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Zornoza, Juan Ramón Sánchez and Ismael Muñoz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

v



Efficient finite element modelling of sound propagation
in after-treatment devices with arbitrary cross section

F.D. Denia [1, E.M. Sánchez-Orgaz \, B. Ferrándiz [, J. Mart́ınez-Casas [ and L. Baeza [

([) Centro de Investigación en Ingenieŕıa Mecánica, Universitat Politècnica de València, Camino de Vera s/n,
46022 Valencia, Spain

(\) Instituto Univ. de Seguridad Industrial, Radiof́ısica y Medioambiental, Universitat Politècnica de València
Camino de Vera s/n, 46022 Valencia, Spain

1 Introduction

The acoustic modelling of exhaust after-treatment devices, such as catalytic converters (CC)
and diesel particulate filters (DPF) [1–3], usually requires the use of multidimensional numerical
techniques to assess the influence of higher order modes on the sound attenuation performance
[4]. Three-dimensional (3D) wave propagation can be considered through the finite element
method (FEM). With a view to improving the computational expenditure of full 3D FEM,
an efficient modelling technique is presented in this work to speed up transmission loss (TL)
calculations in after-treatment devices with arbitrary cross section incorporating monoliths.
The efficient modelling approach is based on the mode matching method [5–7], combining: (1)
transversal pressure modes computed through a 2D FEM approach for devices with arbitrary
but axially uniform cross section [8–10]; (2) compatibility conditions of the acoustic fields
at the device geometric discontinuities. For the acoustic modelling of monoliths, these are
replaced by four pole transfer matrices relating the acoustic fields at both sides of the monolithic
region [1, 3, 4, 11–14]. Mode matching TL results are compared with full 3D FE simulations
and experimental measurements for some selected configurations, showing a good agreement
(results are not shown here for the sake of brevity). For a given accuracy, the computational
efficiency of the mode matching technique proposed in this work improves that of full 3D FE
calculations. TL improvements are achieved by suitable locations of a DPF inlet/outlet ducts.
Next, a Genetic Algorithm (GA)-based optimization approach is used in order to improve the
attenuation performance of the after-treatment device by varying the geometry as well as the
monolith properties [15]. Results show that the optimized configuration outperforms the initial
design at target frequencies [16].

Figure 1 shows the main features of the acoustic problem under consideration. Taking as
reference the work presented in an earlier study [4], now the cross section of each duct/chamber
is arbitrary, although axially uniform. Therefore, the transversal pressure modes are no longer
available from an analytical point of view, being computed numerically in the current investiga-
tion. As indicated in the previous paragraph, a 2D FE-based numerical approach is considered

1e-mail: fdenia@mcm.upv.es
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to solve the transversal eigenvalue problem with a view to improving the computational expen-
diture.

Figure 1: Exhaust after-treatment device scheme (CC/DPF) including different regions with
arbitrary cross section involved in the acoustic propagation. The monolith is replaced by a
transfer matrix and therefore only 1D sound propagation takes place in the capillary ducts.

In the mode matching method, the compatibility conditions of the acoustic fields (pressure
and axial velocity) are expressed as weighted integrals, the weighting functions being a suitable
selection of transversal pressure modes. To illustrate the approach, the pressure and velocity
continuity at the inlet expansion yield∫

SA
PA (x, y, z = 0)ψA,s (x, y) dS =

∫
SA
PB (x, y, z = 0)ψA,s (x, y) dS , (1)∫

SA
UA (x, y, z = 0)ψB,s (x, y) dS =

∫
SB
UB (x, y, z = 0)ψB,s (x, y) dS . (2)

Expressing the acoustic fields as series expansions and taking into account the orthogonality
properties of the pressure modes, the following algebraic relations are obtained:

(
A+
s + A−s

) ∫
SA
ψ2
A,s (x, y) dS =

Nm∑
n=1

(
B+
n +B−n

) ∫
SA
ψB,n (x, y)ψA,s (x, y) dS , (3)

Na∑
n=1

kA,n
(
A+
n − A−n

) ∫
SA
ψA,n (x, y)ψB,s (x, y) dS = kB,s

(
B+
s −B−s

) ∫
SA
ψ2
B,s (x, y) dS . (4)

Similar expressions to Eqs. (1)-(4) are obtained for the outlet contraction. Regarding the
monolith, the combination of orthogonality and the plane wave transfer matrix provide

B+
s e−jkB,sLB +B−s ejkB,sLB = Tm11

(
D+
s +D−s

)
+ Tm12 (kD,s/ (ρ0ω))

(
D+
s −D−s

)
,

(5)
kB,s/ (ρ0ω)

(
B+
s e−jkB,sLB −B−s ejkB,sLB

)
= Tm21

(
D+
s +D−s

)
+ Tm22 (kD,s/ (ρ0ω))

(
D+
s −D−s

)
.

(6)
Note that, as indicated in [4], neither integrations nor modal summations appear in Eqs.

(5) and (6). In addition, these equations do not depend on the geometry of the transversal
cross section (provided that this is axially uniform) and relate directly wave amplitudes with
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equal modal number [4].

2 Results and discussion
For illustration purposes, the approach described in the previous section is used to compute
the TL-based acoustic attenuation for two DPF configurations with rectangular and triangular
cross section, respectively (further details of the filter properties can be found in [2]). Rounded
corners are included in both cases. Figure 2 shows information related to a number of transversal
higher order modes considered in the numerical mode-matching approach.

(a1): Higher order mode at 465.71 Hz.

(a2): Higher order mode at 929.46 Hz.

(a)
(b): Higher order mode at 1228.1 Hz.

Figure 2: Example of pressure higher order modes: (a) rounded rectangular cross
section; (b) rounded triangular cross section. Green regions correspond to nodal

lines (zero pressure).

As a result, the acoustic performance of the DPF is first improved following the procedure
described in the literature [5], where the inlet duct is centred and the outlet is located on the
nodal line of the first relevant higher order mode (see transversal modes in Fig. 2) to avoid its
propagation and the corresponding detrimental effect on the TL. In the case of a circular cross
section with radius R, the radial coordinate of the nodal line is 0.6276R [5]; for the particular
rectangular cross section considered in the current investigation, the nodal line is located at
a lateral distance of 0.0913 m from the centre (see mode at 929.46 Hz in Fig. 2(a)); finally,
for the triangular geometry the vertical distance of the nodal line from the bottom is 0.1824
m (see mode at 1228.1 Hz in Fig. 2(b)). The beneficial impact of these duct locations on the
DPF acoustic attenuation is shown in Figure 3. To outperform the initial design TL at target
frequencies, a GA-based optimization approach can also be used.

With this purpose, the corresponding scheme is set up using Matlab R2018a, in order to
perform an acoustic optimization of an after-treatment device, by obtaining the optimal cham-
ber dimensions and monolith properties with a view to maximizing its acoustic attenuation at
the frequency range [20, 3200] Hz. A catalytic converter [1, 11–13] with cylindrical chamber is
presented hereinafter as a case study, in order to show the validity of the proposed method.
The modelling technique based on numerical mode matching, described in Section 1, is again
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Figure 3: TL versus frequency for after-treatment devices (DPF) with rectangular and
triangular cross sections. Example of attenuation improvement through outlet duct offset

location.

used in order to speed up the calculation of the objective function f0 relative to each individual
during the GA optimization. f0 is defined following [16] in order to maximize the mean TL at
the target frequency range, while reducing its standard deviation to avoid steep behaviour.

Table 1 shows the range [xmini , xmaxi ] of each variable xi involved in the GA-based opti-
mization: lengths of the corresponding sections of the chamber LB, LC and LD (see Figure
1); certain parameters of the monolith, such as resistivity R and porosity φ [1, 11–13]; and the
position of the inlet and outlet ducts with respect to the centre of the chamber circular section:
xin, yin, xout and yout.

On the other hand, attenuation increases with chamber radius RC , and therefore this is
subject to dimensional constraints. In this study, RC = 0.1275 m, and so are the radii of the
inlet and outlet ducts, Rin = Rout = 0.0258 m. Finally, the capillaries of the monolith can have
a circular ©, square � or triangular 4 cross-section.

xi xmini xmaxi xopti x1
i x2

i

LB [m] 0.05 0.15 0.0535 0.0535 0.0535
LC [m] 0.1 0.3 0.3 0.3 0.3
LD [m] 0.05 0.15 0.0674 0.0674 0.0674

R [rayl/m] 500 1000 1000 1000 1000
φ 0.7 0.9 0.9 0.9 0.9

xin [m] -0.1 0.1 -0.0778 0 0
yin [m] -0.1 0.1 0.0111 0 0
xout [m] -0.1 0.1 0.0026 -0.0778 0
yout [m] -0.1 0.1 -0.008 0.0111 0

Capillary type 4 4 4

Table 1: Range of each variable xi.

Case xopt in Table 1 shows that resistivity and monolith length values converged to the
maximum values, as expected. Figure 4 shows the TL calculations for xopt, showing that
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attenuation is maximized by offsetting the inlet duct at approximately the nodal line of the
first relevant higher order mode (as described in Section 1). As expected, additional analyses
show that similar attenuation is obtained by decentring the outlet duct instead of the inlet duct
(case x1), while attenuation worsens when centering both ducts (case x2).

Figure 4: TL for circular cross-section CC with different inlet/outletduct configurations.

3 Conclusions and future work
An efficient modelling technique based on numerical mode matching has been presented in this
work to speed up acoustic TL calculations in exhaust after-treatment devices (CC and DPF)
with arbitrary cross section incorporating monoliths. The technique has been successfully
combined with a GA-based optimization algorithm to obtain the optimal values of a number of
design parameters (properties of the capillary ducts, type of monolith, chamber and monolith
lengths, location of the inlet/outlet ducts on the chamber cross section, etc.). In future works,
the effect of soot, mean flow and temperature gradients will also be studied.
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