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ABSTRACT Given the significance that the cloud paradigm has in modern society, it is extremely important
to provide security to users at all levels, especially at the most fundamental ones since these are the most
sensitive and potentially harmful in the event of an attack. However, the cloud computing paradigm brings
new challenges in which security mechanisms are weakened or deactivated to improve profitability and
exploitation of the available resources. Kernel randomization is an important security mechanism that is
currently present in all main operating systems. Function-Granular Kernel Randomization is a new step that
aims to be the future of the kernel randomization, because it provides much more security than current kernel
randomization approaches. Unfortunately, function-granular kernel randomization also impacts significantly
on the performance and potential benefits of memory deduplication. Both function-granular kernel random-
ization and memory deduplication are desired and beneficial; the first for the strong protection it gives, and
the second for the reduction of costs in terms of memory consumption. In this paper, we analyse the impact
of function-granular kernel randomization on memory deduplication revealing why it cannot offer maximum
security and shareability of memory simultaneously. We also discuss the reasons why having a full position
independent kernel code counter-intuitively does not solve the problem introducing a challenge to kernel
randomization designers. To solve these problems, we propose a function-granular kernel randomization
modification for cloud systems that enables full function-granular kernel randomization while reduces
memory deduplication cancellations to almost zero. The proposed approach forces guest kernels of the same
tenant to have the same random memory layout of memory regions with high impact on deduplication,
ensuring a high rate of deduplicated pages while the kernel randomization is fully enabled. Our approach

enables cloud providers to have both, high levels of security and an efficient use of resources.

INDEX TERMS Virtualization, security, KASLR, memory deduplication, memory management.

I. INTRODUCTION
Cloud computing has reshaped our society and the way we
interact with other people. This paradigm has progressively
become the de-facto model over the last years, constantly
growing and adapting to new challenges to bring us new
opportunities and new paths for doing business. Through the
use of virtualization technologies, it offers on-demand bound-
less computing resources, which allows cloud providers to
minimize operating costs through economies of scale [1].
In addition, it leads to highly energy-efficient [2] infrastruc-
tures by aggregating user demands, enabling optimal resource
exploitation along with flexible and efficient multiplexing of
the workload based on the demand.

Infrastructure as a Service (1aaS) [3] is considered one of
the fundamental building blocks of cloud computing. This is
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in part because users can configure virtualized environments
with a high degree of flexibility without having to worry
about deploying large physical computing rooms. At this
level, the efficient resource management is fundamental to
deal with a proper cloud infrastructure [4]-[6]. Hardware
resources are a critical asset in the business, and they must
be managed and utilized adequately. Cloud service providers
will obtain more benefits if they are able to operate more vir-
tual machines with the same resources [7], [8]. Furthermore,
IaaS providers must guarantee users that the highest possi-
ble level of security is attained to safeguard confidentiality,
integrity and availability.

Unfortunately, although cloud providers seek to
maximize the security of their infrastructure while
maximizing the exploitation of their resources, it is not
always possible. Today’s security mechanisms are far from
perfect and, in many cases, they introduce cost-prohibitive
overheads.
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An information leakage or info-leak is the result of the
exploitation of a vulnerability that allows the attacker to
disclose a secret from a memory area, either its content or its
location [9]. Attackers typically need to conduct info-leaks
to know the targeted memory layout before continuing with
subsequent stages of an attack. Without an info-leak, all
attacks that require prior knowledge of valid addresses are
severely hindered. The importance of providing protection
against this type of attacks along with the lack of protection
against them in current security mechanisms has motivated
the emergence of new proposals to satisfy these needs.

Function-Granular Kernel Address Space Layout
Randomization (FG-KASLR) [10] is a novel feature that adds
more protection to the widely adopted kernel randomization
security mechanism. With it, kernel and modules functions
are independently randomized, increasing the entropy of
the kernel memory mapping and thus significantly reduc-
ing the negative impact of a possible information leak. For
that reason, it is a desired kernel hardening technique that
will potentially become a mainstream feature in all major
operating systems in the near future.

Unfortunately, the design of function-granular kernel
randomization is not trivial, since it entails a series of new
challenges with significant consequences on the correct per-
formance of the kernel. On the one hand, it can introduce
run-time performance overhead compared to the standard
kernel randomization [11] for a number of reasons, such as
the increment of cache misses when running kernel code.
On the other hand, as we have identified in this paper, it also
introduces challenges to cost-effective resource management
in virtualized systems such as cloud environments. One of
them is the introduction of a prohibitive memory overhead
due to the memory deduplication cancellation. Since it is not
recommended to disable security protections such as kernel
randomization, TaaS cloud providers will sustain a forfeit of
memory resources.

To overcome this challenging problem, we analyse the
impact of function-granular kernel randomization on memory
deduplication and we identify why other approaches fail.
Finally, we propose a solution that maintains the levels of
security provided by the function-granular kernel random-
ization protection mechanism while reducing the memory
deduplication cancellation to almost zero.

The main contributions of this paper are the following:

o We identify the particular reasons that prevent memory
deduplication to merge memory contents because of
the function-granular kernel randomization protection
mechanism.

« We present a comprehensive analysis of the impact
of function-granular kernel randomization on mem-
ory deduplication, pointing out the elements that have
most impact for each affected Linux kernel memory
region.

o We propose a function-granular kernel randomization
approach that fully protects the kernel while signif-
icantly reduces the impact of memory deduplication
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cancellation, obtaining for most memory regions a sim-
ilar memory deduplication rate than the one obtained
when the randomization is disabled.

« We implement the proposed solution in the Linux kernel
v5.5 for the x86_64 architecture, evaluating its effective-
ness in terms of memory savings and discussing security
aspects.

The rest of the paper is organized as follows. Section II
provides a detailed background on the current related
work. Section III presents the attacker model. The Linux
function-granular kernel randomization is described in
Section IV. The new problem arisen from the finer random-
ization granularity is explained in section V. In section VI,
we present an exhaustive analysis of the particular influence
that the different randomization elements have on the Linux
kernel memory regions. Afterwards, and based on the results
obtained from the analysis, section VII describes our pro-
posed solution and its implementation in Linux. Section VIII
provides an evaluation of the proposed solution. Section IX
contains a brief discussion about clarifications that are out of
the scope. Finally, the paper concludes in section X.

Il. RELATED WORK

A. KERNEL SAMEPAGE MERGING

Kernel Samepage Merging (KSM) is the implementation of
the memory deduplication technique in the Linux operating
system. It is a memory-saving technique that consists in
identifying identical chunks of physical memory and merge
them into a single copy using Copy-On-Write (COW) seman-
tics [12], freeing the redundant duplicates for a more efficient
use of memory. In Linux, like in most of the modern operat-
ing systems, the entire memory is organized and divided in
chunks, known as pages [13]. This enables KSM to merge
all of the identical pages into a single copy. KSM handles
pages that are present in memory, so that swapped pages are
excluded.

The base page size supported by Linux is 4096 bytes,
although other pages of greater size can also be used. For
example, the kernel uses pages of 2 MiB. A greater page size
implies less page table entries and less translation lookaside
buffer (TLB) faults, resulting in higher performance [14].
However, it also produces a bigger waste of memory due
to memory fragmentation and the reduction of chances to
find other matching pages [15], because a single different bit
prevents the sharing of the entire page.

KSM operates in the kernel, as an optional component of
the memory manager. When it is used with virtualization
technologies (e.g., in cloud environments), the deduplication
is applied to the entire guest memory region corresponding
to the virtual machine (often called guest physical mem-
ory) [16]. In host machines running several virtual machines,
all the pages of all guest physical memories are candidates
to be shared, being compared with each other looking for
their matches. Figure 1 shows an example of how the phys-
ical memory usage of the host machine can be reduced
by using memory deduplication. The figure shows two
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FIGURE 1. Example of memory deduplication. Two processes/virtual
machines are shown along with the physical memory of the host
machine. The coloured rectangles (A, B, C, D) represent memory pages
with different contents. With memory deduplication turned off (left), all
pages are present in the physical memory of the host. On the right, when
it is turned on, pages with the same contents can be merged, keeping a
single physical copy and eliminating redundant ones, thus reducing
memory consumption.

processes/virtual machines and the representation of memory
pages, comparing the same situation when deduplication is
enabled and disabled. In this example, the host machine can
save 42.85% of the memory by merging redundant copies of
the present pages.

To achieve an efficient search and insertion/deletion, KSM
indexes the pages using red-black trees [17], [18]. On the
one hand, gathering and comparing all the candidate pages
together increases the chances of finding matching pages
to be shared and increase the deduplication effectiveness.
On the other hand, it enables different types of side-channels
[19]-[21] that might compromise the confidentiality.
Different solutions have been researched [22]-[24], [24],
[25] and, depending on the adversary model of a cloud
provider, memory deduplication can be used without the need
to sacrifice security.

One of the most relevant weakness to the purpose of this
paper is that deduplication is highly dependent on memory
contents, and thus extremely susceptible to decreasing its
effectiveness upon content variation. This problem occurs
for example when two identical objects containing abso-
lute references to their internal parts are loaded in different
memory addresses. This leads to variations in the memory
contents due to such references, which ultimately affects
the deduplication of these contents since they are no longer
identical. This problem will be presented in more detail in
Section V. Our proposal solves this issue by eliminating
memory content variations related with the randomization of
kernel regions. In this way, the effectiveness of KSM can be
preserved without having to sacrifice its resource exploitation
benefits.

Thanks to the memory management virtualization sup-
port, it is possible for hypervisors (e.g., Kernel-based Virtual
Machine) to implement memory deduplication using pages
of 4096 bytes, independently of the page size of the guest
view. It is a desired feature for cloud computing providers
because of its potential benefits regarding server consolida-
tion [26] due to its ability to reduce the memory footprint
across virtual machines [17], [27], decreasing the total cost
of managing and ownership.
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B. STANDARD LINUX KASLR

Kernel Address Space Layout Randomization (KASLR) or
Kernel Randomization is a security technique that hinders the
successful exploitation of vulnerabilities that rely on knowing
addresses [28], [29] of kernel memory regions by random-
izing their location at boot-time. This technique performs
well without degradation of security after a long time without
rebooting the system, even if the machine has a long run
time. However, it needs a high-quality entropy source for gen-
erating cryptographically secure random numbers to deter-
mine the location to load the different memory regions [30],
[31]. Otherwise, the final locations would be predictable and
then it will be easier for attackers to guess correctly a valid
address [32], [33] and bypass the protection.

The general concept of randomizing addresses of memory
regions is also widely applied for userland programs [34].
However, the application of this technique in kernel space
has completely different implications and limitations than in
userland so that, in practice, they are actually two different
techniques. For example, the use of position-independent
code (PIC) along with a Global Offset Table (GOT) per-
mits to place a userland library on virtually any location
without having to modify addresses in the code (e.g. jumps
or data access) by using offsets relative to its position; but
this approach is not always possible/desired for the kernel.
Furthermore, the randomization of kernel memory regions
is done at boot-time and it cannot be changed until next
reboot, which is much less frequent than restarting userland
applications. This has significant direct implications such
as the (in)ability to conduct aggressive brute force attacks
against the kernel and the relevance of an info-leak to reveal
kernel addresses.

The KASLR implementation of the currently recent Linux
versions randomizes only the base addresses of several parts
of the kernel. For example, the kernel code and data are
loaded as a block at a random position, but no randomization
is applied between the code and data memory areas. The
same applies to the other randomized kernel memory regions,
which are each entirely randomized as a single block. From
now on, we will refer to this approach as coarse-grained
kernel randomization. Figure 2 shows an example of how
the standard Linux KASLR randomizes the base address of
kernel memory regions. It shows two memory regions of a
Linux kernel for two different boots: in the first boot (left)
KASLR is turned off and in the second boot (right) it is turned
on. It also shows an attacker who has control over Region
1 and performs an attack to Region 2. Without the protection
of kernel randomization, the location of Region 2 is well
known to the attacker, so she has no problem performing
her task. In contrast, in the case of the right where KASLR
is turned on, since the base address of Region 2 has been
randomized, the attacker no longer knows the location of
the target. Since the attack cannot be successfully executed
without this information, the attack has been prevented.

One of the problems that the standard coarse-grained
kernel randomization approach raises is that it is not
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FIGURE 2. Example of standard KASLR showing two kernel memory
regions and an ongoing attack from Region 1 to Region 2. For the attack
to be successful, the attacker must know the address of Region 2. On the
left, since KASLR is turned off, this address is known to the attacker,

so the attack succeeds. On the right side, the same situation is shown
with KASLR turned on. Since the addresses of the kernel regions have
been randomized, the attacker does not know the current location of
Region 2 and the attack is prevented.

compatible with memory deduplication when both methods
are applied in environments based on virtualization technolo-
gies [35]. In addition, since the randomization is applied at
boot time and unchanged until next reboot, any info-leak
disclosing a specific chunk of a kernel memory region, it is
actually uncovering the location of the entire kernel memory
region, thus circumventing the KASLR protection for that
particular region. Following the example presented in the
previous paragraph, for a kernel memory region containing
both code and data together, a single info-leak revealing an
address pertaining to either the code or the data regions will
immediately de-randomize both memory areas. In that case,
the KASLR bypass will be effective until next reboot [36],
[37]. For this reason, a finer-grained kernel randomization
is needed to address such challenges. This is discussed in
more detail in section IV. Our proposal offers a finer-grained
kernel randomization (at function level) while being fully
compatible with memory deduplication, therefore offering
higher protection without losing the benefits provided by
deduplication.

C. KASLR-MT

Kernel Address Space Layout Randomization Multi-Tenant
(KASLR-MT) [35] is a kernel randomization solution for
multi-tenant cloud systems that remedies the problem of
memory deduplication cancellation caused by the random-
ization effects on guest memory contents. KSM and KASLR
techniques conflict when both are enabled in virtualized
systems such as cloud environments [35], [38]. The reason
is that the randomization of kernel memory regions causes
undesired effects on the memory sharing effectiveness of
KSM because the latter tries to merge host memory pages
with identical content while guest kernel randomization intro-
duces differences in the memory contents of the guest virtual
machine. Cloud systems running multiple virtual machines
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with several tenants are the most affected by the significant
loss of memory sharing opportunities.

To remedy the breakage of memory sharing, kernel layouts
of guest virtual machines should be as similar as possible.
One possible short-term workaround to solve the problem
and restore the benefits of memory deduplication would be
to fully disable the protection provided by function-granular
kernel randomization in the guest kernels. In this way,
the kernel memory regions of all guest virtual machines
would always be deterministically located in their corre-
sponding default location without any randomness. This way,
it would guarantee a maximum memory sharing because
these addresses are statically assigned at compile time.
However, this option cannot be considered as acceptable
because removing the protection provided by kernel random-
ization introduces serious security weaknesses. KASLR-MT
addresses this problem by enabling the hypervisor to instruct
how guests virtual machines map their memory regions.
As a result, the deduplication effectiveness of completely
disabling kernel randomization is combined with statisti-
cal defense provided by the standard coarse-grained kernel
randomization protection.

Attacks evolve very quick and protection techniques must
be always be revisited, adapted or even fully changed in order
to provide an effective protection. Unfortunately, this is the
case for KASLR-MT, a recent proposal that is not compati-
ble with function-granular kernel randomization. Since it is
based on the coarse-grained kernel randomization approach,
it randomizes kernel memory regions as entire blocks. For
this reason, in a similar way as with standard KASLR,
it does not provide protection against info-leaks. In fact,
when advanced approaches for solving this problem such
as function-granular randomization are applied, the mem-
ory sharing cancellation re-appears due to variations derived
from the finer granularity randomization. This problem will
be thoroughly detailed in Section V. Our proposal offers
additional protection (e.g., against info-leak and correlation
attacks) by using a finer grained randomization while pre-
venting the memory sharing cancellation. As a result, we pro-
vide function-granular protection and the memory benefits at
the same time.

D. COMPARISON WITH PROPOSAL

In order to compare our proposal with the three mechanisms
discussed above in this section, Table 1 summarizes the
three mechanisms, considering the most relevant strength and
weakness for our purpose in this paper and pointing out the
main benefits obtained from our proposal.

KSM is a very useful and desired memory saving
mechanism that allows providers to reduce the physical
memory usage, but unfortunately it is highly dependent on
memory contents. For this reason, it is susceptible to a
decrement of its effectiveness when memory contents of
certain objects are subject to variations. It is the case, for
example, when standard Linux KASLR is present in guest
virtual machines, which introduces alterations in the memory
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TABLE 1. Brief comparison of the three related work mechanisms (KSM, Standard Linux KASLR and KASLR-MT) with our work, showing their most
relevant strength and weakness for the purpose of this paper.

Mechanism Strength Weakness Proposal Benefits
L. Our proposed solution eliminates the dif-
. L It is highly dependent on memory con- .
Reduces the total physical memory utiliza- . ferences in memory contents produced
. . . tents, thus extremely susceptible to de- . .
KSM tion and memory footprint across virtual . . . by function-granular kernel randomiza-
LT . creasing its effectiveness upon content . . . .
machines in virtualized systems. S tion, enabling the protection while pre-
variation. . o . .
serving the effectiveness of KSM.
Introduces alterations in the kernel mem-  Our proposed solution provides additional
Hinders the successful exploitation of un-  ory contents, causing the cancellation of info-leak protection while preventing the
Linux KASLR known attacks against the kernel that rely ~ the memory sharing benefits obtained by  sharing cancellation due to alterations in
on knowing valid kernel addresses. KSM. Besides, it does not provide protec-  memory contents, thus keeping the bene-
tion against info-leaks. fits provided by deduplication.
. . . As with standard KASLR, our proposed
Fixes the memory sharing cancellation . . . . . .
for the coarse-grained kemel randomiza- It is not compatible with fine-grained ran-  solution solves the memory sharing can-
KASLR-MT domization, and therefore does not provide  cellation while providing info-leak protec-

tion approach, such as Standard Linux
KASLR.

protection against info-leaks.

tion thanks to a finer grained kernel ran-

domization.

contents of the guest, causing the cancellation of the memory
sharing benefits obtained by KSM in the host. This problem
is fixed by KASLR-MT, but unfortunately this approach is
still insufficient, as it follows the coarse-grained random-
ization approach. Therefore, it is still weak to info-leak
attacks.

Different from the standard Linux KASLR and KASLR-MT,
our proposal solves both problems. On the one hand, it pro-
vides additional protection for info-leak and correlation
attacks by means of randomizing the kernel memory with
a finer-granularity. On the other hand, it eliminates the dif-
ferences in memory contents produced by function-granular
kernel randomization, preserving the effectiveness of KSM.
Therefore, we allow guest kernels to enable the additional
protection provided by function-granular kernel randomiza-
tion while keeping it compatible with KSM, offering resource
exploitation benefits for host machines.

Ill. ASSUMPTIONS AND ATTACKER MODEL
As mentioned in Section II-C, disabling kernel randomization

in order to have an effective memory deduplication is not
a real option since it introduces serious weaknesses that
could compromise the full cloud provider. Randomizing the
kernel mitigates the exploitation of vulnerabilities relying
on knowing kernel virtual memory addresses, for example
return-oriented programming (ROP) attacks [28], [39], [40],
which allow attackers to dynamically re-compile the kernel
code at execution time. Without kernel randomization, attacks
exploiting those vulnerabilities will always be successful,
since those kernel addresses are not a secret that the attackers
need to obtain.

In cloud environments, where there are several virtual
machines that can directly or indirectly interact with each
other, this is even more risky. Any kernel vulnerability could
compromise all guest virtual machines of the entire cloud,
even if the guests live in different physical machines. In that
case, attackers do not need to conduct any prior attack to
determine the location of the kernel in memory. The location
is well known and the attack will always succeed.
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On the other hand, even under the assumption that the
protection provided by kernel randomization is present,
we must also consider info-leaks, a widely used attack
approach to bypass kernel randomization. As briefly intro-
duced in Section I, info-leaks allow attackers to disclose
secrets from memory. Info-leaks are listed in the Common
Weakness Enumeration (CWE) top 25 most dangerous soft-
ware errors than can lead to serious vulnerabilities in soft-
ware [41], occupying the fourth place in the last report (2019).
It is extremely important to provide protection against this
type of attacks, since it is one of the most effective strategies
that attackers can use to bypass KASLR. If this bypass occurs
in the current coarse-grained kernel randomization model,
the leakage of a single address discloses the location of
an entire region. In the case of code regions, this valuable
information can be used for subsequent stages of the ongoing
exploitation, such as building a ROP payload. In other cases,
where the leaked information is actually the secret that the
attacker wanted to obtain, the consequences are even worse.
Therefore, in any case it is very important to provide pro-
tection against info-leaks to minimize the attack surface and
thus to mitigate its consequences and to enhance the security
provided by the kernel randomization technique.

Therefore, the scope and the goal of our research is to
provide a function-granular kernel randomization protec-
tion that mitigates info-leak attacks while minimizing to
a negligible extent its impact on memory deduplication.
This will enable cloud providers to use the protection pro-
vided by the newest and more secure kernel randomization
techniques without losing the benefits of memory dedupli-
cation. It is hard or impossible to assume that operating
systems are free from info-leak attacks. Recently, an info-
leak in the Linux kernel through 5.7.6 was disclosed under
the CVE-2020-15393 identifier [42]. Hence, a practical and
effective solution should consider info-leak attacks.

Additionally, our model threat assumes that a local attacker
has or can easily get full control of an entire virtual machine
and therefore we aim to protect virtual machines of a particu-
lar tenant from other tenants and from the Internet. Hence, our
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FIGURE 3. Overview of the attacker model, showing an hypervisor
running three virtual machines. Two of them (v-1 and vv-2) belong to
one tenant (T1), while the third (v-3) belongs to another tenant (T2).
Attacks from remote machines and from other tenants must face the full
info-leak resistant kernel randomization protection to succeed.

goal is that attackers that exploit a kernel vulnerability from
remote machines or from virtual machines pertaining to
other tenants face the full kernel randomization protection,
while keeping the impact on memory deduplication to the
minimum. In the event of a successful info-leak attack, the
information extracted by the attacker must be insufficient
to know the complete layout of the affected kernel memory
region.

Figure 3 shows the overview of the described attacker
model. The hypervisor is running three virtual machines, two
of which (VM-1 and VM-2) belong to one tenant (T1), and
the third (VM-3) belongs to another tenant (T2). Attacks
from remote machines and from other tenants are covered
by the attacker model. It is assumed that virtual machines
pertaining to the same tenant trust each other so if one of them
is compromised, the others are susceptible to being attacked.

IV. LINUX FUNCTION-GRANULAR KERNEL
RANDOMIZATION

As discussed above, kernel randomization is an important
security mechanism that is currently present in all main
operating systems. Although their different implementation
may vary, all of them follow a similar pattern that con-
sists of randomizing both physical and virtual address where
the kernel is loaded. Until the moment of writing this
paper, implementations randomized only a few random base
addresses belonging to different parts of the operating system
(coarse-grained kernel randomization). We discussed in
Section II-B, that an info-leak disclosing any position of a
particular kernel memory region will de-randomize the entire
memory region until next reboot. In this regard, even if a given
kernel randomization implementation has an extremely high
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FIGURE 4. General outline of kernel function-granular randomization.
The order of kernel functions is dynamically shuffled at boot-time, before
the kernel starts its execution.

entropy, a single info-leak cancels it out completely, reducing
it to zero.

Function-granular kernel randomization, also known as
function re-ordering, is the next step in the progressive
development of defense mechanisms designed to protect
against respective attack strategies. With function-granular
kernel randomization, the kernel and modules functions are
randomly shuffled at boot time. Unlike the coarse-grained
approach, an info-leak will only de-randomize a very tiny
portion of the kernel code or data and will not be valid to
de-randomize important functions that attackers typically use
to elevate privileges or build ROP attacks. Figure 4 shows a
general outline of this concept, where kernel functions are
independently randomized by the bootloader at boot-time
using a random number generator (RNG).

Function-granular kernel randomization provides not only
more entropy but also mitigates info-leaks and correlation
attacks [43]. For this reason, it is to be expected that the trend
of the kernel randomization protection will be towards a finer
grained approach. For example, Linux is currently under-
going early stages of development of a finer-grained kernel
randomization approach named Function Granular Kernel
Address Space Layout Randomization (FG-KASLR) [10],
[44]. This new technique is a step forward for kernel security
and it would likely be adopted by other operating systems in
the near future.

The implementation of the Linux kernel randomization
have been evolving over time. The first randomization addi-
tions in the kernel were introduced in version 3.14, in which
the physical and virtual addresses were randomized, along
with the modules load offset. Later, from version 4.8, kernel
physical and virtual addresses were decoupled and random-
ized separately and three more memory regions were ran-
domized: the physical memory mapping, vmalloc and virtual
memory map (the third was added in version 4.9). The last
addition was the randomization of the poking address, intro-
duced in version 5.2. This address is used to patch dynami-
cally a running kernel without having to reboot. It is useful
to get a highly flexible and adaptable kernel without hav-
ing to compile different versions depending on the available
hardware, such as the number of CPUs.

The first request for comments (RFC) patch for
function-granular kernel randomization was for the version
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TABLE 2. Randomization elements in Linux. All of them must be randomized to have a full and function-granular kernel randomization.

Randomization Elements

Description

Kernel Physical Address
Kernel Virtual Address
Function Reordering
Modules Base

Physical Direct Mapping
Vmalloc/ioremap
Vmemmap

Poking

5.5, in early 2020 and still under discussion at the time of
writing this paper [10], [44]. The current implementation of
the Linux kernel is not PIC compliant. It uses text relocations,
patching dynamically all the position-dependent references
after the final randomized virtual address is settled. The
relocation information is generated by the static linker. Then,
the linker generated output binary is parsed for relocation
information and symbol locations, and generates a simple
table of addresses which contain relocations which will need
to be adjusted once the final base address of the kernel is
determined at boot time.

FG-KASLR follows the same approach going a step
further. It uses an existing compiler option to place func-
tions into individual executable code sections at build time.
Section header information about these sections is preserved
in the final output binary as part of the kernel build process.
These section headers contain the address ranges of each
individual function that was not collected back into the main
executable code segment. The address ranges are used to
randomly shuffle and re-layout the kernel image at boot time.
After that, relocation information is consulted to patch up the
corresponding references.

Previously with simple base address layout randomization,
the table of relocations appended to the kernel image during
the build process only needed to include absolute relocations
and relocations that were relative to other segments which
were not moved. Because the relative location of symbols
in sections that have been randomized has been changed,
the generated table of relocations is substantially expanded
to include relative relocations. Each relocation entry in an
address range that has been randomized must be updated to
reflect the code section’s new location. In addition, the Linux
kernel creates several data tables of addresses. These tables
are inspected and adjusted to reflect any changes in addresses.
Most of these tables are required to be sorted by address
so that the kernel can do fast table lookups using a bsearch
algorithm. After the addresses have been adjusted, each table
will need to be re-sorted.

FG-KASLR extends the kernel randomization by adding
a new step when loading the kernel. After randomizing the
kernel base address, the loader is responsible of randomly
shuffle the functions order. The same approach is used for
loadable modules. As a result, it is required to randomize
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Randomizes the physical address where the kernel is loaded.

Randomizes the virtual address where the kernel is loaded.

Randomizes the kernel and modules per-function.

Randomizes the base virtual address where modules are loaded.

Randomizes the virtual memory address where physical memory resides.
Randomizes the base address where the kernel allocates dynamic memory.
Randomizes the base address of the Kernel virtual memory map.

Randomizes the special virtual address used to patch kernel code dynamically.

eight different addresses/offsets/components (randomization
elements) to have a full FG-KASLR as Table 2 shows.

Although FG-KASLR is a novel and desired hardening
technique that brings stronger security to the Linux kernel
randomization mechanism, unfortunately, it re-introduces
the important issue of memory deduplication cancellation
that KASLR-MT managed with coarse-grained kernel ran-
domization. Section V discusses in detail how and why
function-granular kernel randomization cancels the KSM
benefits.

V. THE PROBLEM: RELATIVE OFFSETS

Kernel randomization can cause undesired effects on the
memory sharing effectiveness, especially in virtualized sys-
tems. In this section, we discuss the conflict between mem-
ory deduplication in the host machine and function-granular
kernel randomization in the guest virtual machines.

Section II-C briefly outlines the problem that affects mem-
ory sharing and the efficient utilization of memory resources
when deduplication mechanisms such as KSM are com-
bined with address randomization security mechanisms such
as KASLR, especially in environments that rely on virtu-
alization technologies. This issue was explored in previ-
ous research [35], [38], providing solutions for the standard
coarse-grained kernel randomization approach. However,
motivated by info-leak attacks, newer and more secure kernel
randomization are being proposed. Function-granular kernel
randomization is an example of this and the technique is
currently being tested in the Linux hardened community.

As of the date of writing this paper and to the best of
the authors’ knowledge, KASLR-MT is the only design that
solves the problem of memory deduplication breakage in
the presence of kernel randomization in cloud systems with-
out compromising the security of users. Unfortunately, with
the appearance of function-granular kernel randomization,
the problem re-emerges with new challenges invalidating the
current solution.

In standard kernel randomization, the absolute references
breaks shareability when the kernel is randomized [35] due to
text relocations, dynamically patching, etc. The kernel code is
the most affected memory area and this is because all kernel
code pages that are dynamically patched by absolute reloca-
tions at boot-time cannot be merged. An example that causes
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Memory of Kernel 1 / Boot 1

different

functions

order Memory of Kernel 2 / Boot 2
>

Kernel Code

——> 6x1135: <callee>:

37 bytes

0x1148: <caller>:

e811 1135 # <callee>

o00 rel. offset: Oxffffffdb — -37

8b ©85(%a @e 00 00) mov Oxe9a(%rip), %eax # 2000 <data var>

rel. offset: 0xe9a — +3738

0x1155:
] Ox115a:

0x1160:
W 0x1166:

Kernel Code

0x1135: <caller>:

e8(15 00 00 00 call 115c # <callee>

rel. offset: 0x15 — +21

8b 05Cad 0e 00 00) mov Oxead(%rip), %eax # 2000 <data var>

rel. offset: 6xead — +3757

0x1142:
0x1147:

6x114d:
0x1153:

21 bytes

—>» 0x115c: <callee>:

3738 bytes

3757 bytes

FIGURE 5. Example of memory contents altered by different relative offsets, showing a snippet of the memory of two identical kernels with
function-granular kernel randomization. The code represents a caller () function that calls another, callee (), and accesses a data variable
(data_var). Because of function-granular kernel randomization, the order of both functions is shuffled at boot-time. Consequently, memory contents
differ because the relative offsets are not constant, which breaks their shareability.

this is when a certain kernel function references another one.
Unfortunately, this approach randomizes the kernel regions
as entire blocks and info-leak attacks will fully bypass the
kernel randomization.

In this case, the main culprit is the utilization of absolute
relocations. For the currently used coarse-grained kernel
randomization, where kernel regions are randomized as
entire blocks, alternatives such as compiling the kernel with
position-independent code could provide additional benefits
and alleviate the problem, because the use of relative offsets
in this case do not change the memory contents regardless of
the address where the code is loaded.

The main challenge with function granular kernel
randomization that invalidates previous solutions is that
randomly reordering kernel functions will produce different
code. Since function-granular kernel randomization dynam-
ically shuffles the order in which the functions are placed,
the relative distance from a given function to another will
be different and, therefore, the relocation patch will alter the
memory contents. It is important to note that the relative
offsets are a problem even if the kernel developers adapt
their code to be PIC compliant. Therefore, it is an important
problem that cloud providers must overcome, to which there
is no available solution at this time.

Since the relative distance between functions is not
determined at compile time, function-granular kernel ran-
domization uses more relocations than the coarse-grained
kernel randomization. Once all functions are randomly
loaded into memory, relative offsets such as those used for
calling functions must be relocated. As an illustrative note,
the compiled image of the kernel contains approximately
849000 more relocations only by enabling function-granular
kernel randomization.

This problem not only affects to code but also to the
sharing of data memory. This is because the differences
caused by randomization affect data variables when their
contents depend on the location of any randomized region
being referenced. For example, a function pointer in the
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kernel data region containing the virtual address of a shuf-
fled function. The kernel contains different structures with
pointers referencing to other kernel locations (e.g., functions
and variables). Consequently, a single value or pointer that
refers to a randomized location breaks the shareability of the
entire page. This issue concerns all kernel memory regions
containing any kind of data, such as vmalloc, vmemmap and
module data.

Figure 5 sketches an example of the problem. It shows
a snippet of the memory of two identical kernels with
function-granular kernel randomization. Alternatively, it can
also be seen as two different boots of the same kernel, since
the changes in memory contents occur in the same manner.
The example shows the memory content of two functions
and a data variable. One of the functions calls the other and
later it accesses to the variable in the kernel data region. The
most relevant part is the opcode value of the instructions
because that is the actual content present in memory. It can
be seen in red, that the opcode value of Boot 1 (dbffffff)
is different from the opcode value of Boot 2 (15000000).
Those opcode differences are because the distance between
the next instruction and the destination is different (different
relative offsets).

This is produced when the function-granular randomization
shuffles the order in which the functions are loaded.
Therefore, the relative distances within a given block are
no longer constant. This concerns both distances to other
functions and data. To the left of Figure 5, the callee
function is loaded first at the virtual address 0x 1135 followed
by the caller function at (0 x 1148). The relative offset in
the instruction that calls to callee is-37 bytes (backwards),
and the distance between the data access instruction and
the location of the accessed variable is 3738 bytes. On the
right, the order of the functions has been shuffled and the
caller function is loaded first at 0 x 1135 followed by
callee at 0 x 115c. The relative offsets are now 21 bytes
(forward) to the callee function and 3757 bytes to the data
variable.
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Oxffffff£f£81000000 <startup_64>:
Oxffff££f££81000000: 48 8d 25 51 3f 80 01 lea

0x1803£f51 (%rip), %rsp

# dst: Oxffffffff82803£f58; rip: Oxffffffff81000007; rel. offset: dst - rip = 0x1803£f51

OxfEff££££81000007: e8 e4 00 00 00

callq fffffff£810000£f0 <verify_cpu>

# dst: Oxffffffff810000£f0; rip: Oxffffffff8100000c; rel. offset: dst - rip = Oxed

OxfEEEFFFFS1000020: eb 20 jmp

fEEfEf£f£f£81000042 <secondary_startup_64+0x12>

# dst: Oxffffffff81000042; rip: Oxffffffff81000022; rel. offset: dst - rip = 0x20

Oxffffff£f£f81000030 <secondary_startup_64>:

Oxffff££f££81000047:

£7 05 8£ 2b 63 01 01 00 00 00

testl $0x1, 0x1632b8f (%rip)

# dst: Oxffffffff82632bel; rip: Oxffffffff81000051; rel. offset: dst - rip = 0x1632b8f

Oxffff£f££8100005¢c: 48 03 05 ad 1f 81 01 add

0x18l1l1fad (%rip), %rax

# dst: Oxffffffff82812010; rip: Oxffffffff81000063; rel. offset: dst - rip = 0x181llfad

Oxffff££f££810000a0: 48 8b 25 al 68 92 01 mov

0x19268al (%rip), Srsp

# dst: Offffffff82926948; rip: Oxffffffff810000a7; rel. offset: dst - rip = 0x19268al

Oxffffffff82e63131 <vmemmap_pte_populate>:

Oxffffffff82e631lde: 48 23 35 4b d8 ae ff and

-0x5127b5 ($rip), %rsi

# dst: Oxffffffff82950a30; rip: Oxffffffff82e631le5; rel. offset: dst - rip = O0xffaed84b (2's)

List. 1. Samples of affected x86_64 machine instructions with relative offsets, extracted from the Linux kernel v5.5 binary. The offsets in the instructions’
opcode are highlighted in bold to indicate the part of the contents that changes when the functions are shuffled.

These alterations in memory contents are the root of the
problem and prevents KSM to merge those pages. Although
the figure shows only changes in memory contents of kernel
code, the problem is also present in data regions. For example,
a data variable containing the virtual address of the callee
function, since this address is different (0 x 1135 on the
left and O x 115c on the right) the variable value in data
region will be different. In fact, the problem exists whether
this data reference is absolute or relative. It is important to
note that, in this illustrative scenario, the first function is
always loaded at the same base virtual address for the sake of
simplicity. However, the base address of the kernel memory
region where the first function is loaded is also randomized.

Therefore, function-granular kernel randomization affects
the shareability of kernel memory contents, preventing KSM
to merge kernel code and data regions. Even though cur-
rent Linux kernel implementation is not PIC compliant,
there is a widespread presence of instructions with rela-
tive offsets, especially on architectures such as x86_64 and
ARM with support for calculating addresses relative to the
program counter (PC), also known as PC-relative address-
ing support. Listing 1 shows a few real x86_64 instruc-
tions with relative offsets extracted from the Linux v5.5,
which confirms that the Linux kernel is affected by the prob-
lem. The relative offsets are highlighted and their meaning
is detailed through the comments, indicating the subtrac-
tion of the destination and the address of the next instruc-
tion. For example, the first shown instruction is a Load
Effective Address (1 ea) instruction, which is the first instruc-
tion executed when the kernel starts running. This instruc-
tion loads the address Oxfffffff£82803£58 into the
rsp register. Since the address of the next instruction is
OxfEEE£E£££81000007, the relative offset (0 x 1803£51)
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is the distance between them. It reveals that the problem
affects any instruction that computes a distance relative to its
position, regardless of its semantics. This clearly points out
that PIC code does not solve the problem.

Memory deduplication and function-granular kernel
randomization could actually coexist in a system but, in prac-
tice, the deduplication is silently failing. Therefore, knowing
the impact of function-granular kernel randomization on
deduplication is key to know the extent of the problem and to
propose a practical solution.

VI. FUNCTION-GRANULAR RANDOMIZATION IMPACT
Function-granular kernel randomization produces different
memory contents across several kernels, reducing the effec-
tiveness of memory deduplication in cloud systems using
virtualization technologies. In this section, we present a com-
prehensive analysis of that randomization impact on memory
deduplication for each affected kernel memory region.

Our aim for this section is to measure rigorously to
what extent a particular kernel region (Linux code, Linux
data, modules code, modules data, vmalloc and vmemmap)
changes its contents when different randomization ele-
ments of function-granular kernel randomization are enabled
(kernel physical address, kernel virtual address, func-
tion reordering, modules base, physical mapping, vmalloc,
vmemmap and poking virtual address). Given that there are
eight randomization elements, we have tested and analyzed
28 = 256 combinations per each kernel memory region.
We have executed 4 probes per each combination, being a
total of 256 x 4 = 1024 executions. Then, the percentage
of equal pages can be obtained by comparing the probes for
each given combination. The OS used for executing the tests
is Ubuntu 20.04 LTS with Linux v5.5.
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By doing this analysis, we accurately identify 1) the
influence of function-granular kernel randomization for each
combination, to identify which randomization elements have
more impact on the effectiveness of memory deduplication;
2) the best combination that maximizes the security pro-
vided by kernel randomization while minimizing the neg-
ative effects on memory deduplication. This will be key
to identify which randomization elements have minimum
impact on memory deduplication. As we will discuss later in
our proposed approach, those elements can be randomized
due to their low or negligible impact. Finally, we obtain
3) non-biased results that are independent of the amount
of virtual machines executed in the experiment. Otherwise,
the results obtained might be influenced by merely tweaking
a certain number of virtual machines. For example, supposing
that 50% of the total memory can be saved when running two
identical kernels, then adding a third kernel identical to the
others would report 66% of memory saved by deduplication.
Although that measure indicates actual memory savings, it is
not adequate to determine the real impact of the effects pro-
duced by function-granular kernel randomization. For these
reasons, instead of calculating the differences of deduplicated
memory before and after randomization, we measure the
degree of memory contents variation of the kernel memory
regions after applying randomization.

Therefore, we focus on calculating the percentage of equal
pages for each case, independently of the size of the kernel
memory region being analysed. This measure is particularly
tailored to measure the impact caused by randomizing kernel
areas exclusively, and thus recognizing memory pages that
change because of the kernel randomization by comparing
two or more memory dumps of the same object. To elim-
inate non-randomization noise in the measurements, local
redundancy of each object is not taken into account when
determining the percentage of equal pages. This accurately
determines how memory pages are changed due to kernel
randomization.

It is important to note that although the analysis shows the
results of the Linux kernel code and data regions separated,
they are not actually separately randomized in current imple-
mentations. Both regions are randomized together in accor-
dance with the obtained kernel virtual address. A part from
that, as a feature of function-granular kernel randomization,
the order of the code functions is randomly shuffled.

On the other hand, the Linux direct physical mapping is a
fairly special case. It is not actually a a real memory region,
but a virtual mapping to the entire physical memory. For this
reason, the physmap cannot be treated as a virtual memory
region with contents and it is discarded in the tests. However,
it is included as a randomization element because, although
it is purely a virtual mapping, its virtual base address is ran-
domized and this can influence one or more kernel memory
regions if they contain values that refer to the randomized
virtual address of the direct physical mapping. An example
of these references are pointers to dynamically allocated
physically contiguous memory areas.
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Another important aspect to consider is the page table size.
Although Linux kernel guests use 2 MiB pages, the Linux
implementation of memory deduplication (KSM) operates
with pages of 4 KiB, regardless of the guest’s view. In our
analysis, we consider that the block size to be compared is
4 KiB, as this is the minimum block size in which KSM
operates. As a result, a single bit difference in a 4 KiB block
is reported as a mismatch of the entire page, since KSM could
not merge it.

Because the total number of combinations obtained in the
analysis is too large to be listed (2566 = 1536 rows), Table 3
shows a synthesis of the most significant cases. The table is
primarily divided into the six Linux kernel memory regions
being analysed. The first row of each of the six memory
regions is the best case for the memory deduplication. This
is when the kernel randomization is disabled. The last row is
the worst case, where the function-granular kernel random-
ization is fully enabled (all the randomization elements are
enabled). To effectively summarize from 1536 to 22 rows
we are not considering cases whose difference in terms of
deduplication is less than 5%. This way, the best possible
combination for a given configuration can be reached quickly.
For example, in a kernel randomization configuration where
the the kernel virtual address is randomized, Table 3 shows
that the best combination for the Linux data memory region
is the third one, with a 32.6% of randomization overhead.
For each kernel memory region, the best combination for the
memory deduplication when randomizing the highest number
of randomization elements is highlighted.

The results of the randomization effects on the Linux code
point out that memory sharing of this region is drastically
impacted by the kernel virtual address and by the function
reordering. When any of these two are randomized, the per-
centage of equal pages is reduced from 100% to almost zero,
independently of whether other areas are randomized or not.
Only a small percentage of pages remain unaffected (0.3 and
0.1 respectively). This reveals that the absolute and relative
references are widespread across the kernel code. On the one
hand, randomizing the kernel virtual address affects absolute
references but not relative ones. This is because even if the
kernel is randomized in a coarse-grained way (without func-
tion reordering), all memory pages with relocations of abso-
lute addresses break the sharing benefits but relative offsets
within the same region are kept intact. On the other hand,
the randomization of the functions order not only affects
absolute references but also to relative offsets. This is due
to the increment of entropy in the order in which kernel
functions are placed as Figure 5 shows.

The results for the Linux data memory region show that
the best case (kernel randomization off) has 82.5% of equal
pages. As it is a data region, it is expected that this region
contains non-shareable data, independent of kernel random-
ization (e.g., timestamps), so obtaining 82.5% of equal pages
as the best case is not a surprise. The Linux data memory
region is also impacted by the kernel virtual address and
by function reordering. Enabling the rest of randomization
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TABLE 3. Analysis of the impact that function-granular kernel randomization has on the shareability of Linux memory regions. A black dot (e) indicates
that the randomization element is enabled, while a white dot (Q) indicates that the randomization element is disabled. The table is divided into six
kernel memory regions. For each kernel memory region, the best combination for the memory deduplication when enabling the highest number of

randomization elements is highlighted in green background.

Randomization Elements
Linux Kernel % Equal
Memory Regions poking vmemmap vmalloc/  physical  modules function kernel  kernel Pages
vaddr. area ioremap  mapping base reordering  vaddr.  paddr.
. O O O O O O O O 100
Linux

Code [ ( [ (] ([ O O o 100 ( -0.0)
[ J [ ] [ ] [ ] [ ] [ ] (] ) 0.1(-99.9)

O O O O O O O O 82.5
. [ ( [ (] (] O O ® 81.5( -1.0)

Linux

Data L ° ] ° ° O ° ® | 499(-326)
[ ([ ] [ [ ] o [ O ® 44.3 (-38.2)
[ ] [ ] [ ] [ ] [ ] [ ] (] o 37.2 (-45.3)

O O O O O O O O 333
Modules () o o [ ) O O O [ ) 313 ( -2.0)
Code ° ° ° ° ° O ° ) 8.6 (-24.7)
[ J (] [ J [ ] (] @ [ ] o 0.1(-33.2)

©) O ©) @) O O O O 51.2
Modules [ (] [ ) (] O O O ® 49.83 ( -1.4)
Data [ ] ([ ] [ [ ] O O (] o 40.6 (-10.6)
[ (] [ [ (] O (] o 35.8 (-15.4)
[ J (] [ J [ ] ® ® (] ) 30.8 (-20.4)

Vmalloc O O ©) O O O O O 5.0
Space [ ® [ J ® ® o [ 4.0 ( -1.0)

Virtual ©) O ®) O O O O O 88.2
Memory Map [ ] O [ (] o [ ([ ] (] 83.1( -5.1)
[ ] (] [ ] [ ] @ o (] o 0.0 (-88.2)

elements has a small impact on deduplication, just a 1% of
overhead. However, only by randomizing the kernel virtual
address, the percentage of equal pages drops to less than
50%. Similarly, deduplication is decreased to around 44% by
randomizing the functions order. The reason is that Linux data
contains references to parts of the kernel itself (to either code
and data regions).

Regarding the Linux loadable modules, it could be
expected at first glance to obtain an outcome similar to the
Linux kernel code and data regions. However, there is a
particular aspect in modules that makes them slightly more
complex to analyse. When a module is loaded, all their rel-
ative references to other modules are patched and therefore
its contents depend on the position of other modules. Since
the loading order of Linux loadable modules is not determin-
istic, those memory patches will produce different memory
contents and therefore the percentage of equal pages will be
reduced. It important to note that once a module is loaded in
a different address, all subsequent modules will be affected.
Unfortunately, this is out of control of the kernel randomiza-
tion and for this reason, the best case when the randomization
is disabled only reports a 33.3% of equal pages.

The percentage of equal pages for the modules code is
reduced by more than 72%, from 31.3% to 8.6% when the
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kernel virtual address and/or the modules base offset are
randomized. However, the randomization of functions has a
much greater impact. In this case, it drops almost entirely
down to 0.2%. This case is not shown in the table because the
difference with respect to the worst case (which is basically
adding the kernel virtual address and modules base offset) is
only 0.1% and, therefore, less than the 5% established as a
threshold. The reasons of this behaviour are the same as with
Linux code.

Once a certain module is placed in a memory location
randomly assigned to it, and after its functions are shuffled,
it is necessary to patch all its relocations. This includes relo-
cations of relative offsets, such as those present in function
calls, and relocations of absolute addresses. All of these
relocations modify the contents of the module’s code region
(i.e., by accessing to a variable in its data region).
Furthermore, the issue is present not only with references to
the module itself but also with any reference to the kernel
symbols (e.g., printk () function).

The outcome in modules data is similar to modules code,
but more relaxed. The three most significant randomization
elements that impacts modules are the kernel virtual address,
the modules base offset and function reordering. The best
case has 51.2% of equal pages, while the following case,
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disabling the named addresses, has 49.8%. Of these three
randomization elements, the function reordering is the one
impacting most, followed by the modules base and the kernel
virtual randomization.

The results of the vmalloc kernel region show about 4%
to 5% of equal pages in all cases, regardless of the random-
ization elements being enabled or disabled. This behavior is
certainly expected, since this a memory region that serves
dynamically allocated virtually contiguous memory that is
mainly used to store data temporally. Therefore, based on the
obtained results, one can state that function-granular kernel
randomization has minimal influence on the contents of the
vmalloc memory region.

The last kernel memory region analyzed is the Linux
Virtual Memory Map. This region contains lists of objects
with references to previous and next objects located in the
same region. This aspect is evidenced by the fact that random-
izing the vmemmap virtual address has a high deduplication
impact on its own memory region. The best case has 88.2%
of equal pages, and 83.1% when enabling all randomization
elements except vmemmap. Then, the percentage of equal
pages drops to zero when the vmemmap virtual address is
randomized. In our experiments, we observed that random-
izing the kernel physical memory has a slight influence on
the vmemmap region. That is reasonable since the objects
located in this region represent metadata about the physical
memory, so this is caused by information that depends on
the physical location of the memory pages such as the page
frame number. However, since this influence is less than
5%, the configuration that maximizes the number of enabled
randomization elements with minimal impact on memory
contents for this region is when all randomization elements
are enabled except vmemmap itself.

VIi. PROPOSED SOLUTION

Section V states that as of the date of writing this paper
and to the best of the authors’ knowledge, KASLR-MT is
the only kernel randomization design for cloud systems but
unfortunately it was not designed with fine-grained kernel
randomizations in mind. Therefore there is no solution that
provides both info-leak attacks protection and high rates of
shared memory desired by cloud providers.

In this section, we present our proposal to enable cloud
providers to take advantage of modern kernel randomization
protection mechanisms while having high rates of dedupli-
cated memory allowing them to take more profit from their
resources and still offer to users the same level of protection as
function-granular kernel randomization, including info-leaks.
Afterwards, we present the implementation of the proposal
for Linux on x86_64.

A. FUNCTION-GRANULAR RANDOMIZATION
COMPATIBLE WITH MEMORY DEDUPLICTION
In order to properly tackle the problem of severe memory
sharing breakage derived from the memory contents
alterations introduced by the randomization of kernel
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memory regions and functions, we propose an effec-
tive function-granular kernel randomization for cloud sys-
tems compatible with memory deduplication. The benefits
obtained from this proposal include a more efficient use of
available resources by removing the cancellation of memory
sharing by the influence of relative offsets, as well as a strong
protection against info-leaks attacks to guests.

Following the analysis results obtained in Section VI, there
are randomization elements with minimum impact and others
with higher impact on the effectiveness of memory dedu-
plication. The design of the proposed approach allows the
hypervisor to instruct how guests virtual machines map their
memory regions. Guests use the information provided by they
hypervisor to calculate the addresses of each Linux kernel
memory region. This way, the kernel randomization is always
enabled and different randomization elements can be tuned
depending on the deduplication impact.

A randomization element has none or low impact for a
given kernel region if the memory contents of that region are
not altered when that element is randomized. For example,
Table 3 shows that enabling poking virt.addr, vmemmap,
vmalloc, physmap, modules offset and kernel phys.addr.
reduces 0% the number of equal pages for the Linux code
memory region. A randomization element has high impact
if the fact of enabling it has a huge impact on the memory
deduplication. For example, Table 3 shows that the function
reordering and kernel virtual address randomization elements
reduce 99.9% the percentage of equal pages for the Linux
code memory region.

The proposed solution is aimed for virtualized systems
with multiple tenants running their own virtual machines.
Hence, kernels of one tenant share a common randomized
memory layout. This increases the shared memory and keeps
the effectiveness of the kernel randomization, since the final
layout remains unpredictable for an external attacker. This
applies also for non-identical virtual machines, because the
minimum granularity of KSM is 4096 bytes, and there are
still opportunities to deduplicate some parts of the virtual
machine. It provides the maximum possible deduplication
benefit when the kernel randomization is enabled. Regarding
the negative effects on the memory deduplication caused
by function-granular randomization, currently there is no
other publicly known solution to this problem as it is com-
pletely new. As discussed in Section V, approaches such as
adapting the kernel to be PIC compliant cannot solve the
problem. This is mainly because the function-granular kernel
randomization has relative offsets breaking the shareability
that unfortunately PIC cannot prevent, since they are already
relative.

As depicted in Figure 6, the main idea of the proposed
approach consist on having a cloud infrastructure which
maintains a table with one-to-one correspondence, linking
Tenant-ID and a unique random key. Each unique key serves
to feed each virtual machine of a particular tenant, enabling
them to deterministically calculate the addresses of all mem-
ory regions and the addresses of all shuffled kernel and
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FIGURE 6. Overview of the proposed function-granular kernel
randomization. Two tenants are shown, each one running two kernels.
The kernels of Tenant 1 determine the same order of functions, which in
turn is different from the kernels of Tenant 2. For Tenant 1, the functions
in the kernels of Tenant 2 are unknown and unpredictable, and
vice-versa. For the kernels of each tenant, KSM (deduplication) can merge
the memory contents.

modules functions. Cloud providers must ensure that keys
are not duplicated. Besides, since the algorithm to produce
addresses for a given key has to be highly deterministic, keys
must be totally unpredictable. Otherwise, an attacker could
predict the kernel memory layout of a victim.

To provide support for live migration, the relevant columns
of this table must be shared among the hosts machines form-
ing the cloud infrastructure. Otherwise, two guests running
in two different hosts belonging to the same tenant will
have different kernel memory layout and this will prevent to
deduplicate the kernel even if both guests are later running
under the same host.

A tenant’s key lifespan starts from the time the first VM is
launched and ends when the last VM is shut down, even if the
VMs are running on separate physical machines. Once any
VM is running, the key cannot be changed. Otherwise, this
would lead to kernels from the same group producing differ-
ent memory layouts, breaking the shareability. The key of a
given tenant can be safely cleared at the moment the last vir-
tual machine is shut down. This key renewal is recommended
as it enforces the generation of new kernel memory layouts
for subsequent guests. This way, the kernel randomization
layout is not always the same but is re-randomized over time.
Each randomization element can be individually randomized
in two different ways:

1) Per-Tenant: For a particular randomization element,

a random key is produced by the host and associated
with a tenant. The key is shared among all the virtual
machines of the same tenant so that they can generate
the same base address/offset/shuffle. Guests belong-
ing to the same tenant will have the same (random)
memory base address for that particular randomization
element. For example, guests produce the same virtual
base address of a kernel memory region. Similarly,
if the function reordering is randomized Per-Tenant, the
kernel and modules functions order will be the same
among all guests of the same tenant. Our proposal uses
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TABLE 4. Randomization approach for the different Linux randomization
components.

Randomization Element  Type
Kernel Physical Address Per-VM
Kernel Virtual Address Per-Tenant
Function Reordering Per-Tenant
Modules Per-Tenant
Physical Direct Mapping Per-VM
Vmalloc/ioremap Per-VM
Vmemmap Per-Tenant
Poking Per-VM

a Per-Tenant approach for randomization elements with
high impact on any kernel memory region.

2) Per-VM: For a particular randomization element,
a random key is produced by the host and associated
with a virtual machine. When a guest virtual machine
reboots, the base address/offset/shuffle will be differ-
ent, and it is not shared with other virtual machines
belonging to same or other tenants. Our proposal uses a
Per-VM approach for randomization elements with low
impact on all kernel memory regions.

B. LINUX IMPLEMENTATION

Based on the results of section VI and considering the two
ways to randomize the different randomization elements
based on their impact on memory deduplication (low or high),
we have implemented the proposed approach maximizing
the deduplication while the function-granular kernel random-
ization is fully enabled. Those correspond with the green
rows of Table 3 and the memory sharing rate is similar to
that obtained when function-granular kernel randomization
is disabled. For this implementation, we consider that a ran-
domization element with high impact is when the reduction
of equal pages is greater than 5%. This value depends on
the developers decision and Table VI can be consulted to
obtain the randomization elements that must be applied for
a desired % of equal pages.

It is important to note that the green rows selected to
implement our proposal contain randomization elements that
are enabled in one row but disabled in another. For example,
looking at green rows of Table VI, it can be seen that the
kernel virtual address is not randomized for the Linux kernel
code memory region but it is for vmalloc and virtual memory
map. To properly implement an effective function-granular
kernel randomization while keeping high memory sharing
rates we must combine all selected rows to obtain which of the
randomization elements will be enabled. If a randomization
element is enabled in all rows, it will be randomized Per-
Tenant, otherwise Per-VM. Table 4 shows the type applied
to each randomization element used in our implementation.

In our proof of concept, the hypervisor passes via kernel’s
command-line a random key and whether a randomized
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478 static void shuffle_sections(...)
483

== parse_prandom_seed () ;

++ if (cloud_fgkaslr_enabled)

++ cloud_fgkaslr_shuffle_init (fgkaslr_seed);
++ else

Sy parse_prandom_seed () ;

485

486 for (i = size - 1; i > 0; i--) {

List. 2. Modifications to the current shuffle_sections () function to
enable the proposed solution to generate a deterministic kernel function
layout.

element is either Per-VM or Per-Tenant. For the latter,
we used a single byte where a 0 means randomization
Per-VM and a 1 randomization Per-Tenant. This is all the
information required by guests to implement the proposed
approach. Since Linux normally prints the contents of the
cmdline to the kernel ring buffer at the beginning of its boot
process, the key is cleaned-up after being retrieved, ensuring
that the cmdline buffer cannot leak the key. If the key is
leaked, every address being randomized from that key could
be calculated. The key management can be further secured
with advanced leakage-resilience key policies [45], [46].

The hypervisor must ensure that the random key contains
enough random material to initialise a cryptographic random
number generator. Once the key is obtained by the guest,
it is used to derivate all memory addresses to be random-
ized. In our proof of concept, guests use this key to feed a
ChaCha20 cryptographic random number generator [47] to
deterministically obtain random numbers to be used to calcu-
late the kernel base virtual address, modules base, vmemmap
address as well as the kernel and modules function order.
This approach does not add any additional overhead for the
system performance nor does it impact on the guest kernel
boot time. This is in part because the operation of extracting
pseudo-random numbers from a ChaCha20 PRNG is less
costly than generating a high quality true random number.

The function reordering element is not just a single address,
but a random number per function is obtained to calculate
the final memory address where the function will be loaded.
As shown in listing 2, since the random number generator
has been initialized uniquely using the key from the host,
the kernel and modules functions will appear random from
the outside. This approach ensures compatibility for future
releases of the new Linux kernel randomization.

VIIl. EVALUATION
In this section, we evaluate the effectiveness of the
proposed solution in terms of security and memory dedu-
plication. We are comparing our proposal against the
already existing approaches, FG-KASLR and KASLR-MT,
when function-granular kernel randomization and memory
deduplication are fully enabled.

To quantify the amount of kernel memory being saved,
a second experiment has been conducted. We ran distinct
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series of simultaneous virtual machines, starting with 2 and
gradually adding more VMs up to 30. All these virtual
machines use the same configuration as the one mentioned
in section VI: a generic GNU/Linux Ubuntu 20.04 LTS
with Linux v5.5, with Gnome desktop and full network-
ing (NAT mode provided by Qemu). The physical machine
used to run the experiments has an Intel Xeon W-2155 pro-
cessor (Skylake server microarchitecture) and 32 GiB of
SDRAM memory. The hypervisor used is KVM (Linux
kernel 5.4-ARCH) along with Qemu VMM version 5.0.0.

The kernel memory space can be modified not only by
the kernel itself but also indirectly by the userspace. There
are userspace activities that modify the internal state of the
kernel. Although such variations are not due to the random-
ization of the kernel, they may appear in the measurements
taken. The number of possible userspace workload combina-
tions is unlimited. Moreover, it would be plausible to create
custom workloads to produce biased results, for example,
by creating userspace activities that produce a high memory
deduplication rate, but also the contrary. For instance, a user-
land process can indirectly produce certain contents to be in
the kernel memory by using any system call that involves a
copy from userland to a kernel buffer. The kernel function
copy_from_user () copies a block of data from the pro-
cess address space to the kernel, so that copying data with
high similarity can cause the shared memory rate to increase.
Likewise, copying random data can have the opposite effect.
In an effort to be as less biased as possible, our guests run a
default GNU/Linux Ubuntu distribution.

A. MEMORY SAVINGS

From the experiment results, we observed that the percentage
of redundant memory grows logarithmically over time as
more kernels are added. The percentage of redundant memory
was stabilized when 30 kernels were running simultaneously
and no significant percentage benefit was observed by adding
more kernels to our tests. Therefore, we run 30 kernels to
obtain results since this enabled us to have results indepen-
dent of the number of virtual machines. Figure 7 shows a
comparison of the percentage of redundant memory when
30 Linux kernels are running, splitting each kernel mem-
ory region. This percentage is calculated by observing how
many pages KSM can merge for each approach, comparing
FG-KASLR (FG), KASLR-MT (MT), the proposed solution
(P), and the best case for memory sharing (MAX), which
corresponds with disabling kernel randomization.

This confirms that previous approaches are cancelling
memory sharing by sub-page content modifications due to
the function-granular randomization. It also confirms that
the proposed approach is close to the best case scenario in
terms of redundant memory. The kernel code is the memory
region that benefits most, being able to share 97.6% of its
memory region which is a significant improvement com-
pared to the 25.9% achieved by the base function-granular
kernel randomization. Kernel data is also improved from
72.4% to 88.3%, which means that 15.9% more of the
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FIGURE 7. Percentage of redundant memory for each kernel memory
region, comparing FG-KASLR (FG), KASLR-MT (MT), the proposed solution
(P), and the maximum possible value (MAX), which corresponds with
disabling kernel randomization.

total memory data will be shared. Modules code shareabil-
ity improvement goes from 2.9% to 51.0%, which means
that half of the modules code memory region is shared in
contrast of the 3% of shareability achieved by FG-KASLR.
Modules data shareability has been improved by a factor of 2,
from 31.7% to 63.5%. Regarding vmalloc, the percentage
of memory that can be deduplicated is very high, 92.6%
and any improvement would be very low. The vmemmap
memory region is the most benefited, since current kernel
randomization reduces the percentage of shared memory to
0.3% while our proposal raises this value to 81.9%. Overall,
the proposed approach provides a very significant memory
deduplication improvement, overcoming all already exiting
approaches.

B. SECURITY ASPECTS

The security of the proposed solution lies on hiding the kernel
layout to attackers. With our design, the kernel randomization
elements (i.e., base addresses of memory regions and func-
tions reordering) are either randomized per tenant or per vir-
tual machine. In comparison with the standard randomization
approach, no weaknesses or strengths have been introduced to
the randomization algorithm itself, because either randomiz-
ing per tenant or per virtual machine, every kernel region will
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TABLE 5. Summary of security protection comparing KASLR-MT (MT) and
the proposed solution (P). A tick (v') means that the corresponding
approach provides protection against Info-Leak attacks targeting the
kernel memory region of the corresponding row.

Mitigates Info-Leak Attacks
to Kernel from:

Attack Target /
Kernel Region Userspace ; Inter-Tenant ; Remote
MI P  MI P | MI P
Kernel Code A A
Kernel Data X o X Y S
Modules Code X X A
Modules Data X VAR ol x o v
Vmalloc X v x /X v
Vmemmap X o X T S
Physical Memory X X oL x v/

be seen as a full randomized memory region from outside the
tenant. Since the addresses are unknown, exploits requiring
absolute addresses will fail. Besides, info-leak attacks trying
to de-randomize large blocks of code will also fail due to
the protection provided by the function reordering feature.
Since the functions order has been randomized, the scope
of the info-leak is severely restricted as the attacker can
only de-randomize the attacked function, but not the entire
code region containing all functions. Consequently, attackers
does not have any advantage and the function-granular kernel
randomization protection is not weakened.

Table 5 shows a comparison of the proposed solution with
the recent KASLR-MT. In the table, a green tick on a cell
indicates that the corresponding approach mitigates info-leak
attacks targeting the kernel memory region of the correspond-
ing row. For example, the first row corresponds with scenarios
where the kernel code memory region is the target of the
attack. In the case of an attacking process from userspace is
able to exploit an info-leak against this kernel memory region,
in the case of KASLR-MT the entire kernel code region
will be leaked. The reason is that KASLR-MT follows the
coarse-grained approach and it does not offer info-leak pro-
tection. However, since our proposal randomizes this region
per-function, the scope of the info-leak attack is significantly
reduced. The resulting leakage will depend on the implemen-
tation and the concrete address being attacked, but in general
terms the extent of the attack will be significantly reduced to
a small portion of memory (e.g., a single function) instead of
the entire memory region. The same procedure applies to all
the kernel memory regions, for example in case of a leakage
of a function pointer present in the Vmalloc area.

Hence, unlike KASLR-MT, our approach is able to
mitigate info-leak attacks from remote attackers such as
attacks coming from the Internet, from virtual machines
running in other tenants and even from userland, regardless
whether the virtual machine being attacked belong to same
tenant or not. This provides a wide and reasonable pro-
tection level where only administrators with root privileges
belonging to the same tenant can attack themselves, which
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seems very unlikely. The limitation of this strategy, as with
KASLR-MT, is that it is assumed that virtual machines of
the same tenant trust each other, as indicated in the attacker
model (section III). Consequently, if this condition is not
met, providers will not be able to get the full benefits of our
proposal. Therefore, if a lack of trust exists between virtual
machines of the same tenant, the guest kernel regions will
be randomized per-vm, which will imply a higher cost of
memory usage. The rest of the scenarios are covered and
protected by the proposal.

Finally, in addition to info-leak attacks prevention, our
approach also mitigates code reuse attacks, since addresses
will appear fully random for attackers. This is because ran-
domizing at function level not only mitigates info-leaks but
makes harder code reuse attacks. Therefore, attacks such as
malicious installed applications, remote network applications
interacting with the kernel and attacks coming from other
tenants will face the maximum protection that function kernel
randomization provides. As a result, attackers will not find
any advantage to bypass the kernel randomization of any of
the memory regions that were pre-determined by our pro-
posal. The proposed solution is as secure as the original kernel
randomization, whose security has been already proved [37],
[48]—[50], but our proposal enables to have both security and
high memory saving.

IX. ADDITIONAL GAINS DISCUSSION

In this section, we discuss some affairs that have not been
thoroughly detailed for being out of scope but have positive
security implication in our proposed approach.

As described in Section III and throughout the article,
the goal of our approach is to protect the kernel against attacks
from remote machines and from virtual machines belong-
ing to other tenants located in the same physical machine.
Our proposal can also provide protection against userland
attacks as discussed in Section VIII-B and it assumes that
all machines belonging to the same tenant are trustworthy.
However, depending on whether the randomization of a mem-
ory region is per virtual machine or per tenant, the final imple-
mentation could also extend its protection against attacks
coming from the same tenant.

Based on the results obtained in the analysis section VI to
obtain a reasonable trade-off (less than 5% of deduplication
loss) we decided to randomize some memory regions per
tenant and others per virtual machine. Table 4 shows that the
kernel physical address, the physical direct mapping, vmalloc
and the poking virtual address are randomized per virtual
machine. Therefore the locations of those memory regions
will be different among the virtual machines running in the
same tenant. In practice, this means that a virtual machine
cannot use its own memory layout to determine the location
of those memory regions of another virtual machine running
in the same tenant.

Hence, attacks relying on knowing the addresses of those
memory regions will be prevented even if the attack comes
from a virtual machine of the same tenant. For example,
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TABLE 6. Summary of additional protection benefits in cases out of the
attacker model. Attacks from userspace will always need to face the full
function-granular kernel randomization protection. For attacks from the
kernel of the same virtual machine or from other from the same tenant
will also need to face the kernel randomization protection for those
memory regions being randomized Per-VM. For attacks from the kernel,
it is assumed that the address of the targeted kernel region is unknown
for the attacker.

Attack Source Additional Protection
Same Kernel Per-VM
Tenant Userspace Always
Same Kernel Per-VM
M Userspace Always

exploits targeting physical memory such as abusing the vir-
tual dynamic shared object (vDSO) by altering paging struc-
tures [S1] will fail since they require the physical address
where the kernel was loaded. In general, addresses ran-
domized per virtual machine protect the associated memory
regions even from attacks coming form virtual machines
running in the same tenant.

Therefore, the design allows a flexible configuration that
can be adapted to different needs. The choice we made
regarding which memory regions are randomized per tenant
and which per virtual machine showed in this article are the
ones that present a reasonable trade-off between security and
memory deduplication benefits. However, from the analysis
provided in Section VI, other configurations can be used
to provide protection against attacks coming from the same
tenant.

Finally, the design is flexible enough to provide different
randomization information to different virtual machines of
the same tenant, allowing special virtual machines to increase
its shareability or security. For example, a tenant running
10 virtual machines could have one of them more exposed
and therefore a wise decision could be to have more mem-
ory regions randomized per virtual machine rather than per
tenant. Under this scenario, 9 virtual machines will have a
good balance between security (see the security protections
in Table 5) and shareability, and the one more exposed will
slightly reduce the overall shared memory to have a full
independent kernel randomization.

Table 6 presents a summary of the additional protection
benefits that are provided by our proposal even though they
are not included in the attacker model, as discussed in this
section. It shows that all attacks originated from userspace are
fully protected by our proposal, either from the same virtual
machine or from another of the same tenant. Similarly, attacks
originated from other memory regions within the kernel side
are protected if the targeted region has been randomized using
the Per-VM randomization type.

X. CONCLUSION

Function-granular kernel randomization aims to be the future
kernel randomization by improving the current kernel ran-
domization approach not only by extending the entropy
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but also by preventing info-leaks and correlation attacks.
Unfortunately, it also prevents memory deduplication to work
effectively reducing to almost zero the number of pages that
can be shared among the same kernel running on differ-
ent virtual machines. For some memory regions, our anal-
ysis showed that the number of pages that can be merged
among all kernel memory regions falls drastically when the
function-granular kernel randomization is enabled.

After identifying why function-granular  kernel
randomization fails to provide protection and shareability at
the same time, we performed a comprehensive analysis of its
negative impact on memory deduplication. Then, based on
the analysis results, we proposed an effective and practical
function-granular kernel randomization approach for cloud
systems that provides high rates of memory sharing and keeps
security.

We have implemented our proposal in the Linux kernel
version 5.5 and results showed that the proposed approach
maximizes the memory deduplication savings rate while
providing a strong security equivalent to FG-KASLR. This
enables cloud providers to have both, high levels of security
and an efficient use of resources.

In summary, our proposal allows guest kernels to enable
the additional protection for info-leak and correlation attacks
by means of randomizing the kernel memory with a finer-
granularity. On the other hand, it eliminates the differences
in memory contents produced by function-granular kernel
randomization, preserving the effectiveness of memory dedu-
plication techniques such as KSM and offering resource
exploitation benefits for host machines.
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