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Abstract The dome of the Baśılica de la Virgen de los Desamparados of Va-
lencia is an emblematic example of Valencian baroque architecture and paint-
ing. Its shape, oval or elliptical, has been the subject of controversy in various
studies. The study of oval domes throughout history is a very interesting field
of research because, among other things, the determination of the exact shape
is important in order to conclude how it was built.

We approach the problem from a new mathematical point of view, calcu-
lating the distances between the points that make up the real data cloud and
the hypothetical form considered, oval or ellipse. The use of modern graphic
surveying techniques, carried out with a 3D laser scanner, and computation
with the powerful symbolic and numerical mathematical solver, Mathematica,
has allowed us to accurately determine the shape of the dome and determine
that its sections are not well-described by ellipses. A better fit is obtained
assuming that sections are ovals. The programming and generalization of the
mathematical method employed in this work will allow it to be applied to
determine the exact geometry of other oval or ellipsoidal vaults.

Keywords Oval form · Mathematica software · Oval domes · Baśılica de la
Virgen de los Desamparados

1 Introduction

The interior dome of the Baśılica de la Virgen de los Desamparados of Valen-
cia, constitutes an emblematic element of the Valencian baroque architecture.
This temple is also the most popular and representative Marian devotion cen-
tre of Valencia, declared a Historical Monument in 1981 (R.D. 5-6-1981 B.O.E.
10-8-1981). It is “the first oval plan that is made in Valencia for a religious
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temple” (Bérchez 1995: 206). The interior dome, decorated in 1701 by Anto-
nio Palomino with frescoes, constitutes a jewel of baroque mural painting in
Spain.

The Real Capilla de la Virgen de los Desamparados, designated as a Basilica
in 1872, was constructed between 1652 and 1667, under the direction of Diego
Mart́ınez Ponce de Urrana. However, in the Capitulations and conditions for
the construction of the Chapel signed on November 19, 1653, Diego Mart́ınez
himself and José Montero and José Artigues (Montoliu 2012: 29-31) appear as
the executors.

The dome actually consists of two domes: an outer, resistant dome, built
between 1661 and 1665, and another interior, not as resistant, built in 1701,
which conceals the intrados of the first and constituted the basis for the fres-
coed pictorial decoration by Palomino (Fig. 1). The major axis of the outer
dome measures 18.90 m; its minor axis, 15 m, and its height is 12.70 m. It is
formed by a continuous sheet of 31 cm thick and reinforced by eight meridian
ribs of 45 cm of cross-sectional width (Bosch et al. 1999: 54-55). The inner
dome is partitioned, constituting one of the most leanly constructed domes
that have ever been built (Huerta 2012: 318). It is formed by “two threads of
solid ceramic brick of a thickness of 3.5 cm for the intrados and 2.5 cm for the
extrados, taken and coated with mortar of plaster, anchored to the original
dome and strengthened by 127 forged metal rods” (Bosch et al. 1999: 54-55
and 2001).

Fig. 1 Interior dome

The present paper is based on a previous study on the spatial geometry of
the interior dome of the Basilica. This study is included in chapter 8 of the
book, “Bóvedas valencianas. Arquitecturas ideales, reales y virtuales en época
medieval y moderna”, entitled “La cúpula interior de la baśılica de la Virgen
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de los Desamparados de Valencia. Análisis geométrico y matemático” (Capilla
and Calvo 2014). In this publication the hypothesis is that the dome is oval
and not ellipsoidal, as some authors say. The results that we have obtained in
this article reinforce that hypothesis.

The description of the dome is simplified by describing it using a set of
horizontal planes that intersect the dome. The problem that arises is to cal-
culate the geometric form of the curves that best approximate the points that
describe the intersection of these planes with the dome. Obviously, among the
infinite possible geometric forms, we must limit the problem and start from
that or those which are the most plausible, in our case the oval and the el-
lipse. At first glance it is almost impossible to distinguish from the curve if
it is one or the other. However the exact determination of the curve type is
important because they are architecturally constructed in a totally different
way. Therefore the analysis of its form will also allow us to know how it was
constructed.

2 Historical background

The oval shape and the methods for constructing it have also been the object
of many ancient treatises and studies (Serlio 1552, Arphe 1585, Navascues
1974). The dome we are dealing with is generated by ovals, as we have already
mentioned, so we consider necessary to refer to other domes built with this type
of geometry in different countries and historical periods. There are numerous
studies on the geometry of spaces built by ellipses or ovals, either in horizontal
or in vertical section. Among them we will mention, in Spain, Gentil (1994,
1996), Soler Verdú (1995), Fernández (1996), Huerta (2002, 2007), Garćıa Jara
(2008), López Mozo (2011), Capilla and Calvo (2014), Gómez-Collado et al.
(2018); from other countries, Ragazzo (1995), Dotto (2001), Simona (2005),
Hatch (2015), Mazzoti (2014a, 2014b, 2017).

It is well known that throughout history there has been some confusion in
the use of the terms oval or ellipse. Geometries built with both, ellipses and
ovals, frequently has been referenced with the generic term ovals. As Gentil
(1996:83) mentions, the use of the terms oval and ellipse as synonyms has been
usually applied by critics but also by authors who, knowing the differences,
used them consciously, such as René Descartes or Alberto Durero. Therefore,
in this section, we are going to refer to both geometries indistinctly, as they
are collected by the authors who mention them.

We begin this route in the middle of the sixteenth century and first of the
seventeenth, period in which many domes were built. As Garćıa Jara (2008:24)
collects, “A characteristic type of plan emerged from Vignola’s hand: the lon-
gitudinal elliptical which represents the synthesis of longitudinality and cen-
tralization and therefore satisfies the fundamental aspirations of the time,
although it poses the technical difficulty of building large domes on ellipti-
cal spaces” (own translation). Vignola (1507-1573) built the first church with
an oval dome (Huerta 2007:231-232), Sant’Andrea in Via Flaminia in Rome
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(1550-1554) and in 1547 he designed the first bridge with oval arches, some-
thing that became widespread at the beginning of the 18th century. Another
of his churches, Santa Maria dei Palafrenieri (1565-1572), also have an oval
dome arranged over space, likewise, oval. Disciples of Vignola, like Volterra
and Vitozzi also designed churches with domes of oval geometry: the first, San
Giacomo degli Incurabili (1590), in Rome, and the second, the Sanctuary of
Vicoforte (1595), in Piemonte.

Fundamental figure in the use of oval geometry was Francesco Borromini
(1599-1667), who also had a great influence on other architects. As Soler Verdú
(1995: 12) collects, his plans “are highly complex, generally develop elliptical
geometries”. Among his works made with this type of geometry, it is worth
highlighting the dome of the church of the convent of San Carlo alle Quattro
Fontane, Rome, (1638-1641). We can find several works that study its geom-
etry as Connors (1999), Simona (2005), Hill (2013), Mazzoti (2014a, 2017),
Duvernoy (2015) or Petrovic (2019), among others.

Another Italian figure relevant to the use of oval forms is Bernini, who was
commissioned to carry out in Rome the project of the church of Sant’Andrea
al Quirinal (1658-1670). For its construction, as Jung (1997:30) describes, he
chose as form “neither the circle, (...) nor the Greek cross, (...) but the oval,
already used in the project of the St. Peter’s Square” (own translation).

Fundamental is also Guarino Guarini (1624-1683), whose work reflects the
influence of Borromini. Rafael Soler (1995:13) highlights the use made of the
constructive resource ”la volte a fascie”, consisting of “compartmentalizing,
in bands by means of arches, the space to be covered with vaults” and the
structures are “of great conceptual complexity (...) and the constructive tech-
nique that allows to make such complex constructions, is based on the use of
the brick factory”, a technique that related to the one used in the Valencian
domes.

In France it is worth noting the dome, of oval geometry, of the church of
the College des Quatre Nations, Paris, (1662-1672) built by the architect Louis
Le Vau. He conceived the main front, which overlooks the Seine, with concave
wings frame the centralized oval interior building, in the line of the Roman
Baroque (Borngässer 1997b: 129).

In Austria it must be highlighted the proposals of Johan Bernhard Fischer
von Erlach (1656-1723); among them, it is necessary to mention the church
of St. Charles Borromeo in Vienna (1716-1737), whose high-drum dome is
“the centre of his reflections” and in which he places the oval in the “core
of composition” (Kluckert 1997: 249). Also the Caesarean Library of Vienna
(1723-1725), built by his son Joseph Emanuel, is a central oval dome in the
middle of the barrel vault of the library (López Manzanares 2005). Its longi-
tudinal section is a semicircle and the cross section is semi-oval (Huerta 2007:
238).

In Spain it is necessary to mention the dome of the church, with an oval
interior space, of the Cistercian convent of Las Bernardas in Alcalá de Henares,
begun in 1617 and built by Sebastián de la Plaza. It is the only oval building
with a dome that is conserved from its time and that moves away ”from the
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rigorous classicism of the Herrera school” (Borngässer, 1997a: 85). In Murcia
we find the dome of the Chapel of the Transfiguration of the Cathedral of
Murcia, (ca 1545), by Jerónimo Quijano. It is a “very early ellipsoidal vault.”
(Garćıa Jara 2008: 188). Calvo et al.(2005: 212) say that the intrados of the
vault is a scalene ellipsoid, in which the arrow of the vault is different from
the length of each of the semi-axes The authors describe that “the frieze is
elliptical and the vault, ellipsoidal, initiating a tradition of elliptical tracings
against an Italian tradition of oval tracings” (own translation).

Also in Spain, it is worth highlighting the oval dome of the Chapter Hall of
the Cathedral of Seville (1558-1592) by Hernán Ruiz el Joven. In the analysis
of its geometry from the photogrammetric survey, Gentil (1996) confirmed the
use of ellipses.

On Valencian domes, Soler Verdú (1995) deals with the study of the dome
in modern Valencian architecture from the sixteenth to the eighteenth cen-
turies, making an approximation “to the architectural fact of the covering of
buildings by using domes in the territory subject to the influence of the city
of Valencia, from its origins, in the second half of the 16th century, until the
end of the 18th century”. He studied in greater depth the most representative
domes of the city of Valencia; among them he refers to the oval geometry of
the neoclassical Chapel of the Third Order of the old convent of Carmen, by
the architect Vicente Gascó, and to the dome of the Baśılica de la Virgen de
los Desamparados, built at the end of the 17th century, on which, in 1701,
another interior is built, not resistant, that hides the first one; it is the latter
that we refer to in this article.

3 Mathematical study of the dome

In the work of Capilla and Calvo (2014) this dichotomy between oval and el-
liptical construction throughout history, relating it to the dome of the Baśılica
de la Virgen de los Desamparados of Valencia, is analyzed. The starting point
of that study is a graphic survey conducted with a 3D laser scanner (Fig. 2)
with which it is possible to obtain a cloud of more than five million points.
In order to manage the data, the cloud is refined, in a random way, to reduce
the number of points to just over 50.000. The hypothesis that is pointed out,
through an exhaustive graphic study, is that the dome is not made of ellipses,
as has been mostly affirmed (Montoliu 2012, Bosch 1999), but was built with
oval shapes. Huerta (2002) already mentions that the base of the dome and
the drum are ovals.

In the present paper we develop, improve, and extend this mathematical
study in the horizontal planes describing the entire dome. We have obtained
more precision using a cloud of more than 300.000 points and, in addition,
with a new mathematic point of view. Addressing the problem from this new
approach has meant work using the powerful computers of our University’s
Computing Centre. Many of the calculations we have had to make have been
made by means of large loops that diversified these calculations among several
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Fig. 2 Cloud obtained with the 3D laser scanner

computers; this has allowed us to reduce the waiting time in performing com-
putations to a few hours. Thus, we have also been able to calculate distances,
in each plane, to find the ellipse that best describes the data. The results ob-
tained consolidate and reinforce the hypothesis that the dome is built with
ovals and not ellipses.

3.1 Construction of ellipses

The process we have followed is to work by defining the set of ovals or ellipses
as being the boundary of a set of horizontal planes intersecting with the dome
to determine in each case the geometric curve that best approximates the
boundary for a particular plane. The boundary itself is identified by nearby
points defined by the scanner.

We took horizontal sections by grouping the data into 6 cm high sets.
The height of the top of the dome from the bottom (cornice) is 11.5 m. The
overhanging cornice prevents us from obtaining data in the stringer plane
(located at the bottom of the dome), so the first plane for which we have
data is located at a height of 1.83 m above the stringer plane. Dividing the
difference of heights by 0.06 m we obtain a total of 162 planes, each with an
associated ellipse or oval, and each associated with a set or group of data. The
upper region of the dome flattens out, so in this area we refine the distance
between planes by a factor of 2, with a separation of 0.03 m, beginning at
about 9.3 m above the cornice (from our group 125). Consequently, we ended
up with 199 groups or data sets each defining an oval or ellipse.

The first job is to centre the data. It should be noted that the centre of
the dome is not a perfectly determined physical point, but its central axis is a
hypothetical straight vertical line in the air.

The points of the data set cloud are given by three coordinates (X,Y, Z)
with respect to a coordinate system of arbitrary origin, in which Z represents
the height. We need to determine the point (X0, Y0, Z0) which is the centre of
the dome in the plane corresponding to the top of the cornice (11.5 m below
the ceiling) and the set of axes OX and OY correspond to the semi-axes of
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the hypothetical ellipses that are formed in each horizontal plane within the
dome. From the centre point, we obtain the new coordinates (x, y, z), in the
new translated coordinate system, by the formula

x = X −X0, y = Y − Y0, z = Z − Z0

The maximum value of Z in the points of the cloud is 25.49 m (the distance
from the floor of the Basilica), so the determination of Z0 is immediate: Z0 =
25.49 − 11.5 = 13.99. With these values our first horizontal data plane is
placed 1.83 m above the hypothetical plane containing the point (X0, Y0, Z0)
at the bottom of the dome.

We now describe the determination of the point (X0, Y0) in an arbitrary
plane. In each row, at a given height z, the points of the data set at that
height are (Xi, Yi), with i = 1, 2, ..., n with n being the number of points in
the plane. The length of the semi-axis a along the axis OX will be the half of
the maximum distance between the values Xi of all the points. As the data
corresponding to each plane is not rotated, this is calculated by:

a = (max {Xi, i = 1, 2, ..., n} −min {Xi, i = 1, 2, ..., n})/2.

And the same with the length b of the other semi-axis, along the OY axis:

b = (max {Yi, i = 1, 2, ..., n} −min {Yi, i = 1, 2, ..., n})/2.

Thus, the centre of the points for this plane is calculated by:

X0 = max {Xi, i = 1, 2, ..., n} − a

Y0 = max {Yi, i = 1, 2, ..., n} − b

If the construction were perfect, this point (X0, Y0) would be the same in all
the planes. Obviously, the small imperfections in the way the dome was built
and those that could have been produced with the passing of the years produce
variations for each plane. However the differences are surprisingly small, no
more than 3 or 4 cm, which gives us confidence not only of the reliability
of the data with which we work, but also the enormous precision that the
masters of the time achieved when they built the dome. The average of the
values of X0, Y0 in all the planes, up to a height of approximately 9.30 m, is
X0 = −2.06, Y0 = 0.46 with very minor data dispersion. From the height of
9.30 m from the base up to the top of the dome, we observe that the centres
move slightly as a function of the height (up to about 4-5 cm in each axis). We
have done the calculations taking this into consideration and have compared
them with those obtained without displacing the centres, and although the
differences we have obtained are small, they confirm that displacement of the
centres as we gain height. What we have done is to take the average of all the
obtained centres as the real centre of the dome and this was taken as our point
(X0, Y0). Our new translated points are

(xi, yi, zi) = (Xi −X0, Yi − Y0, Zi − Z0).
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The new data centered in each plane at a height z corresponding to the
group g we have called elz. Sorting the points from lowest to highest height
in the corresponding excel file to take data from Mathematica, if ng is the row
in which the data of the group g begins:

elz = {(xi, yi), i = ng, ng + 1, ng + 2, ..., ng+1 − 1}

When looking for the ellipse that best approximates the data it appears
that one way to do this is by using the least squares method to minimize the
squared sum of the distance between the proposed ellipse and each point in the
corresponding plane. However, we have two problems with this method. The
first is to clearly define what we intend when we look for the ellipse that best
approximate the data. Actually, what we are looking for is an ellipse in which
the maximum value of the distances d from each data point to the ellipse is
the smallest possible. However using the method of the least squares this is
not what we would obtain. What is calculated with this method is the smallest
mean square error of the differences D between the values of yi for each xi.
Fig. 3 shows what we mean by this.

Fig. 3 Two distance calculation modes

If (x, y) are the points of an ellipse of semi-axes a and b then they satisfy
the equation

x2

a2
+
y2

b2
= 1

Minimizing the mean square error is to calculate the values of a and b that
minimize the function

F (a, b) =
∑
i

(
yi − b

√
1− x2

a2

)2

The difficulty of this calculation makes linearization of the problem nec-
essary. So what we actually calculate with the least squares method are the
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values of a and b that minimize the function

G(a, b) =
∑
i

(
y2i − b2

(
1− x2

a2

))2

The ellipse thus obtained is not necessarily the one that best approximates
the data, but it is the best that can be found analytically and generically. In
any case, because the data are close to the form sought (which is our case) the
solution that is obtained by this method is very good.

We have calculated all the distances d (Fig. 3) between each point of the
real data and the ellipse defined above, using Mathematica software. It is clear
that these numeric distances are greater in specific points where constructive
deformities are present, and for this reason, these points have not been con-
sidered because, evidently, they do not define the shape of the corresponding
curve. In that points with deformities, sudden changes appear in the values
of the distance obtained, but in the normal points the distances presented
gradually increase, which shows that the shape of the curve considered is not
a good fit to the data.

A table with all the distances from the data points to the ellipse in each
plane is shown in the annex attached to this paper. Looking at this table, we
can see significant distances between the ellipses of each plane and the data.

But these ellipses could not really be improved with a larger data set, as
we have said already. What is needed is take distances to “all” the ellipses
close to data, and then see which one is the one that best approximates the
data in each plane, which is impossible, obviously. But what we can do is to
test a set of ellipses by increasing centimeter by centimeter the semi-axes. We
were able to do this using programming and computation with Mathematica,
and then, computing the distances of each of these ellipses from the data.

To be exact, we calculate the distances d of the data to any of the ellipses

x2

(a+ 0.01i)2
+

y2

(b+ 0.01j)2
= 1, with i, j = 0, 1, 2, ..., 18

We increase the length of the ellipse semi-axes until we observe that the
distance to the data d exceeds 18 cm. It is not necessary to take larger values
for the semi-axes, i, j because, as we will see in the next subsection, the ovals
produce a maximum distance of less than 18 cm in all data planes, thus, ellipses
with greater semi-axes are not of interest to us. In addition, we have also shown,
graphically, that the ellipse is always inside the curve defined by the data, so it
is not necessary to consider ellipses with smaller semi-axes once the ellipse is
circumscribed by the data, that is, negative values of i, j (an exception is from
group 180 upwards, where the shape of the dome becomes more irregular in
the proximity to the zenith; here we have considered negative values of i and
j). There is no point, therefore, in considering a greater range of variation for
the values of i, j. We also have to take into account that this range of values
implies that for each group we must calculate distances with 19x19 = 361
different ellipses. This calculation involves several hours of computation and
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large memory needs in each group (many groups have more than 3000 points)
and it is more than sufficient for our purposes, to not consider a larger range.
Again, it is important to emphasize that these calculations have been possible
by using the powerful computers in the Computing Center of the Universitat
Politècnica de València,

In this way, for each plane, we have calculated the values of i, j for which
the corresponding ellipse is closest to the data. These values are shown in the
annex to this paper.

Obviously this set of ellipses better approximate the shape of the dome
than either the set of ellipses with semi-axes a and b set as constants and
obtained directly from the data, or the ellipses obtained by applying the least
squares method, but it still seems to not approximate the data as well as they
could. It can be seen in the annex that these ellipses are separated from the
data, in almost all the planes, a distance of up to 13− 17 cm.

3.2 Approximation by ovals

Another possible shape is the oval. But there are infinite ways of generating
an oval. Throughout history many authors have studied the use of the oval
in architecture. The books by Serlio (1552) have served as the basis for all
subsequent development. More recently several authors have approached the
construction of ovals and oval arches in architecture and engineering, both
from a graphical and mathematical point of view (Barrallo 2011, Capilla and
Calvo 2014, Garćıa Jara 2010, Gómez-Collado et al. 2017, Gentil 1996, López
Mozo 2011, Rosin 2001).

Fig. 4 Construction of ovals
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An oval is formed by taking segments from four circles centered on the
points, (A, 0), (−A, 0), (0, B) and (0,−B), on the coordinate axes, and minor
and major radios, r and R, respectively. The equations of these circles are:

(x−A)2 + y2 = r2

(x+A)2 + y2 = r2

x2 + (y −B)2 = R2

x2 + (y +B)2 = R2

The oval is described by the above equations, where the values of x, and y
determine the relevant circular equation by computing the angle

θ = arctan(y/x.)

Determination of θ determines the circular equation used to compute the
position of point (x, y) making up the oval as shown in Fig. 4.

In order for these circumferences to form the oval, they are cut and are
tangent in four points so that the angle ϕ of its polar coordinates is t0, π −
t0, π + t0 and 2π − t0, being

t0 = arctan(rB/RA)

Imposing conditions on the centres, the radii and the corresponding semi-
axes a and b, the various construction possibilities are obtained.

Among the infinite possibilities, the construction hypothesis that is ob-
tained in Capilla and Calvo (2014) is based on the condition B = 3A. If this
condition is applied, you get

A =
1

6
(4 +

√
10)(a− b) = 1, 1937129(a− b)

An example of the fit of this oval to the data may be seen in Fig. 5, an
interactive graphic by Mathematica, made with the data of group 58. The
precision of the approach is observed in that figure.

To take distances d (Fig. 3) between this oval shape and the data, we
need to do the same as in the ellipse. But now, the data must be grouped in
four subsets that correspond with each of the four circumferences that form
the hypothetical oval that is being sought. In each plane, the value of t0 is
obtained with the conditions that correspond to it, and the points (xi, yi)
are of one or another subset according to the sign of its coordinates and to
whether the value of the ratio yi/xi is more or less than t0. This division of
the points in each plane in the four subsets is necessary because when distances
are calculated between the model and the real data, they must be taken from
each point with respect to the corresponding circumference (of the four that
form the oval) according to its position on the hypothetical oval. In the Figures
6 and 7 it can be seen the difference between the oval shape so drawn (green)
and the ellipse (magenta) which is the one that best approximates the real
data.
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Fig. 5 Blue: real data. Green and red: oval constructed with the previous condition where
for data group 58. In this case A=2.15 and B=6.46. Dashed line is the data from group 58.
Orange: ellipse

Fig. 6 Difference between the oval an the ellipse at group 112. Standard view

This graph corresponds, as an example, to the group 112, at a height of
8.5 m from the bottom of the dome. It is easy to see that the oval approach is
better than the elliptical one.

With this hypothesis on the construction of the ovals we have obtained
distances between the oval and real data and these ones improve considerably
the ones we have calculated with the ellipses, as can be seen in the annex.

4 Results and conclusions

The comparisons we have made between the oval thus constructed and the
ellipse that best approximate the cloud of points obtained in this work confirm
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Fig. 7 Difference between the oval an the ellipse at group 112. Bottom view

that the oval shape is the most faithful to the real data. A table with all the
obtained values is attached, as we have already said, as an annex to this work.

Fig. 8 Comparative table of the maximum separation in the different forms proposed

A summary of these data is shown in Fig. 8, where the maximum separation
of the data in each horizontal plane is indicated with the four hypothetical
forms we have deduced: the oval, the ellipse with the semi-axis a and b obtained
directly from the data, the ellipse obtained with the least squares method and
the one that improves these distances obtained by varying the axes as described
previously. It is verified that the form that best approximates the data is the
one of the oval. Specifically, the ellipse obtained that best approaches them
contains points at more than 12.5 cm in all the planes and that is precisely
the greater distance that is obtained when compared to the oval.

All the data obtained reinforce the hypothesis that the construction of the
dome was not realized by means of ellipses, but by means of ovals. The dome,
therefore, is not an ellipsoid.
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1. Arphe i Villafañe, Juan de. 1585. Tratado De varia conmmensuracion para la Escultura
y Architectura. Sevilla: imprenta de Andrea Pescioni i Juan de León.



14

2. Barrallo J. 2011. Ovals and Ellipses in Architecture. Proceedings of ISAMA 2011,
Columbia College, Chicago, Illinois; p. 9-18.
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37. Soler Verdú, R. 1995. La cúpula en la arquitectura moderna valenciana. Siglos XVI a
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