crystals to detect gamma radiation allows one to extensively 
exploit the virtual pixilation feature, not available for systems 
based on pixilated crystals. In this work we present a 
backprojector for LM-EM, the TOR method, which achieves a 
tradeoff between computational efficiency and image quality. Its 
temporal subset algorithm optimization (LM-OS) has also been 
implemented in order to achieve real-time reconstructions. To 
evaluate the performances of LM-OS algorithm with the TOR 
method backprojector and only with one iteration on the 
datasets, studies based on the system spatial resolution, 
uniformity, and contrast coefficients were carried out and they 
were compared with those obtained with LM-EM and MLEM 
algorithms using twelve iteration. Finally, a study on 
reconstruction time using LM-OS has been performed with 
breast patients data. 

I. INTRODUCTION 

REAST cancer is the major cause of cancer  death in 
European women [1][2] as well as the most diagnosed 

prominent form of this type of disease. Several studies report a 
decline in breast cancer mortality in most European countries 
during the last two decades [3][4]. This decline has been 
attributed to the combined effect of earlier detection and 
improvements in therapy treatment. X-ray mammography is 
the most used technique for this lesions being a useful analysis 
tool but this, in turn presents some limitations in the 
examination of dense breasts [5]. Image interpretation is also 
subject to considerable inter-observer variability [6].  
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Positron Emission Tomography (PET) is a noninvasive 
technology that provides the user with functional images. This 
technique can be used in diagnosis, assessing therapy 
response, staging, and restaging of breast cancer [7-9]. Current 
whole body PET (WB-PET) systems are used for these 
purpose and the reconstructed images have a typical spatial 
resolution of about 5–15 mm depending on the intrinsic 
resolution of the scanner, imaging time, the injected dose and, 
the post-reconstruction image filtering applied. WB-PET 
achieves a detection rates higher than 92% for tumors larger 
than 2 cm [10]. However, they are hardly able to detect small 
lesions (<1 cm) as well as lesions with low tracer uptake [11]. 
Ideally, cancer diseases should be treated in the early stages of 
the disease [11] so, in order to overcome the above mentioned 
drawbacks of WB-PET, several groups are working on 
dedicated imaging systems based on high resolution detectors 
that can be placed close to the breast [12-18]. Dedicated breast 
PET cameras are able to provide better spatial resolution and 
count sensitivity than WB-PET, due to their reduced 
dimensions and their proximity to the source.  

 

II. MATERIALS 

Our group has recently developed a dedicated breast PET 
scanner (MAMMI) which is formed by twelve detector 
modules mounted on a ring configuration [19][20]. Every 
detector block mainly consists of a pyramidal truncated LYSO 
monolithic scintillation crystal coupled to a position sensitive 
photomultiplier tube (PSPMT). With monolithic crystals, the 
scintillation light distribution is preserved allowing us for an 
accurate photon impact determination, including its depth of 
interaction [21]. All crystal surfaces but the one in contact 
with the PSPMT are black painted in order to avoid unwanted 
reflections. This system has a transaxial Field of View (FOV) 
of 170 mm in diameter, and a 40 mm long axial FOV that 
axially translates to cover up to 170 mm. The exploration is 
carried out in prone position without breast compression for a 
more comfortable patient position but specially allowing the 
distinction of multifocal tumors and those close to the chest 
walls. The data is acquired in 3D mode and later stored in list 
mode format. The considered coincidences are one to seven, 
one module with its seven opposite detectors, achieving a total 
of 42 pairs.  

This system has implemented the maximum likelihood 
expectation maximization (MLEM) algorithm [22], one of the 
most standardized reconstruction algorithm used in PET. 
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the curve slope. When 12 subsets are considered, the v05b1.6 
curve (9.32%) has the same value than the v05b1.6 LM-EM 
(also showed as a line), but here the change in the slope is not 
significantly observed.   
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B. Spatial Resolution 
This spatial resolution was studied by means of the 

volumetric FWHM resolution of a reconstructed 37 kBq 22Na 
source of 1 mm in diameter. This source was placed in two 
different positions of the transaxial FOV (center and 70 mm 
offset) and centered at the axial FOV. The acquisition time at 
each position was 5 minutes. 
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In Fig. 3 we have compared the volumetric resolutions of LM-
OS (using one iteration) for a different number of subsets with 
LM-EM and MLEM (using twelve iterations) at the two 
different source positions. The convergence is achieved by the 
source placed in the center when 20 subsets are considered. In 
the translated position this convergence is achieved with 12 
subsets. Since the objective is to preserve a tradeoff between 

uniformity and spatial resolution, the obtained results suggest 
to consider 12 subsets for LM-OS reconstructions. 

C. Contrast Coefficients 
In order evaluate the image quality we have measured the 
contrast coefficients in a custom cylindrical phantom (see Fig. 
4) reproducing several hot and cold lesions. This phantom has 
four cylindrical inserts placed 30 mm away from the center of 
the phantom. These wells were filled with different activity 
concentrations to model hot and cold lesions. The background 
region was filled with a warm activity concentration of 6 
kBq/ml. The cold insert was 26 mm in diameter and filled 
with a non radiactive solution. Two of the hot lesions had a 
size of 20 mm in diameter and were filled with an activity 
concentration about eight and four times higher than the 
background activity, respectively. The third one was 15 mm in 
diameter and was filled with and activity concentration eight 
times higher than the background activity. 
 

 
 

Fig. 4. Phantom designed to evaluate the image quality. . 
 
We determined the contrast coefficients (CC) calculating 

the activity ratio of a VOI that covers the 80% of the total 
considered insert over the background divided by the real 
measured activity ratio [29][30], as follows: 
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The background VOIs were centered in the phantom with 

identical dimensions to the particular insert VOI. We have 
reconstructed the acquired data using LM-OS with 12 subsets 
and we have calculated the CCs for each insert. The results 
have been compared with LM-EM with 12 iterations, as 
shown in Fig. 5. Here, SH, BH, BM and C stand for Small 
Hot, Big Hot, Medium Hot and Cold inserts, respectively. The 
hot values are better when are closed to one as we can deduce 
from the prior equation, and it can be observed that the results 
obtained with LM-OS are comparable to LM-EM. However, 
cold region values work contrary to the hot regions and as can 
be seen, the LM-EM value is clearly better than LM-OS. 
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D. Time studies with breast data 
In this section a time study with breast data

been performed. Some of the acquisition para
in Table I and the reconstructed images for Pa
in Fig. 6. 
 

TABLE I. REAL PATIENT DATA 
 

 Patient Activity       Acq. Time      Fil
    (MBq)          (min)      (coin
 P1   81.26            18         127
 P2   88.65            20         110
 P3   85.00            20           80
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The reconstruction times using L
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V. CONCLUSI
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