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Regiochemical memory in the adiabatic photolysis of thymine-
derived oxetanes. A combined ultrafast spectroscopic and 
CASSCF/CASPT2 computational study  

Alejandro Blasco-Brusola,a‡ Miriam Navarrete-Miguel,b‡ Angelo Giussani,b Daniel Roca-Sanjuán,*b 
Ignacio Vayá,*a and Miguel A. Miranda*a 

 

The photoinduced cycloreversion of oxetanes has been thoroughly investigated in connection with the photorepair of the 

well-known DNA (6-4) photoproducts. In the present work, the direct photolysis of the two regioisomers arising from 

irradiation of benzophenone (BP) and 1,3-dimethylthymine (DMT), namely the head-to-head (HH-1) and head-to-tail (HT-1) 

oxetane adducts, has been investigated by combining ultrafast spectroscopy and theoretical multiconfigurational quantum 

chemistry analysis. Both experimental and computational results agree with the involvement of an excited triplet exciplex 
3[BP···DMT]* for the photoinduced oxetane cleavage to generate 3BP* and DMT through an adiabatic photochemical 

reaction. The experimental signature of 3[BP···DMT]* is the appearance of an absorption band at ca. 400 nm, detected by 

femtosecond transient absorption spectroscopy. Its formation is markedly regioselective, as it is more efficient and proceeds 

faster for HH-1 (~2.8 ps) than for HT-1 (~6.3 ps). This is in line with the theoretical analysis, which predicts an energy barrier 

to reach the triplet exciplex for HT-1, by contrast with a less hindered profile for HH-1. Finally, the more favorable adiabatic 

cycloreversion of HH-1 compared to HT-1 is explained by its lower probability to reach the intersystem crossing with the 

ground state, which would induce a radiationless deactivation process leading either to the starting adduct or to the 

dissociated BP and DMT.

Introduction 

Solar ultraviolet light is known to induce cellular DNA damage 

through a number of processes including the dimerization of 

neighboring pyrimidines.1-4 Cyclobutane pyrimidine dimers (CPDs) 

and to a lesser extent pyrimidine (6-4) pyrimidone photoproducts 

((6-4)PPs) are the most abundant UV-induced lesions in DNA;4-6 their 

formation may result in the appearance of mutations, cell death and 

cancer.7-9 In humans, these lesions are normally repaired through a 

process known as nucleotide excision repair; however, other 

organisms (i.e. bacteria, plants, etc.) have developed efficient 

photorepair mechanisms10-13 that involve binding of a specific 

enzyme to the DNA lesion and reactivation through a photoinduced 

electron transfer process.14-21 

Previously, the photoinduced cycloreversion of oxetanes generated 

from 1,3-dimethylthymine (DMT) and carbonyl compounds has been 

investigated as a model for the photoenzymatic repair of DNA (6-

4)PPs.22-30 Direct photolysis of some oxetane derivatives was 

observed to result in a rare adiabatic cleavage leading to the triplet 

excited state of the corresponding carbonyl species, along with 

ground state DMT.24, 30 A more recent work has proposed that 

cycloreversion takes place in a stepwise manner from the singlet 

excited state, with population of the triplet excited carbonyl at a later 

stage.28 All these studies have been performed on the chemically 

stable head-to-head (HH) oxetane obtained from the Paternò-Büchi 

reaction between DMT and the photoactive carbonyl derivative (this 

is also the regioisomer structurally closer to the purported 

intermediate formed between two adjacent thymines that ultimately 

leads to the (6-4)PP); however, the photobehavior of its chemically 

less stable head-to-tail (HT) regioisomer, which is also obtained in the 

reaction,31, 32 has not yet been addressed. 

With this background, in order to gain deeper insight into the 

mechanism of the photoinduced cycloreversion of thymine-derived 

oxetanes, the photobehavior of the head-to-head and head-to-tail 

regioisomers obtained from benzophenone (BP) and DMT (HH-1 and 

HT-1, respectively; see Scheme 1) has been investigated by means of 

a combined experimental and theoretical approach. This involves 

transient absorption spectroscopy from the femtosecond to the 

microsecond time scales, in addition to a detailed computational 

analysis including multiconfigurational quantum-chemistry 

calculations (complete-active-space self-consistent field/complete-

active-space second-order perturbation theory, CASSCF/CASPT2). 

Thus, ultrafast spectroscopy in tandem with high-level 

computational analysis have allowed us to settle the primary 
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processes preceding the photolytic reactions with the aim of 

delineating the complex excited state relaxation processes that are 

involved. 

 

 

 

 

 

 

 

 
Scheme 1 Chemical structures of head-to-head (HH-1) and head-to-tail (HT-1) DMT-BP 
oxetane regioisomers. 

Results and discussion 

The synthesis of HH-1 and HT-1 has been described earlier.31 Briefly, 

a solution containing DMT (100 mM) and BP (200 mM) in acetonitrile 

(MeCN) was placed into Pyrex tubes and irradiated ca. 8h under 

nitrogen in a multilamp Luzchem photoreactor emitting at max = 350 

nm (12 × 8 W lamps). The crude was purified by column 

chromatography (SiO2, hexane/ethyl acetate, 80/20, v/v) followed by 

recrystallization of the separated fractions; the purity of both 

compounds was checked by 1H-NMR (see Fig. S1 in ESI). Direct 

steady-state UVC-photolysis of HH-1 and HT-1 gave rise to BP and 

DMT as the only photoproducts. 

Laser flash photolysis (LFP) measurements were conducted in 

deaerated MeCN (exc = 266 nm) on isoabsorptive solutions at the 

excitation wavelength for HH-1, HT-1 and BP, as a reference 

compound. Since oxetanes can in principle be partially degraded 

during the measurements, fresh solutions were employed after each 

light pulse, in order to rule out possible artifacts due to secondary 

excitation of photodegradation products. 

 

Fig. 1 LFP decay traces for BP (black), HH-1 (blue) and HT-1 (red) at 530 nm upon 
excitation at 266 nm in deaerated MeCN. The inset shows the transient absorption 
spectra 150 ns after the laser pulse. 

The profile of the transient absorption spectra for HH-1 and HT-1 was 

very similar to that of 3BP* (inset in Fig. 1).33 However, a weak 

absorption in the 350-400 nm region was noticed for both 

regioisomers. The most interesting finding was the observation of a 

transient absorption at 530 nm (where 3BP* displays its maximum)34 

immediately after the laser pulse. Our results indicate that, within 

the duration of the shot, a practically quantitative adiabatic 

population of the triplet excited state of benzophenone is indeed 

accomplished for HH-1.24 By contrast, photolysis of HT-1 also induced 

population of 3BP* albeit to a much lesser extent (ca. 60%). Thus, a 

clear regiodifferentiation has been observed in the adiabatic 

photochemical reaction, which was much more effective for HH-1. 

The decay traces followed a one order law with lifetimes of about 5 

s for BP and HT-1 and slightly shorter for HH-1 (~3.5 s). 

The weak absorption in the 350-400 nm region detected for both 

oxetanes could be associated with a transient species with some 
3DMT* character, as the maximum of the triplet-triplet absorption of 

thymine (Thy) is centered at 370 nm.35, 36 In this context, LFP 

measurements (exc = 355 nm) were conducted in deaerated MeCN 

on mixtures containing BP and increasing amounts of DMT; under 

these conditions, the only absorbing species is BP. As shown in Fig. 

2A, a clear quenching of 3BP* was evidenced upon addition of DMT, 

with a rate constant of ca. 1.2×109 M-1 s-1, which is in the order of the 

previously reported value.23 

 

Fig. 2 (A) Normalized LFP decay traces for BP/DMT mixtures (from 1:0 to 1:10) at 530 nm. 
The inset shows the Stern-Volmer analysis for 3BP* quenching. (B) LFP absorption spectra 
for BP (black) and BP/DMT mixtures at 1:1 (green), 1:5 (magenta) and 1:10 (violet) molar 
ratios recorded 30 ns after the laser pulse. Measurements were performed upon 
excitation at 355 nm in deaerated MeCN. 

The nature of 3BP* quenching upon interaction with thymine 

derivatives has been discussed previously, and attributed mainly to 

the Paternò-Büchi reaction.23, 26, 37 Oxetane formation has been 

proposed to proceed through 1,4-diradical intermediates of triplet 

nature,23 and recently the involvement of triplet exciplex precursors 
3[BP···Thy]* has also been inferred.37 This is in fact not surprising in 

view of the number of examples dealing with oxetane formation 

through complex-type intermediates such as exciplexes.38 In fact, the 

absorption spectra of Fig. 2B clearly show the appearance of a new 

absorption around 400 nm that increases with DMT concentration. A 

similar transient has been detected in related products and assigned 

to 3Thy*;37 however, a triplet exciplex-like state between BP and 

DMT (3[BP···DMT]*) cannot be discarded. Indeed, this species would 

be expected to contain the signatures of both BP and DMT triplet 

excited states, as it is actually the case for the detected transient. 

In order to investigate the possible participation of the triplet 

exciplex 3[BP···DMT]* in the cycloreversion processes, a 

computational analysis based on multiconfigurational quantum-

chemistry and the CASSCF/CASPT2 method efficiently combined with 

density functional theory (DFT) has been performed for HH-1 and HT-

1. Computational details as well as analyses to benchmark the 

methodology can be found in ESI. This high-level analysis allowed us 

to achieve an interpretation of the experimental observations, and 
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to obtain clear evidence supporting the chemical mechanism 

involved in the photoinduced oxetane cleavage (see Fig. 3). 

 

Fig. 3 Chemical mechanism of the photoinduced cycloreversion process for HH-1 (A) and 
HT-1 (B). Double-headed arrows indicate the energy gap between S0 and S1 at the S1 
equilibrium structure in the diradical region (1DIR*). The reference energy is the sum of 
the separated triplet BP and ground state DMT molecules. The reaction coordinate, 
according to the optimized structures, is mostly associated with the breaking of the CC 
and CO bonds between DMT and BP. See Tables S1-S5 for further details on the 
electronic-structure and methodological aspects and Tables S6-S7 for benchmarking 

analyses in ESI. 

Five key equilibrium structures characterize the photoinduced 

cycloreversion process: the ground state (S0) oxetane (OXE), the 

singlet (S1) and triplet (T1) diradicals (1DIR* and 3DIR*, respectively) 

with the C-C bond broken, the triplet exciplex (3[BP···DMT]*) and the 

transition state (TS) between 3DIR* and 3[BP···DMT]* related to the 

C-O bond cleavage. Irradiation of the oxetanes induces population of 

the excited singlet electronic state. As can be seen from left to right 

in Fig. 3, the energy of S1 decreases significantly along the C-C bond 

breaking step towards the region of the diradical (DIR*; point 10 in 

Fig. 3). At this region, an important difference between the two 

regioisomers can be observed. The energy gap S1-S0 for HT-1 (0.80 

eV) is much lower than that for HH-1 (2.35 eV) applying the same 

methodological procedure for determining the properties of the 

diradical structure. Such trend is maintained by comparing the state-

specific (SS) and multistate (MS) approaches of the CASPT2 (Table S7 

in ESI), which according to previous studies,39 points to a solid 

conclusion. The distinct behavior can be attributed to the different 

nature of S1 at this region, as it can be observed in the electron-

density difference between S0 and S1 for each regioisomer (see Fig. 

4). Thus, S1 in HT-1 develops a charge transfer character from DMT 

to BP (see also the large dipole moment in Table S1 in ESI), typical of 

the oxetane ring electronic structure; similar features were 

previously detected for the thymine-thymine dimer formation.40 

Meanwhile, S1 in HH-1 displays a high multiconfigurational character 

with contributions from electronic configurations corresponding to 

excitations delocalized over BP and the diradical configuration 

localized at the broken bond (see Table S2 in ESI). This coupling 

between electronic configurations increases the energy splitting 

between S0 and S1. 

 

Fig. 4 S1-S0 electron-density difference at the 3DIR* geometry for (A) HH-1 and (B) HT-1, 
computed from the CASSCF wavefunctions of each electronic state. Green and red colors 
indicate departure and arrival regions, respectively, of electron-density in the S0 to S1 
excitation. See the nature of the orbitals contributing to the electron densities in Figs. S3 
and S8 in ESI. 

Computational searches of the S1 minimum (1DIR*) at the diradical 

region (with only the C-C bond broken) decrease the energy gap 

between S0 and S1 down to 0.58 and 0.40 eV for HT-1 and HH-1, 

respectively. From this point, the system can access a nearby conical 

intersection (CI) (not computed here but estimated in the 

surroundings) to decay non-radiatively to the ground state or to 

continue the S1 surface towards the dissociation of the C-O bond of 

the oxetane ring. The latter process is favorable considering the 

downhill energy profile towards the singlet-triplet crossing (STC) with 

the T1 surface. This STC involving the energy profiles of S1 and T1 is 

responsible of the so-called “adiabatic” generation of 3BP* upon 

excitation of HH-1 or HT-1, which occurs via a triplet exciplex. Non-

negligible spin-orbit coupling (SOC) values have been determined for 

both regioisomers (~4 cm-1) at the points where S1 and T1 become 

near-degenerate, which allows population of the triplet state. 

However, significant differences appear for HH-1 and HT-1 regarding 

the probability of this “adiabatic” S1 → T1 path. Thus, for HH-1, S1 

crosses T1 at the TS region related to the C-O bond breaking on the 

triplet T1 manifold (see Fig. 3A), while for HT-1 this crossing occurs 

before the TS and becomes trapped at the diradical region due to the 

energy barrier to the transition state (Fig. 3B). This is a consequence 

of the large S0-S1 gap at the diradical and the fact that 1DIR* is much 

more energetic for HH-1 than for HT-1. In the latter, 1DIR* almost 

coincides energetically with the equilibrium geometry of the triplet 

diradical (3DIR*). 

At the 3DIR* diradical, the ground state S0 and the lowest-lying triplet 

excited state T1 show a small energy gap for both HH-1 and HT-1, and 

therefore this point corresponds to a singlet-triplet crossing. 

According to the wavefunctions (see Tables S1 and S2 in ESI), both S0 

and T1 states have a diradical nature (with the unpaired electrons at 

the C atoms of the broken bond and non-parallel and parallel spins 

for S0 and T1, respectively). This STC point, if reached, shall allow non-
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radiative decay via intersystem crossing (ISC), even though the SOC, 

lower than 0.5 cm-1 in both systems, points to a slow process. 

Therefore, the fact that HH-1 has a high 1DIR* energy, clearly above 

the energy of 3[BP···DMT]*, in addition to the S1/T1 STC occurring at 

the TS, points to a favorable production of the triplet exciplex. On the 

contrary, for HT-1, the lower 1DIR* energy and the earlier S1/T1 STC 

nearby the S0/T1 STC in addition to the energy barrier to reach TS, 

makes the evolution towards 3[BP···DMT]* less competitive as 

compared to the non-radiative decays to the ground state. These 

findings agree with the lower intensity of the transient absorption 

band at 530 nm detected by LFP for HT-1. 

In order to obtain further key mechanistic information on the early 

stages of oxetane cycloreversion, and in an attempt to provide 

additional experimental evidence supporting the formation of 

triplet-like excimer states, the photobehavior of both regioisomers 

was investigated by means of femtosecond transient absorption 

spectroscopy and further computational analysis on 3[BP···DMT]*. 

Previous reports have shown that excitation of BP at 360 nm induces 

formation of a broad transient band from 500 to 600 nm with 

maximum at 575 nm, assigned to its singlet-singlet absorption band. 

The intersystem crossing to the triplet excited state, with maximum 

centered at 525 nm, has been found to proceed within ca. 9.6 ps.41 

This is in good agreement with a later work performed at exc = 267 

nm, where deactivation of the benzophenone singlet excited state at 

340 nm, leading to the triplet through ISC, has been found to occur 

in  about 10.6 ps.28 Herein, isoabsorptive solutions of HH-1, HT-1 and 

BP in MeCN were subjected to femtosecond laser excitation at 280 

nm, making sure that the degree of photodegradation was lower 

than 5 % at the end of each experiment. The transient absorption 

spectra from 0.1 to 40 ps are shown in Fig. S14 in ESI. In the case of 

BP, an absorption band with maximum at 530 nm was formed within 

ca. 10.4 ps, along with the deactivation of the band at 340 nm, 

associated to 1BP* (Figs. 5A and D); this value for the ISC is very 

similar to those previously reported.28, 41 

 

Fig. 5 Femtosecond kinetic traces at 340 nm (open circles) and 530 nm (solid circles) at 
different time windows for: (A) and (D) BP; (B) and (E) HH-1 and (C) and (F) HT-1 after 
excitation at 280 nm in MeCN. 

Analysis of the kinetics at 530 nm, where the singlet excited state 

also exhibits some absorption very early after excitation,41 revealed 

an ultrafast decay of ~270 fs for both HH-1 and HT-1 (Figs. 5B and C), 

not detected for BP. This time constant, which is in the order of that 

reported by Kwok et al.,28 was attributed to the C-C bond scission 

from the singlet state to generate a diradical intermediate. After the 

initial ultrafast decay, the trace at 530 nm started to grow, in 

accordance with the triplet excited state formation, with a lifetime 

of ~10.7 ps, which is very similar to that detected for BP. 

 

 

Fig. 6 (A) Femtosecond transient absorption spectra recorded 20 ps after the laser pulse, 
and (B) normalized kinetic traces at 400 nm for BP (black), HH-1 (blue) and HT-1 (red) 
upon excitation at 280 nm in MeCN. The best exponential fit for the data is shown in 
gray. 

It is worth to highlight the absorption detected around 400 nm for 

both regioisomers (Fig. 6A), which is absent in BP and lower for HT-1 

than for HH-1; as stated above, this band can be taken as a signature 

of the triplet exciplex state 3[BP···DMT]*, which is supported by 

computational analysis. Thus, significant binding energies were 

obtained for 3[BP···DMT]* of around 10-12 kcal/mol for both 

regioisomers (see Table S3 in ESI), which points to relatively stable 

triplet excited state structures. Such binding interactions are due to 

the delocalization of the excitation among both BP and DMT that 

characterizes the wavefunction of 3[BP···DMT]* (see Tables S1 and S2 

in ESI). Note that the exciplex maintains the * nature of the BP 

moiety upon increasing the accuracy of the CASPT2 methodology 

(Table S7 in ESI). 

The triplet exciplex displayed a slightly higher binding energy (~2 

kcal/mol) for HH-1 than for HT-1 (see Table S3 in ESI), which is related 

to the higher dipole moment found for HH-1 (see Fig. 3). Experiments 

using solvents with lower dielectric constant than MeCN were 

attempted to verify whether the exciplex signature at ca. 400 nm 

changes the relative intensity between HH-1 and HT-1 since 

computations predict an inversion of stability in non-polar solvents 

(see Table S3 in ESI). However, hydrogen transfer from the 

benzophenone triplet leading to the ketyl radical was detected, 

which prevented reproducing the same types of measurements and 

analyses as in MeCN. 

An additional piece of evidence supporting the formation of triplet 

exciplexes was provided by the computed transient absorption 

spectra for the more stable HH-1 exciplex (Tables S4 and S5 in ESI). 

Herein, it was identified a strong transition (T1→T7) occurring at 378 

nm, which can be directly related to the absorption detected 

experimentally at ca. 400 nm. As we computed in previous studies,42 

T1→Tn and T2→Tn transitions characteristic of isolated 3BP* occur at 

energies out of the 400 nm region, and therefore 3BP* cannot be 

responsible for the absorption observed at this wavelength. 

Further analysis of the kinetics at 400 nm (Fig. 6B) evidenced a flat 

profile for BP; by contrast, both oxetane regioisomers (specially HH-

1) displayed a clear growth, in agreement with 3[BP···DMT]* 

formation, which was faster for HH-1 (~2.8 ps) than for HT-1 (~6.3 
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ps). These results are in full agreement with those obtained from 

computational analysis. Thus, the faster and more efficient 

formation of the transient at ~400 nm for HH-1 (compared to HT-1) 

is directly related to its lower energy barrier to reach the triplet 

exciplex. This is also in line with the higher degree of adiabatic 

cycloreversion observed for HH-1, as in this case it is much less likely 

to reach the CI where radiationless deactivation leads back to the 

starting oxetane or to the dissociated BP and DMT in the ground 

state. 

 

Scheme 2 Proposed mechanism for the photoinduced cycloreversion process for HH-1 
(A) and HT-1 (B). The width of the colored arrows represents the efficiency of a process. 

In view of the photophysical and theoretical results, a detailed 

mechanism for the oxetane cycloreversion is proposed (Scheme 2). 

Note that this mechanism is different from the enzymatic repair, 

which is triggered by electron transfer. Direct photolysis of HH-1 or 

HT-1 (exc = 280 nm) instantaneously generates its excited singlet 

state. Then, diradical singlet intermediates are formed after ~270 fs 

through C-C bond scission. For HT-1, the singlet diradicals cross 

efficiently to triplet diradical states, whose spectroscopic detection 

is difficult due to their low absorption around 530 nm and their 

spectral overlap with the benzophenone triplets.43-45 Then, around 

40% are deactivated to the ground state by ISC while the other 60% 

evolve to exciplex-like states 3[BP···DMT]* in ca. 6.3 ps. On the 

contrary, a highly-efficient (~100%) and faster (~2.8 ps) evolution 

from the singlet diradical to 3[BP···DMT]* occurs for HH-1. The 

exciplexes present a spectral fingerprint characterized by an 

absorption at ~400 nm and are in equilibrium with the dissociated 
3BP* (~10.7 ps) and DMT. 

Conclusions 

The photoinduced cycloreversion of oxetanes derived from DMT and 

BP has been investigated by means of ultrafast spectroscopy and 

high-level computational analysis (CASSCF/CASPT2). When the 

photobehavior of both HH-1 and HT-1 is compared, an interesting 

regiochemical memory is observed, revealed by significant 

differences related to the intermediates generated during oxetane 

cleavage. Ultrafast spectroscopy shows the regioselective formation 

of a triplet exciplex 3[BP···DMT]* from diradical intermediates, which 

occurs to a much higher extent for HH-1. These species (diradicals 

and exciplexes) have been identified by theoretical analysis, whose 

results agree with the experimental data. The differences observed 

in the adiabatic cycloreversion reaction between both regioisomers 

can be satisfactorily explained on the bases of both the theoretical 

and experimental results, and a mechanistic proposal is summarized 

in Scheme 2. 
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