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Abstract

In the last years, atrial fibrillation (AF) has become one
of the most remarkable health problems in the developed
world. This arrhythmia is associated with an increased
risk of cardiovascular events, being its early detection an
unresolved challenge. To palliate this issue, long-term
wearable electrocardiogram (ECG) recording systems are
used, because most of AF episodes are asymptomatic and
very short in their initial stages. Unfortunately, portable
equipments are very susceptible to be contaminated with
different kind of noises, since they work in highly dynamics
and ever-changing environments. Within this scenario, the
correct identification of free-noise ECG segments results
critical for an accurate and robust AF detection. Hence,
this work presents a deep learning-based algorithm to
identify high-quality intervals in single-lead ECG record-
ings obtained from patients with paroxysmal AF. The ob-
tained results have provided a remarkable ability to clas-
sify between high- and low-quality ECG segments about
92%, only misclassifying around 7% of clean AF intervals
as noisy segments. These outcomes have overcome most
previous ECG quality assessment algorithms also dealing
with AF signals by more than 20%.

1. Introduction

In the last years, atrial fibrillation (AF) has become one
of the most remarkable health problems in the developed
world, roughly affecting 37.5 million of people [1]. More-
over, its prevalence has doubled in the last decade, being
more acute on those aged older than 60 years. Even though
this arrhythmia is not life-threatening in itself, it can lead
to stroke, heart failure and many other heart-related com-
plications [2]. Moreover, around 90% of people suffer-
ing from AF for the first time show no symptoms, thus

making their early diagnosis extremely difficult [3]. To
palliate this issue, potential patients with paroxysmal AF
are often monitored with ECG recording systems. In this
way, long-term ECG signals can be acquired, while the
patient can lead a normal live. However, when these de-
vices work outside of a controlled hospital environment,
they are usually contaminated with different kind of noises,
such as power-line interference, motion artifacts, and high-
frequency muscular disturbances [4].

For ECG denoising, a broad variety of methodologies
have been proposed in the literature [5]. However, their
performance have shown to be limited, because most of
them are based on identifying and preserving time and fre-
quency ECG features, which usually coincide with noise
components [6]. Considering this context, proper iden-
tification of highly contaminated and strongly noisy ECG
excerpts is a main priority for accurate early AF detection,
as well as for reaching precise ECG-based diagnosis and
clinical decisions.

Clearly, quality assessment of long-term ECG record-
ings requires automatic algorithms, since they are more
robust and faster than human visual inspection. Thus, dif-
ferent automatic techniques based on time and morpholog-
ical features can be found in the literature [6,7]. Neverthe-
less, these methods have reported a performance closely
dependent to their ability to detect ECG boundary points,
which notably decreases when ECG signals are contami-
nated with noise [8]. Unlike these algorithms, the widely-
used convolutional neural networks (CNNs) have reported
a positive ability to discern between high- and low-quality
segments in some very recent works, without requiring de-
lineation of ECG fiducial points, or any other kind of pre-
vious preprocessing operations [4, 5, 9].

However, the performance of these algorithms have
been validated exclusively using ECG recordings from
healthy people, not considering a most challenging sce-
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nario where normal sinus rhythm (SR) is alternated with
AF episodes [7]. Additionally, these methods have de-
signed from scratch using reduced databases, thus possibly
leading to be notably overffited [10]. Within this context,
the present work analyzes the ability of the well-known
pre-trained AlexNet architecture [11] to discriminate be-
tween high- and low-quality ECG excerpts in a challenging
scenario where SR and AF episodes are alternated.

2. Methods

2.1. Database

To validate the proposed method, the training dataset
proposed for the PhysioNet/CinC Challenge 2017 was
used. This database is formed by 8,528 single-lead ECG
recording lasting between 9 and 60 seconds. The signals
were acquired with a sampling rate of 300 Hz and 16 bits
of resolution by linking a portable ECG monitoring sys-
tem (AliveCorTM) to a smart phone. Apart from signal
recordings, their classification by experts into four differ-
ent rhythms, i.e., normal sinus rhythm, atrial fibrillation,
other rhythms, and noisy recordings, is also available.

No kind of preprocessing was applied to the ECG sig-
nals, which were segmented into 5 second-length inter-
vals and rearranged into two groups. More precisely, ECG
excerpts obtained from AF, SR and other rhythms (OR)
recordings composed the high-quality group, whereas
those extracted from noisy recordings formed the low-
quality group. Thus, a total of 48,607 ECG excerpts
were finally analyzed, such that 47,439 (97.59%) belonged
to the high-quality group and 1,168 (2.41%) to the low-
quality group. It is worth noting that high-quality group
contained 4,329 intervals of AF, 28,413 of SR and 14,697
of OR.

2.2. Continuous Wavelet Transform

Time and frequency information in every ECG except
was exploited by transforming it into a two-dimensional
representation using a continuous Wavelet transform
(CWT). This tool has proven superior ability to deal
with local, transient and intermittent aperiodicities in
non-stationary signals, such as the ECG, compared with
other existing time-frequency transformation methodolo-
gies [12]. From a conceptual point of view, CWT de-
composes a signal at different time scales, each one repre-
senting a particular frequency range in the time-frequency
plane. The approach is based on correlating an initial sig-
nal with scaled and shifted versions of a wavelet function,
called mother wavelet and referred to as ψ(t). Mathemati-
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Figure 1. Typical 5 second-length ECG intervals from
the (a) high- and (b) low-quality groups, along with their
corresponding scalograms.

cally speaking, CWT of a signal x(t) is obtained as

CWT (a, b) =
1√
a

∫ +∞

−∞
x(t)ψ∗

( t− b
a

)
dt, (1)

where a, b ∈ <, a 6= 0 are the scaling and shifting parame-
ters of the mother wavelet, respectively, and ∗ denotes the
complex conjugate operator. The outcome of this opera-
tion is a two-dimensional matrix containing wavelet coef-
ficients located according to the analyzed scales and po-
sitions. Applying a color map to the absolute value of
these coefficients, an image, known as scalogram, is ob-
tained. This kind of representation of the ECG has been
widely inputted to many CNN-based algorithms in a vari-
ety of scenarios [13]. As an example, Figure 1 shows typ-
ical high- and low-quality ECG intervals, along with their
corresponding scalograms.
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2.3. The AlexNet architecture

CNNs have been intensively used over the last few
decades for solving pattern recognition problems, specially
in image classification [14]. The high capability of extract-
ing spatial and temporal features from input data, without
requiring extra preprocessing operations, is the strongest
point of these algorithms. They are constructed employing
convolution, pooling and fully-connected layers [13].

In the present work, the widely-used AlexNet architec-
ture [11] was fine-tuned to classify low- and high-quality
ECG segments. From a structural perspective, AlexNet is
composed of eight sequential layers, where five are convo-
lutional and three are fully-connected. Additionally, two
pooling layers are also used to reduce spatial dimension
of the feature map in the previous stages [11]. Moreover,
a rectifier linear unit function is used after each convolu-
tional and fully-connected layers. Finally, dropout regular-
ization operations are performed after the two first fully-
connected layers to reduce overfitting as much as possible.
More details about this CNN scheme can be found in [11].

Initially, AlexNet was created to distinguish among
more than 1,000 different classes [11]. To adapt the net-
work to the task proposed in this study, the last fully-
connected layer was re-adapted to exclusively work with
two classes. Furthermore, the resulting model was also
fine-tuned with the database described in Section 2.1, and
making use of stochastic gradient descent algorithm with
a momentum of 0.9. The initial learning rate was set to a
constant value of 0.0001 during all the training time, such
that no learn rate drop factor was used during the con-
ducted 10 epochs with mini batch sizes of 10 scalograms.

2.4. Statistical analysis

Bearing in mind the great imbalance between groups
found in the database (see Section 2.1), severals valida-
tion cycles were conducted. Thus, 40 training/testing iter-
ations were developed, such that two subsets of 1,150 sam-
ples randomly selected from high- and low-quality groups
were considered in each one. Within each iteration, a strat-
ified 80/20 (80% for training and 20% for testing) holdout
scheme was repeated 5 times, thus obtaining a total of 200
fine-tuned CNN-based models.

The classification performance of every model was eval-
uated in terms of sensitivity (Se), specificity (Sp) and ac-
curacy (Acc). More precisely, Se was defined as the rate
of correctly classified high-quality ECG segments, while
Sp was computed as the percentage of properly identified
low-quality intervals. Acc was obtained as the percent-
age of total ECG excerpts rightly detected. Beyond these
metrics, the rates of correctly classified SR (RSR), AF
(RAF ) and OR (ROR) segments within the high-quality
group were also obtained. It should be noted that values of

Table 1. Values of mean, std, maximum and minimum ob-
tained for all performance metrics from the 200 conducted
validation cycles.

Value Se Sp Acc RSR RAF ROR
Mean 90.4% 93.2% 91.4% 91.5% 92.4% 87.3%
Std. 2.8% 1.3% 2.5% 2.4% 3.4% 4.3%
Max. 96.4% 98.3% 96.7% 96.1% 97.8% 96.1%
Min. 87.6% 93.5% 88.7% 88.8% 86.8% 79.9%

mean, standard deviation (std), maximum, and minimum
for these performance metrics were also computed from
all validation cycles.

3. Results

Table 1 shows values of mean, std, maximum and min-
imum for all performance metrics. As can be observed,
mean values of Acc around 91%, with a maximum of al-
most 97%, were achieved. Moreover, slight differences
were only seen between Se and Sp, reaching comparable
maximum values. On the other hand, within the high-
quality group, mean classification rates of both SR and
AF episodes were longer than 91%, but the mean value
of ROR fell to 87%. Finally, low values of std (lower
than 4.5%) were obtained for all performance metrics, thus
showing a reduced dispersion among the results obtained
for all conducted validation cycles.

4. Discussion

In the present work, automatic quality assessment of
single-lead ECG signals acquired using a portable record-
ing system from patients with paroxysmal AF has been ex-
plored through a CNN-based algorithm. Although differ-
ent databases have been used for the validation of previ-
ous algorithms found in the literature and results should be
compared with caution, the proposed approach has reached
mean classification rates comparable or even higher than
those methods [15]. Moreover, it is interesting to note that
a more robust validation procedure than in previous works
has been here conducted by analyzing more than 48,000
ECG excerpts, rearranged into 200 learning/testing itera-
tions. Indeed, most of the previous studies have only used
one validation cycle with a limited set of data [15]. For in-
stance, Zhao & Zhang [16] only analyzed 300 30 second-
length ECG intervals (150 for high-quality and 150 for low
quality) obtained from a much more larger public database.

It is also interesting to note that only SR signals from
healthy subjects have been used for the validation of
most previous algorithms dealing with ECG quality assess-
ment [7]. However, considering other rhythms apart from
SR, involves a more challenging context, because ECGs
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with a wider variety of shapes and morphologies are in-
putted to the methods [7]. Indeed, when this scenario have
been considered to validate some previous algorithms,
drastic reductions in their performance have been noticed,
only reaching values of Acc between 50 and 70% [7, 15].
In contrast, the method presented in this work has been
able to report a good performance even in the presence of
AF and other rhythm, correctly classifying noisy signals
and AF episodes with an accuracy greater than 90%.

A relevant limitation of the proposed algorithm is the
lack of a clear interpretation of the obtained results. In
fact, all CNN-based methodologies are characterized by
concealing links between input and outputs [17]. Also, de-
spite a wide dataset with ECG samples from a fully re-
alistic context has been analyzed in the present work, fur-
ther analysis with ECG recordings acquired using different
kinds of portable and wearable recording systems could be
helpful in contrasting the presented outcomes.

5. Conclusions

A novel deep learning method able to facilitate autom-
atized diagnosis with great accuracy in long-term ECG
monitoring of patients with intermittent AF has been pro-
posed. The algorithm has been throughly validated by
making use of many ECG samples and numerous learn-
ing/testing cycles, reporting a better performance than
most previous techniques proposed for ECG quality as-
sessment. Hence, the use of this tool in portable and wear-
able recording systems could avoid potential confounding
bias of poor-quality ECG intervals, thus leading to more
robust and precise diagnosis and clinical decisions about
some cardiac pathologies, such AF and other arrhythmias.
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