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Analysing nonlinear oscillators subject to Gaussian
inputs via the random perturbation technique

J.-C. Cortés °!, E. Lépez-Navarro’?, J.-V. Romero’® and M.-D. Rosell6’*

(b) Instituto Universitario de Mateméatica Multidisciplinar,
Universitat Politecnica de Valencia.

1 Introduction

The aim of this paper is to perform a stochastic analysis of nonlinear oscillators subject to
stationary Gaussian forcing sources using the random perturbation technique along with the
Maximum Entropy Principle. By combining these two stochastic techniques, we construct re-
liable approximations of the probability density function of the solution, which is a stochastic
process.

Specifically, we will deal with a random nonlinear oscillator subject to small perturbations upon

both the position, X (t), and velocity, X (), of the form

X () + 26wo X (1) + eX?()X (1) + w2 X (t) = Y(t), (1)
where ( is the damping coefficient, wg > 0 is the frequency, € is a small perturbation (|e] << 1)
affecting the nonlinear term X?2(¢)X(¢) and the input term Y (¢) is a stationary zero-mean
Gaussian stochastic process and mean square differentiable.

The key point of the perturbation technique is to consider that the solution X (t) can be
developed in the powers of e. Commonly, when this technique is applied only the first order
approximation is considered

X(t) = Xo(t) + eX1(2). (2)

Substituting expression (2) into Eq. (1), produces the next sequence of linear differential
equations, that can be solved in cascade,
Xo(t) + 2(0)0X0(t> -+ LL)%X()(t) = Y(t),
.. . ) 5 . (3)
X1 (t) + 2CU)0X1(t> -+ w0X1 (t) = _XO (t)Xo(t)
We are interested in analysing, from a probabilistic standpoint, the steady-state solution. Tak-
ing advantage of the linear theory, the system (3) can be solved using the convolution inte-

Le-mail: jccortes@imm.upv.es
2e-mail: ellonal@upvnet.upv.es
3e-mail: jvromero@imm.upv.es
4e-mail: drosello@imm.upv.es
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gral [1,2]:
Xo(t) = /O T h(s)Y (t - s)ds, (4)
and ~ '
Xi(t) = [ h(s) [~ X3t = 5)Xolt = 5)] ds, (5)
where

h(t) = (wg — C2w8>_% e w0l gin {(w% — CQwS)% t}

is the impulse response function for the underdamped case ¢? < 1.

From the approximate solution given in (2), we can calculate the main statistical functions of

—

X (t), namely, higher moments, E { X™(¢)}, the variance, V { X (¢)}, the covariance, Cov { X (t1), X (¢2)}
and the correlation function I'x x (7).

2 Results and discussion

This section is addressed to illustrate, by means of an example, the theorical results. Let us
consider Y (t) = & cos(t) + & sin(t), where &1, & ~ N(0, 1) the trigonometric stochastic process
as excitation. Notice that Y'(¢) satisfies the hypotheses specified in the previous section. Also,
we take £ = 0.05 and wy = 1. Replacing this data into Eq. (1) reads,

X(t)+0.1X(t) + eX2() X (t) + X (t) = & cos(t) + & sin(t), &, & ~ N(0,1). (6)
Now we shall obtain the main statistical functions of X(¢). To compute the mean of the
approximation, we use the expectation operator in (2). Applying (4) and (5) and using that

we can interchange the expectation operator with the mean square integral, we obtain,
E{X(1)} = E{Xo (1)} + E{X1()} = 0.
In addition, we observe that this happens with all moments of odd order. In our case we

calculate the first five moments, therefore, E{X3(t)} = 0 and E{X>(#)} = 0. Now, due to the
positiveness of the second and fourth order moments we will deduce appropriate bounds for e.

First, let us compute E{X2(¢)} up to the first order term of e,

E{X%(t)} = E{X3(t)} + 2€E {Xo(t) X1 ()}

_ /0 “his) /0 Th(s1)Tyy (s — s1) dsy ds—2¢ ( /0 “h(s) /O “hisy) /0 “h(ss) /0 “h(ss) /0 “h(sa)

. (QFyy(Sl — 8§ — Sg)rlyy(S:), — 84) + ngy(sl — S — S4)Fyy(82 — Sg)) d34 d83 ng d81 dS)
= 100 — 200000e.

In this case, we derive the bound e < 0.0005. Since E{X(t)} = 0, we can deduce that the
variance is equal to E{X?(t)}. Secondly, from the expression of E{X*(t)},

1153800000000
€
6409 ’

E{X"(t)} = E{X((t)} +4eE { X3 (t)X1(t) } = 30000 —

we can refine the above bound e < 0.000166641.
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Now, we focus on the correlation function of the approximation X (1),

F)?)?(T) = /OOO /000 h(s)h(s1)Tyy (T — s1 + s) dsds;

o0 o0

e /O h(s) /0 h(s1) /0 h(s2) /0 h(s5) /0 h(s4) {2rw<¢—s—sg+sl)r;y<sg ~s)

+ Fg/y(T — 8 — 84+ Sl)Fyy(Sg — 83) + Fyy(sl — SQ)Fly'Y(T — S84+ S+ 83)

+ 2Ty (s1 — 83)lyy (7 — 84+ 5+ 32)} dsy ds3 dsy ds; ds = 100(1 — 2000€) cos(T).

In this example, the covariance coincide with the correlation function, since E{X (¢)} = 0,

Cov{X(t), X (t2)} = Tg¢(r) = 100(1 — 2000¢) cos(7), T = [t1 — ta.

In Fig. 1 we have plotted the approximations of correlation functions for different values of €
It should be noted that when epsilon is larger, the variability decreases.
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Figure 1: Correlation function I' ;¢ (7) of X () for different values of .

Finally, we construct a reliable approximation of the probability density function using the

Maximum Entropy Principle,
_—1-2.24342.552.10~82—0.00422—2.177-10 923 —3.789-10 62446.754-10 1325

f)’(\(t) (:L’) =e

In Fig. 2 we show the graphical representation of f 0 ().
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-50 L 50

Figure 2: Approximation of PDF, f)?(t)(x), for e = 0.00005 via the PME.

3 Conclusions

We have studied, from a probabilistic point of view, a random nonlinear oscillator where the
term of perturbation affects the crossnonlinear term (position and velocity). Our main contri-
bution has been the approximation of the probability density function taking advantage of the
Principle of Maximum Entropy. In this manner, we provide a fuller probabilistic information
of the solution.
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