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Abstract

The effects of sleep-related disorders, such as obstruc-
tive sleep apnea (OSA), can be devastating either in chil-
dren or adults. Misdiagnosis may lead to severe cardiovas-
cular diseases. Besides, OSA consequences are often re-
lated to bad job performance, and road accidents. Nowa-
days, polysomnography (PSG) is still considered the gold
standard for OSA diagnosis, but the required facilities are
extremely high, thus reducing availability worldwide. For
this reason, simpler and cost-effective diagnosing meth-
ods have been proposed in the late years. In this regard,
the heart rate variability (HRV) has been demonstrated to
strongly reflect apnea episodes during sleep. Hence, this
work reviews the latest advances in the evaluation of OSA
from the HRV perspective to consider its potentialities for
a future revisited CinC Challenge.

1. Introduction

Sleep apnea syndrome is a disorder in which breathing
is repeatedly arrested during sleep. To appraise its severity,
an apnea/hypopnea index (AHI) is determined as the num-
ber of apnea and hypopnea events per hour of sleep. Preva-
lence is considered high, ranging from 9 to 38% (AHI ≤
5) in the general population, and it is greater in people suf-
fering from obesity, particularly in men [1]. Two types
of sleep apnea syndromes may be found in the literature,
i.e., central sleep apnea (CSA) and obstructive sleep apnea
(OSA). CSA is characterized by a decrease or abeyance of
ventilatory effort, whilst OSA is characterized by repeti-
tive episodes of obstruction of the upper airway [2].

Both varieties are usually associated with a significant
decrease in blood oxygen saturation (SpO2) [2]. As a con-
sequence, breathing pauses for a few seconds, which leads
to a decrease of blood oxygen and an increase of CO2.
This causes the central nervous system activation that re-
sults in arousals during sleep [3]. These arousals cease
the process of sleep and brings oxygen level back to nor-

mal. Furthermore, OSA is often associated with a char-
acteristic snoring pattern that is alternatively followed by
silent episodes that usually last 20 to 30 seconds [2]. These
episodes, may be noticed by a bed partner. Moreover, ar-
rhythmias and hypoxemia may occur during the aforemen-
tioned stages, leading to severe cardiovascular diseases
likewise high blood pressure, heart attacks and strokes [4].

Patients suffering from OSA also describe feelings of
excessive sleepiness, disorientation, grogginess, and lack
of coordination. The daytime sleepiness can be incapaci-
tating, resulting in job loss, road accidents, marital or fam-
ily problems, and poor school performance [2]. Misdiag-
nosis can lead patients to being labeled as lazy or as having
a primary mental disorder, such as depression. Notwith-
standing, polysomnography (PSG) is still currently as-
serted as the gold standard for OSA diagnosis. PSG
recordings typically involve oral-nasal airflow, blood oxy-
gen saturation, chest-abdominal breathing movements, and
body position when accompanied with electroencephalo-
gram, electromyogram, and electrocardiogram (ECG). All
needed devices put on the patient’s body scarcely conveys
a reliable sleep. Although this method may provide further
information about eventual sleep disorders, its complexity
and cost limits the global coverage.

In this regard, heart rate variability (HRV) plays a crit-
ical role since it strongly reflects apnea episodes during
sleep [5]. In comparison with other magnitudes, such as
oral-nasal airflow [6] or the rapid eye movement, HRV
is easier to obtain from ECG or photoplethysmography
(PPG), and brings accurate results [7]. In the view of
more comfortable and cost-effective tools released in the
late years, i.e., the single-lead ECG [8] and pulse oxime-
try devices [9], HRV has become a sort of a new standard
in researching. Therefore, because PSG is complex and
time-consuming, the search for simpler methods in OSA
detection has become a major goal. In this context, this
work reviews the latest advances in the evaluation of OSA
from the HRV perspective to consider its potentialities for
a future revisited CinC Challenge.
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2. Methodology

A literature research has been conducted by consulting
the following databases: Web of Science, PubMed, Else-
vier’s ScienceDirect, IEEEXplorer, Springer, and Scopus.
The employed key terms were sleep apnea, detection, and
heart rate variability. These key terms were combined in
advanced searching tools, e.g., ”sleep apnea AND heart
rate variability” such that 119 articles were found in the pe-
riod within 2009 and the present. Afterward, a comparison
between target key-terms and articles key-terms was per-
formed excluding those articles that mismatched with the
topic. Another exclusion criterion was ignoring all articles
that were not published in scientific journals, i.e., confer-
ences and congresses. Eventually, 18 articles remained as
potential candidates. These articles were fully read and
studied as well as some of their inner references. Ulti-
mately, the classification performances and standard pro-
cedures were extracted to establish the expected results cri-
teria. However, due to similarities between some methods,
only 7 papers were considered in this survey, since they
obtained the most promising results in terms of accuracy
(Ac), sensitivity (Se), and specificity (Sp).

3. Sleep apnea detection methods

In order to organize all the entries of the survey, methods
were classified according to the physiological nature of the
signal used to extract HRV. Thus, the methods included
in this review are based on electrocardiogram (ECG), and
pulse oximetry.

3.1. Methods based on ECG

In 2018, Zarei and Asl proposed an automatic OSA
detection algorithm based on discrete wavelet transform
(DWT) and entropy features [10]. They employed two dif-
ferent databases, the Apnea-ECG, from Physiobank [11],
and the St. Vicent’s University Hospital/University Col-
lege of Dublin Sleep Apnea Database [12], both avail-
able on Physionet’s official repository. They segmented
the recordings into 60-seconds intervals and then applied
DWT to decompose them into several time-frequency
scales. Furthermore, they employed complexity measures
such as approximate entropy, conditional entropy and sim-
ilarity, to assess the presence of irregularity within record-
ings. As a result, 108 features were extracted. Eventually,
they applied a sequential feature selection (SFS) algorithm
and assessed several machine learning classifiers. In this
case, support vector machine (SVM) best performed, ob-
taining an Ac of 95.7%, Se of 95.8% and Sp of 95.6% as
per detected patient, and an Ac of 94.6%, Se of 94.4%, and
Sp of 95.7% as per detected apnea episode during sleep
with only 18 features after SFS.

In 2017, Dong et al. developed model based on fre-
quency networks [13]. They also employed the Apnea-
ECG database [11] together with a private dataset. Firstly,
they performed a 5-min recording segmentation. Then,
they employed the Lomb-Scargle periodogram (LSP) [14]
to obtain the power spectral density (PSD) of HRV. The
particular point in this work, was the use of dynamic
time warping (DTW) to assess similarity between time-
frequency series. Thus, a network of HRV segment fre-
quencies was formed up with conventional nodes. Such
nodes were connected by means of a threshold value de-
termined by the DTW distance. Thus, as a result of using
only 3 network features, they obtained and Ac of 90.1%,
Se of 88.3% and Sp of 90.5% to detect OSA patients (OSA
diagnosis).

In 2016, Cheng et al. conducted a series of experi-
ments in 2-dimensional fractal space based on heteroge-
neous recurrence analysis [3]. They used the Apnea-ECG
database as well [11]. They formed up a state space from
the HRV time series using the Takens’ delay embedding
theorem [15]. The resulting attractor was segmented into
multiple sub-regions to facilitate the extraction of local
heterogeneous recurrence properties. Moreover, the re-
current patterns between regions were labeled through a
multidimensional categorical indexing tree together with
a fractal representation of these [16]. Ultimately, a regu-
larized logistic regression model was used to combine the
extracted features, thus reaching Ac of 83.0, Se of 83.0%
and Sp of 82.0%, as per detected apnea episode.

3.2. Methods based on pulse oximetry

In July 2019, Bozkurt et al. proposed a method based on
PPG by combining multiple machine learning techniques
and non-linear features [17]. The initial data was recorded
with a PSG device at the Sleep Laboratory of the Depart-
ment of Pulmonary Diseases at Sakarya Hendek State Hos-
pital. Thereafter, HRV was derived from the PPG peaks,
similarly to former ECG recordings. Therefore, they ex-
tracted several features from the PPG and the HRV series,
which added up to 86 features. Nevertheless, they applied
F-score to reduce the number of candidate features. Ul-
timately, they formed up an ensemble classifier based on
the majority vote of several conventional classifiers. Clas-
sification results were shown for two different number of
selected features. They finally obtained an Ac of 93.0, Se
of 93.0% and Sp of 96.0% with only 4 features as per de-
tected patient. It is worth saying that even if apnea was
detected, they intended to detect arousals during breathing
arrests.

In 2018, Haoyu et al. developed an internet of medi-
cal things scheme based on SpO2 (extracted from PPG)
and supported with HRV [18]. In this work, HRV and
SpO2 were both extracted from the St. Vicent’s Univer-
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sity/University College of Dublin Apnea database, and a
private dataset previously recorded as well. All record-
ings were scored on a one-minute basis by clinical experts,
therefore, these were divided into 1 minute-length seg-
ments. In the first place, several statistical features were
extracted from HRV and SpO2. In the case of HRV, they
extracted the mean, the standard deviation, and the square
root of the mean of the sum of the squares pertaining to
differences in adjacent RR intervals. Furthermore, they
adopted the method proposed by Bsoul et al. [5] to extract
the rest of the SpO2 features. Again, among these, they
were the minimum, the variance, the mean, and a correla-
tion coefficient regarding SpO2 samples for every segment
of signal. Eventually, the best performance were obtained
employing a SVM approach and using two features from
HRV and other two from SpO2. As a result, they claimed
an Ac of 98.5, Se of 95.8% and Sp of 98.9% as per diag-
nosed patient.

Also in 2018, Garde et al. developed a pulse oximetry-
based OSA screening method [19], which has been vali-
dated with the ”Sleep” dataset from the British Columbia
Children Hospital and a private dataset. All data com-
prised both PSG and PPG recordings collected at the same
time. Firstly, they segmented PPG signals into 2-minute
frames. Then, SpO2 and pulse rate variability (PRV), a sur-
rogate form of HRV, were extracted from every segment.
PRV represents a surrogate form of HRV, similarly to what
Bozkurt e al. did the following year. In this regard, pulse to
pulse intervals (PPI) were obtained by means of a peak de-
tection algorithm. In the frequency domain, each PPI was
re-sampled at 4 Hz to compute its PSD. Regarding SpO2,
conventional time-frequency domain parameters were ex-
tracted in addition to the delta index, which represents the
SpO2 variability. In this case, they employed multivariate
logistic regression models. For each classifier, a stepwise
selection method was applied to select the most relevant
features and finally train the model. As they assessed clas-
sification in terms of AHI, there were different results of
Ac for each case. However, for the minimum AHI to be
considered apnea (AHI ≥ 5), they obtained Ac of 82.0%,
Se of 85.0% and Sp of 79.0% as per diagnosed patient.

In 2015, Garcia-Ravelo et al. introduced a novel ap-
proach based on permutation entropy [20]. The CinC
Challenge 2000’s Database [21] was selected. They con-
ducted signal segmentation with 1-min margin between
frames. Then, RR intervals were extracted after an R-
peak detection algorithm followed by an adaptive filtering
to remove artifacts. They extracted different features from
different analyses based on PE, cepstrum coefficients, and
PSD measurements. Regarding PE, the features were ex-
tracted by encoding the RR intervals in symbols. Rela-
tive frequency was calculated for each symbol and then
PE was obtained through its original expression [22]. They

Year Authors # Feat. Ac (%)
2019 Bozkurt et al. [17] 4 93,00
2018 Zarei and Asl [10] 18 95,71
2018 Haoyu et al. [18] 4 98,54
2018 Garde et al. [19] 5 82,00
2017 Dong et al. [13] 3 90,10
2017 Martı́n-Gonzalez et al. [8] 3 84,76
2016 Cheng et al. [3] 11 85,00
2015 Garcı́a-Ravelo et al. [20] 20 84,60
2010 Bsoul et al. [5] 111 100
2009 Khandoker et al. [7] 28 92,90

Table 1. Summary of authors and overall accuracy

also derived respiration from the ECG recordings, and then
computed PSD. Finally, two classifiers were employed.
The best performance was obtained by using 20 features
combined with quadratic discriminant analysis, thus ob-
taining values of Ac, Se, and Sp of 84.6%, 75.1%, and
90.5%, respectively, as per detected apnea episode.

4. Conclusions

The proposed HRV-based OSA detectors have reported
promising results, but additional research is still required
to consider them as potential alternatives to PSG. In fact,
some authors associated HRV features with OSA severity
(i.e. the number of apnea episodes per hour) [19, 23]. On
the other hand, others used HRV features to detect OSA in
a minute-by-minute basis [24]. Although accuracy values
between 80 and 95% have been reported in both cases, a
high number of HRV features, along with other parame-
ters derived from the ECG, have had to be combined with
advanced classifiers. As a reference, former studies have
been included in Table 1 to compare the number of em-
ployed features in each case. Because short databases have
only been used for validation of these methods, more ef-
forts are still required to obtain a realistic view of their
generalization capability, and thus of their performance in
wider contexts. Consequently, OSA detection is still an in-
teresting opportunity for a future revisited CinC Challenge.
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