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Salvador Amigó.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

New solution for automatic and real time detection of railroad switch fail-
ures and diagnosis, by Jorge del Pozo, Laura Andrés, Rafael Femeńıa and Laura Rubio. . . . . . . . . .8
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Stable positive Monte Carlo finite difference
techniques for random parabolic partial differential

equations

M.-C. Casabán [1, R. Company[ and L. Jódar[

([) Instituto Universitario de Matemática Multidisciplinar,
Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.

1 Introduction
Integral Transform technique is a powerful method for solving random partial differential equa-
tions (RPDEs) in unbounded domains [1], but an alternative is needed in the case of bounded
domains. In the deterministic case, the finite difference methods are the most used because
they are easy to implement and efficient enough. But these methods extended to the random
scenario have the drawback coming from the complexity of the computation of the statistical
moments (the expectation and the standard deviation) arising from the operational random
calculus throughout the iterative levels of the discretization steps and the necessity to store the
information of all the previous levels of the iteration process [2, 3].

In this work we study the following RPDE of parabolic type often encountered in heat and
mass transfer theory in heterogeneous media

∂u(x, t)
∂t

= ∂

∂x

[
p(x) ∂u(x, t)

∂x

]
− q(x) u(x, t), 0 < x < 1, t > 0 , (1)

u(0, t) = g1(t), t > 0, (2)
u(1, t) = g2(t), t > 0, (3)
u(x, 0) = f(x), 0 ≤ x ≤ 1 . (4)

In this model (1)–(4) we will assume, without loss of generality, that involved s.p.’s: p(x)
and q(x) in the coefficients, f(x) in the initial condition and gi(t), i = 1, 2, in the boundary
conditions, have one degree of randomness (finite degree of randomness [4]), i.e. they have the
form

h(s) = F (s, A) ,
A a r.v. , F a differentiable real function of the variable s.

}
(5)

Then the s.p. h(s) has sample differentiable trajectories, i.e, for a fixed event ω ∈ Ω, (Ω
sample space) the real function h(s, ω) = F (s, A(ω)) is a differentiable function of the real

1e-mail: macabar@imm.upv.es
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variable s. In addition we assume that all the input data p(x), q(x), f(x) and gi(t), i = 1, 2
are mean square continuous s.p.’s in variables x and t, respectively, p(x) is also a mean square
differentiable s.p. and the sample realizations of the random inputs p(x), q(x), gi(t), i = 1, 2
and f(x) satisfy the following conditions:

0 < a1 ≤ p(x, ω) ≤ a2 < +∞ , x ∈ [0, 1] , for almost every (a.e.)ω ∈ Ω , (6)

|p′(x, ω)|
p(x, ω) ≤ b < +∞ , x ∈ [0, 1] , for a.e.ω ∈ Ω , (7)

qmin ≤ q(x, ω) ≤ qmax , x ∈ [0, 1] , for a.e.ω ∈ Ω , (8)

gi(t, ω) ≥ 0 , i = 1, 2, t > 0 , for a.e.ω ∈ Ω , (9)

0 ≤ f(x, ω) ≤ fmax , x ∈ [0, 1] , for a.e.ω ∈ Ω , (10)

where p′(x) denotes the mean square derivative of p(x).

2 Random finite difference scheme, numerical strategy
and simulations

We develop a stable and consistent numerical random finite difference scheme preserving
positivity of the solution stochastic process together with Monte Carlo technique that provides
a useful tool to obtain accurate values of the expectation and the standard deviation of the
approximating process even for large values of the time variable.

2.1 Random finite difference scheme

Let us consider the uniform partition of the spatial interval [0, 1], of the form xi = ih, 0 ≤
i ≤ M , with Mh = 1. For a fixed time horizon, T , we consider N + 1 time levels tn = nk,
0 ≤ n ≤ N with Nk = T . The numerical approximation of the solution s.p. of the random
problem (1)–(4) is denoted by uni , i.e. uni ≈ u(xi, tn), 0 ≤ i ≤ M , 0 ≤ n ≤ N . Now, by
using a forward first-order approximation of the time partial derivative and centred second-
order approximations for the spatial partial derivatives in (1) one gets the following random
numerical scheme for the spatial internal mesh points

un+1
i − uni
k

= pi
uni−1 − 2uni + uni+1

h2 +p′i
uni+1 − uni−1

2h −qi uni , 1 ≤ i ≤M−1, 0 ≤ n ≤ N−1 , (11)
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where pi = p(xi), p′i = p′(xi) and qi = q(xi). The resulting random discretized problem (1)–(4)
can be rewritten in the following form

un+1
i = k

h2 pi −
h

2p
′
i

)
uni−1 +

(
1− k qi −

2k
h2 pi

)
uni + k

h2 pi + h

2p
′
i

)
uni+1 ,

1 ≤ i ≤M − 1 , 1 ≤ n ≤ N − 1 ,

un0 = gn1 , unM = gn2 , 1 ≤ n ≤ N ,

u0
i = fi , 0 ≤ i ≤M ,


(12)

where gn1 = g1(tn), gn2 = g2(tn), and fi = f(xi). We introduce the following definitions.
Definition 1 A random numerical scheme is said to be ‖ · ‖p-stable in the fixed station sense
in the domain [0, 1] × [0, T ], if for every partition with k = ∆ t, h = ∆x such that N k = T
and M h = 1,

‖uni ‖p ≤ C , 0 ≤ i ≤M, 0 ≤ n ≤ N , (13)
where C is independent of the step-sizes h, k and the time level n.

Definition 2 Let us consider a random finite difference scheme F (uni ) = 0 for a RPDE L(u) =
0 and let the local truncation error T ni (U(ω)) for a fixed event ω ∈ Ω be defined by

T ni (U(ω)) = F (Un
i (ω))− L(Un

i (ω)),

where Un
i (ω) denotes the theoretical solution of L(u)(ω) = 0 evaluated at (xi, tn). We call T ni (U)

by

‖T ni (U)‖p = (E [|T ni (U)|p])1/p =
(∫

Ω
|T ni (U(ω))|pfTni (U)(ω) dω

)1/p
.

With previous notation, the random finite difference scheme F (uni ) = 0 is said to be ‖ · ‖p-
consistent with the RPDE L(u) = 0 if

‖T ni (U)‖p → 0 as h = 4x→ 0, k = 4t→ 0.

Theorem 1 With the previous notation under conditions

h ≤ 2
b
, k ≤ h2

2a2
, (If qmax < 0) , k ≤ h2

2a2 + h2qmax
, (If qmax ≥ 0) , (14)

on the discretized step-sizes h = ∆x and k = ∆t, the random numerical solution s.p. {uni } of
the random finite difference scheme (12) for the random partial differential model (1)–(10) is
positive for 0 ≤ i ≤ M at each time-level 0 ≤ n ≤ N with T = kN . Furthermore the random
finite difference scheme (12) is ‖ · ‖p-stable in the fixed station sense taking the value

C = α(T )G(T ) ,

where
G(T ) = max0≤t≤T {g1,max(T ), g2,max(T ), fmax}

gi,max(T ) = max0≤t≤T{gi(t, ω) , for a.e. ω ∈ Ω} , i = 1, 2 . (15)

and

α(T ) =
{

1 if qmin ≥ 0 ,
eT |qmin| if qmin < 0 . (16)
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2.2 Numerical strategy and simulations
From a computational point of view, the handling of the random scheme (12) in a direct way
makes unavailable the computation of approximations beyond a few first temporal levels. This
is because, throughout the iterative temporal levels, n = 1, · · · , N , it is necessary to store
the symbolic expressions of all the previous levels of the iteration process collecting big and
complex random expressions with which the expectation and the standard deviation must be
computed. Furthermore, although the random expressions can be stored it does not guarantee
that the two first statistical moments could be computed in a numerical way. For this reason
we propose to use the random numerical scheme (12) together with the Monte Carlo technique
avoiding the described computational drawbacks. The procedure is as follows: to take a num-
ber K of realizations of the random data involved in the random PDE (1)–(4) according to
their probability distributions; to compute the numerical solution, uni (ωj), j = 1, · · · , K, of
the sampling deterministic difference schemes of (12); to obtain the mean and the standard
deviation of these K numerical solutions evaluated in the mesh points i = 1, · · · ,M − 1, at the
last time-level N , denoted respectively by

EKMC[uNi ] = µ
(
uNi (ω1), uNi (ω2), · · · , uNi (ωK)

)
. (17)

√
VarKMC[uNi ] = σ

(
uNi (ω1), uNi (ω2), · · · , uNi (ωK)

)
. (18)

Example 1 We consider the problem (1)–(4) with the random data

p(x) = a e−x , q(x) = −c , g1(t) = ec t
(1

2 + a t
)
, g2(t) = ec t

(
e2

2 + a e t

)
, f(x) = e2x

2 , (19)

where the r.v. a follows a Gaussian distribution of mean µ = 0.5 and standard deviation σ = 0.1
truncated on the interval [0.4, 0.6], and the r.v. c > 0 has a beta distribution of parameters (2; 4)
truncated on the interval [0.45; 0.55]. We will assume that a and c are independent r.v.’s. Note
all random input data p(x), q(x), g1(t), g2(t) and f(x) are m.s. continuous and p(x) is m.s.
differentiable too. In addition, conditions (6)–(10) are satisfied with

a1 = 0.4 e−1 , a2 = 0.6 e0 , −0.55 ≤ q(x, ω) ≤ −0.45 , ω ∈ Ω , 0 ≤ f(x, ω) ≤ 3.69453 .

From [5, Sec. 3.8.5.] the exact solution of problem (1)–(4), (19) when both parameters a and c
are deterministic, is given by

u(x, t) = ec t
(
aext+ e2x

2

)
. (20)

In our context, both a and c are r.v.’s, and expression (20) must be interpreted as a s.p. Then,
using the independence between r.v.’s a and c, the expectation and the standard deviation of s.p.
(20) can be computed. Numerical convergence of the expectation and the standard deviation of
the approximate solution s.p. using Monte Carlo (MC) technique is illustrated in the following
way. With a fixed time T = 1, we have chosen both the spatial and temporal step-sizes h =
0.0125 and k = 0.0001, respectively, according to the stability conditions (14) and we have varied
the number of realizations, K, of the r.v.’s a and c involved in the random problem (1)–(4),
(19). Then, at the temporal level N = 10000 where the time T = Nk = 1 is achieved, we have
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computed the expectation (mean), EKMC[uNi ] (17), and the standard deviation,
√

VarKMC[uNi ] (18),
of the K-deterministic solutions, uNi , obtained to solve the K-deterministic difference schemes
from (12). Table 1 collects the RMSEs (Root Mean Square Errors) computed using the following
expressions

RMSE
[
EKMC[uNi ]

]
=

√√√√ 1
M − 1

M−1∑
i=1

(E[u(xi, tN)]− EKMC[uNi ] )2
, (21)

RMSE
[√

VarKMC[uNi ]
]

=

√√√√ 1
M − 1

M−1∑
i=1

(√
Var[u(xi, tN)]−

√
VarKMC[uNi ]

)2
, (22)

where E[u(xi, tN)] and
√

Var[u(xi, tN)] denote the expectation and standard deviation of the
exact solution s.p. (20), respectively. It is observed the good behaviour of both approximations

K RMSE
[
EKMC[uNi ]

]
RMSE

[√
VarKMC[uNi ]

]
CPU,s

[
EKMC/

√
VarKMC

]
50 1.45604e− 02 1.32856e− 02 630.516
200 1.11710e− 02 1.84435e− 03 982.375
800 1.08512e− 02 1.06139e− 03 2052.330
3200 4.20138e− 03 6.01374e− 03 6209.480
12800 2.07183e− 04 1.69504e− 03 22600.100

Table 1: RMSEs and CPU time (in seconds) spent to compute the approximations to the
expectation (mean), EKMC, and the standard deviation,

√
VarKMC in the level time N = 10000,

for K ∈ {50, 200, 800, 3200, 12800}MC realizations, on the spatial domain [0+h, 1−h], xi = ih,
1 ≤ i ≤ 79, h = 0.0125.

the expectation and the standard deviation as the number K of simulations increases. That
is, the accuracy of the approximations to both statistical moments increases when the number
of MC simulations is growing. In this sense, Figure 1 and Figure 2 reflects the improvement
of the approximations considering the study of the relative errors. Computations have been
carried out by Mathematica© software version 12.0.0.0, for Windows 10Pro (64-bit) AMD Ryzen
Threadripper 2990WX, 3.00 GHz 32 kernels.
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Figure 1: Relative errors of the approximations to the expectation (mean), EKMC[uNi ].
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Figure 2: Relative errors of the approximations to the standard deviation,
√

VarKMC[uNi ].

3 Conclusions and future work
The random scheme (12) developed is consistent, conditionally stable and positive. This random
scheme combined with the MC method solves the computational problem of methods random
iterations as it avoids collapsing in the calculation of symbolic expressions to few temporary
steps. In this way, it is possible the computation of the mean and the standard deviation. The
convergence strategy used is to choose the discretization step-size h and k, verifying the stability
conditions, and increase the number of MC realizations until that the errors no longer change
substantially. This method can even be applied to non-linear or two-dimensional problems.
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