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Abstract. In the realm of term rewriting, given terms s and t, a reach-
ability condition s →∗ t is called feasible if there is a substitution σ
such that σ(s) rewrites into σ(t) in zero or more steps; otherwise, it
is called infeasible. Checking infeasibility of (sequences of) reachability
conditions is important in the analysis of computational properties of
rewrite systems like confluence or (operational) termination. In this pa-
per, we generalize this notion of feasibility to arbitrary n-ary relations on
terms defined by first-order theories. In this way, properties of computa-
tional systems whose operational semantics can be given as a first-order
theory can be investigated. We introduce a framework for proving feasi-
bility/infeasibility, and a new tool, infChecker, which implements it.

Keywords: Conditional rewriting · Feasibility · Program analysis.

1 Introduction

The (in)feasibility of sequences of goals s→∗ t representing many step rewritings
in Conditional Term Rewriting Systems (CTRSs, see [22, Section 7]) has been
investigated by several authors. The word “feasibility” refers to the possibility
of applying a substitution σ as part of the desired test, i.e., checking whether
σ(s) →∗R σ(t) holds for some substitution σ, rather than just checking s →∗R t
(reachability test). The use of (in)feasibility tests in confluence and (operational)
termination analysis of CTRSs has been investigated elsewhere (see, e.g., [13,25]
and the references therein). We generalize “feasibility of a reachability problem”
by defining feasibility conditions, sequences and goals without any specific refer-
ence to rewriting systems or rewriting goals. Instead, we rely on first-order logic
and use (two layered) sequences of atoms headed with a predicate ./ as feasibil-
ity goals. The meaning of predicates ./ is given by using first-order theories Th./
by provability of the corresponding atoms. New properties (also of CTRSs) can
be investigated in this way.

? Supported by EU (FEDER), and projects RTI2018-094403-B-C32, PROME-
TEO/2019/098, and SP20180225. Also by INCIBE program “Ayudas para la exce-
lencia de los equipos de investigación avanzada en ciberseguridad” (Raúl Gutiérrez).
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Example 1. Given a CTRS R, a term t loops if t = t1 →R · · · →R tn for some
n > 1 such that t is a subterm of tn, written tnDt, cf. [2, Def. 3]. Provided that→,
→∗ and D are given appropriate theories (see Example 3 below), non-loopingness
of ground terms t is the infeasibility of the sequence t→ x, x→∗ y, y D t.

Now, looping CTRSs can be defined as those having looping terms. Thus,
loopingness of CTRSs can be defined as the feasibility of x→ y, y →∗ z, z D x.

In order to automatically analyze such (in)feasibility goals, we describe a frame-
work similar to the Dependency Pair (DP) Framework for proving termination
of TRSs [3]. After some preliminaries in Section 2, Section 3 presents the notion
of feasibility goal. Section 4 describes the feasibility framework for proving and
disproving feasibility goals. Section 5 describes our tool infChecker which pro-
vides a (partial) implementation of the framework introduced here. Section 6
provides an experimental evaluation and discusses some related work. Section 8
concludes.

2 Preliminaries

We use the standard notations in term rewriting (see, e.g., [22]). In this paper, X
denotes a countable set of variables and F denotes a signature, i.e., a set of func-
tion symbols {f, g, . . .}, each with a fixed arity given by a mapping ar : F → N.
The set of terms built from F and X is T (F ,X ). The symbol labeling the root
of t is denoted as root(t). The set of variables occurring in t is Var(t). Terms
are viewed as labeled trees in the usual way. Positions p, q, . . . are represented
by chains of positive natural numbers used to address subterms t|p of t. The
set of positions of a term t is Pos(t). A substitution is a mapping from vari-
ables into terms which is homomorphically extended to a mapping from terms
to terms. A conditional rule is written ` → r ⇐ s1 ≈ t1, · · · , sn ≈ tn, where
`, r, s1, t1, . . . , sn, tn ∈ T (F ,X ) and ` /∈ X . As usual, ` and r are called the left-
and right-hand sides of the rule, and the sequence s1 ≈ t1, · · · , sn ≈ tn (often ab-
breviated to c) is the conditional part of the rule. We often write si ≈ ti ∈ c to re-
fer to the i-th atomic condition in c or s→ t ∈ c if the position of the atomic con-
dition in c does not matter. Rules `→ r ⇐ c are classified according to the dis-
tribution of variables as follows: type 1 (or 1-rules), if Var(r)∪Var(c) ⊆ Var(`);
type 2, if Var(r) ⊆ Var(`); type 3, if Var(r) ⊆ Var(`) ∪ Var(c); and type 4, if
no restriction is given. A CTRS R is a set of conditional rules; R is called an
n-CTRS if it contains only n-rules; A 3-CTRS R is called deterministic if for
each rule ` → r ⇐ s1 ≈ t1, . . . , sn ≈ tn in R and each 1 ≤ i ≤ n, we have

Var(si) ⊆ Var(`) ∪
⋃i−1

j=1 Var(tj). Oriented CTRSs are those whose conditions

s ≈ t are handled as reachability tests σ(s)→∗ σ(t) for an appropriate substitu-
tion σ. For oriented CTRSs R, an inference system I(R) is obtained from the
following generic inference system ICTRS:

(Rf)
x→∗ x (C)f,i

xi → yi
f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk)

for all f ∈ F (k) and 1 ≤ i ≤ k

(T)
x→ y y →∗ z

x→∗ z (Rl)α
s1 →∗ t1 · · · sn →∗ tn

`→ r
for α : `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R
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le(0, s(y)) → true (1)

le(s(x), s(y)) → le(x, y) (2)

le(x, 0) → false (3)

min(cons(x, nil)) → x (4)

min(cons(x, xs)) → x⇐ min(xs) ≈ y, le(x, y) ≈ true (5)

min(cons(x, xs)) → y ⇐ min(xs) ≈ y, le(x, y) ≈ false (6)

Fig. 1. CTRS 551.trs in COPS database of confluence problems.

by specializing (C)f,i for each k-ary symbol f in the signature F and 1 ≤ i ≤ k and
(Rl)α for all conditional rules α : ` → r ⇐ c in R. Rules in I(R) are schematic: each

inference rule B1 ··· Bn
A

can be used under any instance σ(B1) ··· σ(Bn)
σ(A)

of the rule by a

substitution σ. We write s→R t (resp. s→∗R t) iff there is a proof tree for s→ t (resp.
s→∗ t) using I(R). Operational termination of R is defined as the absence of infinite
proof trees for goals s→ t and s→∗ t in I(R) [14].

A structure A for a first-order language is an interpretation of the function and
predicate symbols (f, g, . . . and P,Q, . . ., respectively) as mappings fA, gA, . . . and rela-
tions PA, QA, . . . on a given set (carrier) also denoted A. Then, the usual interpretation
of first-order formulas with respect to A is considered. A model for a theory Th, i.e., a
set of first-order sentences (formulas whose variables are all quantified), is just a struc-
ture A that makes them all true, written A |= Th. In the following, Th ` ϕ means that
formula ϕ is a logical consequence of Th. We assume the use of a sound and complete
proof method, in particular Gentzen’s natural deduction, see [23]. In this setting, we
often assume the use of the inference rules of natural deduction [23, p. 20] to deal with
logical connectives and quantifiers when necessary.

3 Feasibility of Sequences and Goals

Consider a signature Σ of function symbols and a set Π of predicate symbols. As in [4],
(Σ,Π) is often called a signature with predicates. Let F ⊆ Σ be a signature and P ⊆ Π
be a set of predicates (e.g., P = {→,→∗, ↓,↔,↔∗,D, . . .}).1 Let T = {Th./ | ./ ∈ P}
be a P-indexed set of first-order theories Th./ defining the predicates ./ in P, possibly
involving predicate symbols which are not in P.

Example 2. For the CTRS R in Figure 1, we obtain a theory R from I(R) as follows
[11, Section 4.5]: the inference rules (ρ)B1 ··· Bn

A
in I(R) are considered as sentences ρ

of the form (∀x)B1 ∧ · · · ∧Bn ⇒ A, where x is the sequence of variables occurring in
atoms B1, . . . , Bn and A; if empty, we just write B1 ∧ · · · ∧Bn ⇒ A (see Figure 2). For
P = {→,→∗}, we let Th→ = Th→∗ = R.

Examples 6 and 7 illustrate and motivate the use of theories involving predicates not
in P.

1 For simplicity, in our exposition we restrict the attention to binary predicates, but
the techniques and results in this paper easily generalize to n-ary predicates.
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(∀x) x→∗ x
(∀x, y, z) x→ y ∧ y →∗ z ⇒ x→∗ z

(∀x, y) x→ y ⇒ s(x)→ s(y)

(∀x, y, z) x→ y ⇒ cons(x, z)→ cons(y, z)

(∀x, y, z) x→ y ⇒ cons(z, x)→ cons(z, y)

(∀x, y, z) x→ y ⇒ le(x, z)→ le(y, z)

(∀x, y, z) x→ y ⇒ le(z, x)→ le(z, y)

(∀x, y) x→ y ⇒ min(x)→ min(y)

(∀y) le(0, s(y))→ true

(∀x, y) le(s(x), s(y))→ le(x, y)

(∀x) le(x, 0)→ false

(∀x) min(cons(x, nil))→ x

(∀x, y, xs) min(xs)→∗ y ∧ le(x, y)→∗ true⇒ min(cons(x, xs))→ x

(∀x, xs) min(xs)→∗ y ∧ le(x, y)→∗ false⇒ min(cons(x, xs))→ y

Fig. 2. Theory R for the CTRS R in Example 2

An (F ,P)-f-condition γ (or just f-condition if F and P are clear from the context)
is an atom s ./ t where ./∈ P and s, t ∈ T (F ,X ). Sequences F = (γi)

n
i=1 = (γ1, . . . , γn)

of f-conditions are called f-sequences. A set G = {F1; . . . ;Fm} of f-sequences is called
an f-goal ; we use ‘;’ intead of ‘,’ which is already considered in f-sequences. We often
drop ‘f-’ when no confusion arises. Empty sequences and goals are written () and {}.

Remark 1 (Notation). In the following, we often use ‘∈’ to denote membership of com-
ponents in both sequences and goals.

Definition 1 (Feasibility). A condition s ./ t is (T, σ)-feasible if Th./ ` σ(s) ./
σ(t) holds; otherwise, it is (T, σ)-infeasible. We also say that s ./ t is T-feasible (or
Th./-feasible, or just feasible if no confusion arises) if it is (T, σ)-feasible for some
substitution σ; otherwise, we call it infeasible.

A sequence F is T-feasible (or just feasible) iff there is a substitution σ such that,
for all γ ∈ F, γ is (T, σ)-feasible. Note that () is trivially feasible. A goal G is feasible
iff it contains a feasible sequence F ∈ G. Now, {} is trivially infeasible.

Example 3. (continuing Example 1) We can prove a ground term t non-looping as
the T-infeasibility of G = {(t → y, y →∗ z, z D t)}, with x, y, and z variables, and
T = {Th→,Th→∗ ,ThD} such that Th→ = Th→∗ = R and ThD is given by:

(∀x) x D x (7)

(∀x, y, z) xD y ∧ y D z ⇒ x D z (8)

(∀x1, . . . , xk) f(x1, . . . , xk)D xi (9)

for each f ∈ F and 1 ≤ i ≤ k

Example 4. A term t is root-stable (with respect to a TRS R) if t cannot be reduced
to a redex, i.e., there is no rule `→ r ∈ R such that t→∗ σ(`) for some substitution σ.
If R consists of rules `1 → r1, . . . , `p → rp (assume that different rules in R share no
variable), we can prove a ground term t root-stable by showing the {Th→∗}-infeasibility

of G = {(t→∗ `1); · · · ; (t→∗ `p)} with Th→∗ = R.
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More examples of theories Th./ can be found in [9, Sections 5.3 and 5.4] and [11,
Sections 8.1 and 8.2].

Given theories Th,Th′ and a set of atoms A, we write Th ≡A Th′ if for all A ∈ A,
Th ` A if and only if Th′ ` A. Also, given a set of atoms A and a predicate symbol ./,
A./ is the subset of atoms in A with root ./.

Definition 2. Given a set of predicates P and a P-indexed set of theories T, we say
that a theory Th preserves a feasibility sequence F (in T) if for all predicates ./ occurring
in F, Th ≡A./ Th./ holds. Thus, Th cannot prove more atoms rooted with ./ than Th./.
Similarly, Th preserves a goal G = {Fi}mi=1 if it preserves Fi for all 1 ≤ i ≤ m.

In the following, when no confusion arises, we do not explicitly mention the underlying
set of theories T. Given G = {Fi}mi=1 and Fi = (sij ./ij tij)

ni
j=1 for 1 ≤ i ≤ m, we let

ThFi =
⋃ni
j=1 Th./ij and ThG =

⋃m
i=1 ThFi .

Example 5. It is not difficult to see that ThG preserves G in Example 3.

The following result provides a (first-order) provability perspective of feasibility.

Theorem 1. 1. A condition γ = s ./ t is feasible iff Th./ ` (∃x)s ./ t holds.
2. If F = (si ./i ti)

n
i=1 is feasible, then ThF ` (∃x)

∧n
i=1 si ./i ti holds. If ThF preserves

F and ThF ` (∃x)
∧n
i=1 si ./i ti holds, then F is feasible.

3. If G = {Fi}mi=1, where Fi = (sij ./ij tij)
ni
j=1 for some ni, is feasible, then we have

that ThG ` (∃x)
∨m
i=1

∧ni
j=1 sij ./ij tij holds. If ThG ` (∃x)

∨m
i=1

∧ni
j=1 sij ./ij tij

holds and ThG preserves G, then G is feasible. Also, if there is 1 ≤ i ≤ m such that
ThFi preserves Fi and ThFi ` (∃x)

∧ni
j=1 sij ./ij tij holds, then G is feasible.

Sentences in Theorem 1 are Existentially Closed Boolean Combinations of Atoms (ECB-
CAs), i.e., formulas of the form (∃x)

∨m
i=1

∧ni
j=1Aij , where Aij are atoms and x is the

sequence of variables occurring in such atoms. We have investigated them in [9,11].
Requiring preservation is necessary for items (2) and (3) in Theorem 1.

Example 6. Let R1 = {a → b ⇐ b ≈ a} and R2 = {b → a}. With P = {→,→∗} and
T = {Th→,Th→∗}, where Th→ = R1 = {(∀x) x →∗ x, (∀x, y, z) x → y ∧ y →∗ z ⇒
x →∗ z, b →∗ a ⇒ a → b} and Th→∗ = R2 = {(∀x) x →∗ x, (∀x, y, z) x → y ∧ y →∗
z ⇒ x →∗ z, b → a}, we have Th = R1 ∪ R2 and Th ` a → b. However, a → b is not
T-feasible because R1 6` a→ b. Note that Th does not preserve (a→ b).

Preservation is often achieved by distinguishing predicates describing different compu-
tations.

Example 7. Let R′1 and R′2 be theories for R1 and R2 in Example 6, where→∗1 is used
instead of→∗ in R1 (but→ remains as it is) to yield R′1 = {(∀x)x→∗1 x, (∀x, y, z)x→
y ∧ y →∗1 z ⇒ x →∗1 z, b →∗1 a ⇒ a → b} and →2 is used instead of → in R2 (and

→∗ is still used) to yield R′2 = {(∀x) x →∗ x, (∀x, y, z) x →2 y ∧ y →∗ z ⇒ x →∗

z, b→2 a}. With Th′→ = R′1 and Th′→∗ = R′2 (and T′ = {Th′→,Th′→∗}), we have that

Th′ = R′1 ∪R
′
2 preserves G = {(a→ b)} and Th′ 6` a→ b. By Theorem 1 a→ b, is not

T′-feasible, as expected.

Theorem 1 characterizes feasibility of a goal G as provability of an ECBCA ϕG . If ϕG is
shown unprovable, we conclude infeasibility of G. And, under appropriate preservation
conditions, theorem proving can be used to conclude feasibility of a goal G. However,
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(un)provability of atoms is often undecidable. For instance, for TRSs R, it is well-
known that given ground terms s and t, it is in general undecidable whether s rewrites
into t; i.e., whether R ` s→∗ t holds (as Post’s correspondence problem is a particular
case, see, e.g., [22, Section 4.1]). Hence, feasibility of conditions, sequences and goals
remains, in general, undecidable. In order to obtain automatic proofs of feasibility, it
is often useful to proceed using a ‘divide-and-conquer’ strategy. In the following, we
exploit this idea to define a practical framework to prove/disprove feasibility of goals.

4 Feasibility Framework

In [3], proofs of termination of TRSs proceed by transforming the so-called DP problems
τ . A divide-and-conquer approach is applied by means of processors P mapping a DP
problem τ into a (possibly empty) set P(τ) of DP problems {τ1, . . . , τn}. DP problems
τi returned by P can now be treated independently by using other processors. In this
way, a DP proof tree is built.

In our setting, we first define notions of f-problem and f-processor, and then show
how to use them to (dis)prove feasibility.

Definition 3 (f-Problem and f-Processor). Given a set of predicates P, a P-
indexed theory T, and a goal G, a pair τ = (T,G) is called an f-Problem. We say
that τ is feasible if G is T-feasible; otherwise it is infeasible.

An f-Processor P is a partial function from f-Problems into sets of f-Problems.
Alternatively, it can return “yes”. Dom(P) represents the domain of P, i.e., the set of
f-Problems τ that P is defined for.

Definition 4 (Soundness and Completness). Let P be an f-Processor and τ ∈
Dom(P). We say that P is

– sound iff τ is feasible whenever either P(τ) = “yes” or ∃τ ′ ∈ P(τ), such that τ ′ is
feasible.

– complete iff τ is infeasible whenever P(τ) 6= “yes” and ∀τ ′ ∈ P(τ), τ ′ is infeasible.

Feasibility problems can be proved or disproved by using a proof tree as follows (where
inner nodes include the root of the tree unless it consists of a single node).

Definition 5 (Feasibility Proof Tree). Let τ = (T,G) be an f-Problem. A feasibility
proof tree (FP Tree) T for τ is a tree whose inner nodes are labeled with f-Problems
and the leaves are labeled either with f-Problems, “yes” or “no”. The root of T is labeled
with τ and for every inner node n labeled with τ ′, there is an f-Processor P such that
τ ′ ∈ Dom(P) and:

1. if P(τ ′) = “yes” then n has just one child, labeled with “yes”.
2. if P(τ ′) = ∅ then n has just one child, labeled with “no”.
3. if P(τ ′) = {τ1, . . . , τk} with k > 0, then n has k children labeled with the f-Problems

τ1, . . . , τk.

Theorem 2 (Feasibility Framework). Let T be a feasibility proof tree for τI =
(T,G). Then:

1. if all leaves in T are labeled with “no” and all involved f-Processors are complete
for the f-Problems they are applied to, then G is T-infeasible.

2. if T has a leaf labeled with “yes” and all f-Processors in the path from τI to the
leaf are sound for the f-Problems they are applied to, then G is T-feasible.

In the following, we describe some sound and complete f-Processors. If no confusion
arises, we use processor instead of f-Processor.
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4.1 Splitting Processor

Our first processor decomposes a feasibility goal into its feasibility sequences.

Definition 6 (Splitting Processor). Let τ = (T,G) be an f-Problem. The processor
PSpl is given by PSpl(τ) = {(T, {F}) | F ∈ G}.

The proof of the following result is immediate by using Definitions 3 and 1.

Theorem 3. Processor PSpl is sound and complete.

Example 8. Consider the following TRS R [13, Example 9]:

a → b (10)

b → a (11)

f(x, x) → c (12)

Following Example 4, we prove root-stability of f(a, c) as the {R}-infeasibility of
G = {((f(a, c) →∗ a) ; (f(a, c) →∗ b); (f(a, c) →∗ f(x, x))}. With PSpl we start the
proof of infeasibility of τ = ({R},G) as follows: PSpl(τ) = {τ1, τ2, τ3}, where τ1 =
({R}, {(f(a, c) →∗ a)}), τ2 = ({R}, {(f(a, c) →∗ b)}), and τ3 = (({R}, {(f(a, c) →∗
f(x, x))}).

4.2 Provability Processor

Our next processor exploits Theorem 1 to use theorem proving in proofs of feasibility.

Definition 7 (Provability processor). Let τ = (T,G) be an f-Problem with G =
{F} ] G′ where F = (si ./i ti)

n
i=1. Processor PProv is given by

PProv(τ) = “yes” iff ThF ` (∃x)

n∧
i=1

si ./i ti holds.

Note that, whenever n = 0, i.e., F = (), then
∧n
i=1 si ./i ti is true and PProv(τ) = “yes”.

Theorem 4. Processor PProv is complete. If ThF preserves F, then it is sound.

In infChecker, we use Prover9 [18] as a backend to implement PProv.

Example 9. For R in Figure 1, the feasibility goal G (see file 903 in COPS):

{(le(x,min(y))→∗ false,min(y)→∗ x)}

and the corresponding first-order formula:

(∃x, y) le(x,min(y))→∗ false ∧min(y)→∗ x (13)

with τI = ({R},G), we have PProv(τI) = “yes” by using Prover9 to prove (13) by
resolution as follows2:

2 For readability, the output is slightly pretty printed.
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(11) exists x y (le(x,min(y)) ->* false) & (min(y) ->* x) [goal]

(12) x ->* x [assumption]

(13) -(x -> y) | -(y ->* z) | (x ->* z) [assumption]

(15) -(x -> y) | (le(z,x) -> le(z,y)) [assumption]

(22) le(x,0) -> false [assumption]

(23) min(cons(x,nil)) -> x [assumption]

(27) -(le(x,min(y)) ->* false) | -(min(y) ->* x) [deny(11)]

(48) le(x,0) ->* false [ur(13,22,12)]

(59) -(le(min(x),min(x)) ->* false) [resolve(27,12)]

(67) -(le(min(x),min(x)) -> y) | -(y ->* false) [resolve(59,13)]

(69) -(le(min(x),y) ->* false) | -(min(x) -> y) [resolve(67,15)]

(76) -(le(min(cons(x,nil)),x) ->* false) [resolve(69,23)]

(77) $F [resolve(76,48)]

Example 10. Consider the two rules TRS R = {a → c(b), b → c(b)}. For R =
{(14)− (18)} and ThD = {(19)− (21)}:

(∀x) x→∗ x (14)

(∀x, y, z) (x→ y ∧ y →∗ z ⇒ x→∗ z) (15)

(∀x, y) (x→ y ⇒ c(x)→ c(y)) (16)

a→ c(b) (17)

b→ c(b) (18)

(∀x) xD x (19)

(∀x, y, z) xD y ∧ y D z ⇒ xD z (20)

(∀x) c(x)D x (21)

infChecker can prove loopingness of R as the feasibility of ({R,ThD},G) by relying on
Prover9 with G = {(x→ y, y →∗ z, z D x)} (see Example 1). Note that the union of R
and ThD preserves both R and ThD, as required for soundness of PProv.

If no proof of ϕF = (∃x)
∧n
i=1 si ./i ti is found, then PProv does not apply. In this case,

it is still possible that F is feasible, but the proof system failed to prove it. Also, it
is possible that F is infeasible. In this case, our next processor, which tries to prove
infeasibility as satisfiability [9], can be useful.

4.3 Satisfiability Processors

The next processor implements the satisfiability approach in [9].

Definition 8 (Satisfiability Processor). Let τ = (T,G) be an f-Problem with G =
{F}]G′ for F = (si ./i ti)

n
i=1 and A be a structure. Processor PSat is given by PSat(τ) =

(T,G′) iff A |= ThF ∪ {¬(∃x)
∧n
i=1 si ./i ti}.

Remark 2. In the following, the soundness and completeness theorems given for the
different introduced processors assume the notations previously introduced in the cor-
responding definitions.

In the following, we say that a theory Th is stable if for all terms s, t and substitutions
σ, if Th ` s ./ t, then Th ` σ(s) ./ σ(t).

Theorem 5. Processor PSat is sound. If T (F) 6= ∅ and ThF is stable, then it is com-
plete.



Automatically Proving and Disproving Feasibility Conditions 9

In infChecker, we use the model generators AGES [5] and Mace4 [18] to find suitable
structures A to be used in the implementation of PSat.

Example 11. For R, R and ThD as in Example 10, we can prove term a non-looping.
The following structure over N ∪ {−1}:

aA = −1 bA = 1 cA(x) = x
x→A y⇔ x ≤ 1 ∧ y ≥ 1 x (→∗)A y⇔ x ≤ y xDA y⇔ x ≤ y

satisfies R∪ ThD ∪ {¬(∃x, y) (a→ x ∧ x→∗ y ∧ y D a)}. Thus, a is non-looping.

The following version of PSat often provides a direct answer about infeasibility of a goal.

Definition 9 (One-Step Satisfiability Processor). Let τ = (T,G) be an f-Problem
with G = {F1; · · · ;Fm}, where, for all 1 ≤ i ≤ m, Fi is (si1 ./i1 ti1, . . . , sini ./ini tini)
for some ni > 0. Let A be a structure. Processor PSatAll is given by PSatAll(τ) = ∅ iff
A |= ThG ∪ {¬(∃x)

∨m
i=1

∧ni
j=1 sij ./ij tij}.

Theorem 6. Processor PSatAll is sound. If T (F) 6= ∅ and ThG is stable, then it is
complete.

Example 12. (continuing Example 8) With Mace4 we obtain a model of

R∪ {¬(∃x) (f(a, c)→∗ a ∨ f(a, c)→∗ b ∨ f(a, c)→∗ f(x, x))}

Since PSatAll(τ) = ∅, G is T-infeasible. This is an alternative proof without PSpl.

Although PSatAll can be simulated by a single step of PSpl followed by the application of
PSat to the obtained f-Problems, from a practical point of view PSatAll has the advantage
of avoiding the overloading due to the split the initial goal into a set of sequences with
the generation of several models by means of calls to (external) model generators.
Instead, PSatAll makes a single call to the model generator(s).

4.4 Usable Rules in CTRS Theories

As discussed in [13, Section 2], dealing with CTRSs R = (F , R), we may often drop
some rules in R before establishing (in)feasibility of conditions s→∗ t. First, consider
the following overapproximation of the set of rules that can be applied to a term t:

RULES(R, t) = {`→ r ⇐ c ∈ R | ∃p ∈ Pos(t), root(`) = root(t|p)}

The set of usable rules for t is defined as follows:

U(R, t) = RULES(R, t) ∪
⋃

l→r⇐c∈RULES(R,t)

(
U(R], r) ∪

⋃
s≈t∈c

U(R], s)

)

where R]= R− RULES(R, t).3 Given a sequence F, we let

U→∗(R,F) =
⋃

s→∗t∈F

U(R, s) (22)

3 The use of R] instead of R is important for implementing the computation of us-
able rules. By decreasing (from R to R]) the set of considered rules, the recursive
definition is shown to be terminating.
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Example 13. For R in Figure 1 and F = (le(0, s(0))→∗ x), U→∗(R,F) = {(1), (2), (3)}.

Let R|U→∗ (R,F) be the first-order theory for the CTRS (F ,U→∗(R,F)), which keeps
the original signature of R.

Definition 10. Let τ = (T,G) be an f-Problem such that T = {Th→∗} ] T′ with
Th→∗ = R for a CTRS R and G = {F} ] G′. Let Th′→∗ = R|U→∗ (R,F). Processor PUR

is given by PUR(τ) = {({Th′→∗} ] T′, {F}), (T,G′)}.

PUR distributes the sequences in G in two new f-Problems: the first one consists of a goal
with a single sequence F together with a refined version of T where R is simplified into
R|U→∗ (R,F); the second f-Problem consists of G′ but keeps the original set of theories

T. By using [13, Proposition 4], we can see that the ({R|U→∗ (R,G)}]T)-feasibility of a

sequence F implies its ({R} ] T)-feasibility. Similarly, ({R} ] T)-infeasibility of F can
be proved as ({R|U→∗ (R,F)} ] T)-infeasibility provided that all terms s in feasibility
conditions s→∗ t in F are ground. Thus, we have the following:

Theorem 7. PUR is sound. If for all s→∗ t ∈ F, s is ground, then PUR is complete.

As discussed in the last paragraph of [13, Section 2], the groundness requirement cannot
be dropped, in general (even for TRSs).

Example 14. For R = {a→ b}, the sequence F = (x→∗ a, x→∗ b) is {Th→∗}-feasible
(just instantiate variable x to a and use the rule in R). However, it is not {Th′→∗}-
feasible for Th′→∗ = R|U→∗ (R,F) because U(R, x) is empty. Hence, U→∗(R,F) = U(R, x)∪
U(R, x) is also empty.

PUR deals with many-step conditions s →∗ t only. Furthermore, note that no change
(simplification) in Th→ (if used in T) is introduced. For one-step conditions s → t,
we can use a similar (sound and complete) processor PUR1 as follows. Let U→(R,F) =⋃
s→t∈F U(R, s) and R|U→(R,F) be the first-order theory for (F ,U→(R,F)).

Definition 11. Let τ = (T,G) be an f-Problem such that T = {Th→}]T′ with Th→ =
R for a CTRS R and G = {F} ] G′. Let Th′→ = R|U→(R,F). Processor PUR1 is given by
PUR1(τ) = {({Th′→} ] T′, {F}), (T,G′)}.

Theorem 8. PUR1 is sound. If for all s→ t ∈ F, s is ground, then PUR1 is complete.

Starting from the f-Problem (T,G), where G = {F}]G′, both PUR and PUR1 return two
f-Problems (T1,G1) and (T2,G2). For both PUR and PUR1, we have G1 = {F}, G2 = G′,
and T2 = T. As for T1, PUR changes the component Th→∗ of T. On the other hand,
PUR1 changes Th→. With regard to the preservation property, which is relative to the
goal and theory in a given f-Problem, whenever it holds for (T,G), it is not difficult to
see (from the definition of preservation and usable rules) that it also remains true for
(T1,G1) and (T2,G2).

4.5 Narrowing on Rewriting Conditions Processor

Reachability problems σ(s) →∗ σ(t) are often investigated using narrowing and uni-
fication conditions directly over terms s and t, thus avoiding the ‘generation’ of the
required substitution σ. In this section, we use narrowing to simplify feasibility condi-
tions in G. Definition 12 describes how narrowing is defined in the context of CTRSs.
In the following, we write s =?

θ t if s and t unify with mgu θ.
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Definition 12. [16, Definition 79] Let R be a CTRS. A term s narrows to a term t
(written s R,θ,p t or just s R,θ t or even s t), iff there is a nonvariable position
p ∈ PosF (s), a renamed rule ` → r ⇐ s1 → t1, . . . , sn → tn in R, substitutions
θ0, . . . , θn, τ1, . . . , τn, and terms t′1, . . . , t

′
n such that:

1. s|p =?
θ0
`,

2. for all i, 1 ≤ i ≤ n, ηi−1(si)  ∗R,θi t
′
i and t′i =?

τi θi(ηi−1(ti)), where η0 = θ0 and
for all i > 0, ηi = τi ◦ θi ◦ ηi−1, and

3. t = θ(s[r]p), where θ = ηn.

We write u  ∗R,β v for terms u, v and substitution β iff there are terms u1, . . . , um+1

and substitutions β1, . . . , βm for some m ≥ 0 such that

u = u1  R,β1 u2  R,β2 · · · R,βm um+1 = v

and β = βm ◦ · · · ◦ β1 (or β = ε if m = 0).

Given a term u, the set N1(R, u) represents the set of one-step R-narrowings issued
from u:

N1(R, u) = {(v, θ↓Var(u)) | u `→r⇐c,θ v, `→ r ⇐ c ∈ R} (23)

where θ↓Var(u) is a substitution defined by θ↓Var(u) (x) = θ(x) if x ∈ Var(u) and
θ↓Var(u) (x) = x otherwise.

As discussed in [16, Section 7.5], the set N1(R, u) can be infinite. In [16, Proposi-
tion 87] some sufficient conditions for finiteness of N1(R, u) are given. Knowing these
restrictions, in Theorem 9 we define a narrowing processor on feasibility conditions.

Given a sequence Fk = (sj ./j tj)
n
j=1 in a goal G, and 1 ≤ i ≤ n such that

./i =→∗, N (R,G, k, i) returns a new set of feasibility goals where each element of the
set corresponds to a possible narrowing on the condition i:

N (R,G, k, i) = {G[Fk[θ, w →∗ ti]i]k | si →∗ ti ∈ Fk, (w, θ) ∈ N1(R, si)}

where θ consists of new conditions x1 →∗ θ(x1), . . . , xm →∗ θ(xm) obtained from the
bindings in θ for variables in Var(si) = {x1, . . . , xm}.

Definition 13 (Narrowing on f-Conditions Processor). Let τ = ({R},G) be an
f-Problem, si →∗ ti ∈ Fk for some Fk in G, and N ⊆ N (R,G, k, i) finite. PNC is given
by PNC(τ) = {({R},G′) | G′ ∈ N}.

Given a term s, we let NRules(R, s) be the set of rules α : ` → r ⇐ c ∈ R such
that a nonvariable subterm t of s is a narrex of α,4 and, given a substitution θ, we
denote as θ↓Var(s) the substitution defined by θ↓Var(s) (x) = θ(x) if x ∈ Var(s) and
θ↓Var(s) (x) = x otherwise.

Theorem 9. PNC is sound. If N = N (R,G, k, i) and si →∗ ti ∈ Fk is such that si and
ti do not unify and either si is ground and R is a 2-CTRS or (1) NRules(R, si) is a
TRS, (2) si is linear, and (3) Var(si) ∩ Var(ti) = ∅, then PNC is complete.5

4 Given a CTRS S, a non-variable term t is a narrowing redex (or a narrex, for short)
of a rule ` → r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ S if t and ` unify with mgu θ (we assume
Var(t) ∩ Var(`) = ∅). However, if (θ(s1) ≈ θ(t1), . . . , θ(sn) ≈ θ(tn)) can be proved
{S}-infeasible, we can discard t, as no narrowing step is possible on it. In our current
implementation, though, only the unification test is used.

5 This processor is inspired by the processor defined in [17, Section 4.1]. A justification
for the completeness conditions can be obtained from [17, Examples 18 and 19].
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add(0, x) → x
add(s(x), y) → s(add(x, y))
div(0, s(x)) → 0

div(s(x), s(y)) → 0⇐ lte(s(x), y) ≈ true
div(s(x), s(y)) → s(q)⇐ lte(s(x), y) ≈ false, div(minus(x, y), s(y)) ≈ q

lte(0, y) → true
lte(s(x), 0) → false

lte(s(x), s(y)) → lte(x, y)
minus(0, s(y)) → 0

minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
mod(0, y) → 0
mod(x, 0) → x

mod(x, s(y)) → mod(minus(x, s(y)), s(y))⇐ lte(s(y), x) ≈ true
mod(x, s(y)) → x⇐ lte(s(y), x) ≈ false
mult(0, y) → 0

mult(s(x), y) → add(mult(x, y), y)
power(x, 0) → s(0)
power(x, n) → mult(mult(y, y), s(0))⇐ n ≈ s(n′),

mod(n, s(s(0))) ≈ 0, power(x, div(n, s(s(0)))) ≈ y
power(x, n) → mult(mult(y, y), x)⇐ n ≈ s(n′),

mod(n, s(s(0))) ≈ s(z), power(x, div(n, s(s(0)))) ≈ y

Fig. 3. CTRS 529.trs in COPS

Even with N (R,G, k, i) infinite, a subset N of N (R,G, k, i) can be sufficient to prove
feasibility. However, to prove infeasibility we need to consider all possible narrowings.

Example 15. Consider the CTRS R in Figure 3, G = {(lte(s(x), 0) →∗ true)}, and
τI = ({R},G). Since NRules(R, lte(s(x ), 0 )) contains the lte rules only, N (R,G, 1, 1) =
{(x →∗ x, false →∗ true)}. Therefore, PNC(τI) = {τ1} with τ1 = ({R}, (x →∗
x, false →∗ true)). Since NRules(R, lte(s(x ), 0 )) is a TRS, lte(s(x), 0) is linear, and
Var(lte(s(x), 0))∩ Var(true) = ∅, PNC is complete. Now, we apply PSat to τ1 to obtain
PSat(τ1) = ∅ by using Mace4. The obtained FP tree is in displayed in Figure 4.

5 Implementation and Web Interface

infChecker 1.0 is written in Haskell and consists of 30 Haskell modules with more than
4500 lines of code. The tool can be used through its web interface here:

http://zenon.dsic.upv.es/infChecker/

The input format is an extended version of the Confluence Competition (CoCo) for-
mat [20], which is the official format used in the infeasibility (INF) category.6 The
input has two components:

6 See http://project-coco.uibk.ac.at/2019/categories/infeasibility.php

http://zenon.dsic.upv.es/infChecker/
http://project-coco.uibk.ac.at/2019/categories/infeasibility.php
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τI no!

PNC

τ1

PSat

no

Fig. 4. Proof tree obtained from Example 15

1. A CTRS R in TPDB format7 which can specify a replacement map µ for context-
sensitive rewriting (CSR [10]) establishing the arguments µ(f) ⊆ {1, . . . , k} which
can be rewritten for each k-ary symbol f . This is top-down propagated to positions
of terms, which are then called active. We write s ↪→ t if an active subterm of s
can be rewritten so that s → t. Then, →∗, ↓, ↔, etc. are generalized to CSR as
↪→∗,

↪→

, ←↩↪→, etc., by using ↪→ instead of →.
2. An f-goal built using the set

PiCh = {|>, |>=} ∪ {->, ->*, -><-, <-->, (<-->*)} ∪ {\->, \->*, \-><-/, <-/\->, <-/\->*} ∪ {==}

of (binary) predicates for (strict) subterm (|> and |>=), one or many rewriting steps
(-> and ->*), joinability (-><-), symmetric closure of -> (<-->), conversion (<-->*)
and their context-sensitive versions \->, \->*, \-><-/, <-/\->, and <-/\->*.

Theories Th./ for each ./ ∈ PiCh are automatically obtained from the components of
R (signature, replacement map, conditional rules). Symbol == is borrowed from the
COPS syntax, where it is used to specify the conditional part of rewrite rules (see ≈
in Figure 1). Both in the conditional part of rules and in f-goals, its meaning depends
on the CONDITIONTYPE section of the input specifying how the conditions of rules are
evaluated [22, Definition 7.1.3] according to:

CONDITIONTYPE replace == by

ORIENTED ->*

JOIN -><-

SEMI-EQUATIONAL <-->*

In this respect, when using ↪→ or ↪→∗ (i.e., \-> or \->*) in f-goals, the associated
theories Th↪→ and Th↪→∗ are those obtained by evaluating the conditions si ≈ ti in
rules using ↪→∗,

↪→

, or←↩↪→∗, depending on the label ORIENTED, JOIN, or SEMI-EQUATIONAL
specified in CONDITIONTYPE. If no replacement map has been specified (i.e., no STRATEGY

section with CONTEXTSENSITIVE label is given, the trivial replacement map µ>(f) =
{1, . . . , k}, establishing no replacement restrictions, is automatically assumed for each
k-ary symbol f .

7 See http://zenon.dsic.upv.es/muterm/?page_id=31

http://zenon.dsic.upv.es/muterm/?page_id=31
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When the problem is introduced, a model generator for infeasibility (AGES, Mace4
or Automatic) can be selected. Then, pressing button Prove automatically initiates
procedure to check whether the problem is feasible or infeasible in the given timeout.

Currently, infChecker implements the construction of the FP tree in Definition 5
with the processors presented in Section 4 by depth-first generation of the nodes and
orderly attempting the following sequence of processors to develop each node:8 PSpl,
PProv, PSat, and PNC. If the final answer is YES or NO, the tool displays a report in plain
text. Otherwise, MAYBE is returned.

6 Experimental Evaluation

We participated in the INF category of the 2019 Confluence Competition (CoCo),9

with a limit of 60 seconds to return a proof of feasibility or infeasibility (or a don’t
know answer). infChecker obtained the following results:

INF Tool Yes No Total

infChecker 40 32 72

ConCon 31 0 31

nonreach 30 0 30

Moca 26 0 26

maedmax 15 0 15

CO3 12 0 12

Answers Yes/No in the table refer to infeasibility (which is the focus of the competi-
tion). In our setting, given a CTRS R and an infeasibility problem given as a feasibility
sequence G, we just return “Yes” if τI is proved infeasible, and “No” if τI is proved
feasible. Apart from the 32 “No” answers, there are 7 more examples that can be
proved positively (“Yes”) using infChecker only. There also are 10 examples that can
be proved by other tools and cannot be proved by infChecker.

In the experiments PUR was used 11 times and PNC was used twice. We required a
combination of processors in 13 examples: the sum of uses of PUR and PNC. Being unable
to provide a definite (YES/NO) answer, their use always requires another processor to
finish the proof. According to the strategy described at the end of Section 5, such a
combination is necessary. Thus, we need both PUR and PNC to solve the examples.

7 Related Work

The notion of (in)feasibility of a logic formula has been investigated in [12, Section 4.1],
in the context of the analysis of operational termination of programs in general logics
[15]. A satisfiability approach to prove infeasibility of first-order formulas with respect
to an order-sorted first-order theory [4] is described in [12, Section 4.1.1]. No attempt to

8 We use a Haskell library for parallelism. However, due to the Breadth First Search
evaluation strategy of the library, in a parallel execution P1 ‖ P2 ‖ · · · ‖ Pn of several
processors we wait until the leftmost processor (P1) is completely evaluated (returns
a solution or reaches a timeout) before continuing with P2 ‖ · · · ‖ Pn. Thus, there is
a kind of ‘restricted’ parallelism in our implementation.

9 http://project-coco.uibk.ac.at/2019/
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decompose such proofs by taking into account the structure of the logic formula (as done
our feasibility framework) is made. No technique for proving feasibility is proposed.
Actually, our feasibility framework could be advantageously used to implement proofs
of operational termination of programs in general logics.

Sternagel and Yamada [25] define a framework to prove reachability constraints φ
for TRSs R as first-order formulas where only reachability atoms s � t (instead of
s →∗ t) are allowed. As remarked in [25, footnote 1], negation and universal quan-
tification are not considered, i.e., only ECBCAs with atoms s � t are (ultimately)
considered. A constraint s � t is satisfied by a substitution σ with respect to R if
σ(s)→∗R σ(t). Reachability constraints φ are called satisfiable if there is a substitution
σ such that σ(φ)10 is satisfied in the usual first-order logic sense. Our approach is more
flexible as more predicates can be defined by appropriate theories (including CTRSs).

For instance, non-root reachability constraints s
>Λ
� t (given in [25, Section 4] in terms

of reachability constraints) can be defined by Th>Λ−→∗
consisting of

(∀x) x
>Λ−→∗ x (24)

(∀x)(∀y)(∀z) x
>Λ→ y ∧ y >Λ−→∗ z ⇒ x

>Λ−→∗ z (25)

plus sentences (Rl)α for each rewrite rule α, sentences (C)f,i for each k-ary symbol f

and 1 ≤ i ≤ k, and (∀x)(∀yi)xi → yi ⇒ f(x1, . . . , xi, . . . , xk)
>Λ→ f(x1, . . . , yi, . . . , xk).

We could also cover CTRSs by also adding (T), for the transitivity rule (T), nec-
essary for the evaluation of the conditional part of conditional rules α (which may
require root steps). Then, the non-reachability problems considered in [25, Section

4] for TRSs R could be treated in our framework using P = {→,→∗, >Λ−→∗ } and
T = {Th→,Th→∗ ,Th>Λ−→∗}, where Th→ = Th→∗ = R. Actually, we can ‘import’

the decomposition treatment for non-root reachability goals in [25, Definition 5] as
a transformation processor (like PNC) specific for non-root reachability conditions of
TRSs as follows: let τ = (T,G) and Fi ∈ G be such that Fi = (γ1, . . . , γj , . . . , γn) with

γj = f(s1, . . . , sk)
>Λ−→∗ f(t1, . . . , tk) ∈ Fi for some terms si, ti, 1 ≤ i ≤ k. Then,

Pnon-root-r(τ) = {(T,G[F′i]i)}

where F′i = (γ1, . . . , γj−1, s1 →∗ t1, . . . , sk →∗ tk . . . , γj+1, . . . , γn) and G[F′i]i is the
goal obtained by replacing the i-th sequence of G by F′i. This example also shows how
techniques developed elsewhere could be smoothly integrated in our framework.

Decidability of reachability problems for CSR in TRSs (i.e., does s ↪→∗ t hold?) has
been investigated using tree-automata techniques [1,6,7,8]. infChecker is able to (try to)
prove and disprove reachability conditions as f-goals using predicate \->* without any
specific restriction on the TRSs (e.g., left-linearity), as done in these papers.

Regarding the automation of proofs of infeasibility in (conditional) rewriting, 2019
was the first year the infeasibility category was included in the International Conflu-
ence Competition. The new category had a good reception, with 6 participating tools
(summary of results in Section 6), and provided a good picture of the state of the art:

– CO3 tries to prove confluence and if it fails linearizes the condition and tries to
compute a narrowing tree for the linearized condition. The applicability of nar-
rowing trees in this context is restricted to syntactically deterministic conditional

10 obtained by (i) renaming all bounded variables in φ using variables not occurring in
bindings of σ to obtain φ′, and then (ii) replacing each free variable x of φ′ by σ(x).
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term rewriting systems (right-hand sides of conditions must be constructor terms
or ground normal forms) that are constructor systems [21].

– ConCon uses a variety of methods to check for infeasibility of conditional critical
pairs, ranging from a simple technique based on unification, via symbol transition
graph analysis, reachability problem decomposition, the exploitation of certain
equalities in the conditions, and tree automata completion to equational reasoning
[24].

– Moca implements maximal ordered completion similar to maedmax [26] together
with some approximation techniques not yet published.

– maedmax implements maximal order completion [26].
– nonreach uses two approaches: transformations based on decomposition and nar-

rowing and nonreachability checks based on unification, symbol transition graphs,
equational reasoning and tree automata completion [19,25].

Thanks to representing CTRSs R as first-order theories R, infChecker was not only the
most successful tool for checking infeasibility, but also the only tool currently able to
disprove it (by proving feasibility). There also is room, however, for improvements, as
witnessed by the 10 examples mentioned in the summary of experiments in Section 6. In
order to deal with these examples (not handled by infChecker), nonreach uses narrowing
and Moca uses satisfiability with LPO. Regarding ConCon, it is unclear from the report
provided by the tool, which specific technique was used to solve the examples.

8 Conclusions and Future Work

We have extended and generalized the notion of feasibility sequence introduced in [13]
by considering goals which are sets of sequences of conditions s ./ t for arbitrary
predicates ./. Each predicate symbol ./ is ‘defined’ by a first-order theory Th./. Such
conditions, sequences, and goals have a precise logical characterization as ECBCAs,
and its feasibility can be investigated as provability of such formulas (Theorem 1). We
have shown some examples of properties (of CTRSs) which can be proved by using
this approach. We have introduced a framework for proving and disproving feasibility
of such goals. To the best of our knowledge, our logic-based notion of feasibility goal
and the framework to prove and disprove them are new in the literature.

We have developed a new tool implementing our framework: infChecker. Currently,
infChecker provides a first implementation of the framework introduced in this paper
(restricted to CTRSs, but extended with context-sensitivity, subterm, etc.), and sup-
ports predicates like→ (one-step rewriting),→∗ (many-step rewriting), ↓ (joinability),
↔∗ (conversion), and the analogous for context-sensitive rewriting. We also give sup-
port to D (subterm) and B (strict subterm). As far as we know, infChecker is the first
tool dealing with (in)feasibility problems supporting this set of predicates. Also, the
use of provability/satisfiability techniques in proofs of (in)feasibility seems to be new
in the literature. We participated in the 2019 Confluence Competition [20] in the INF
(infeasibility) category, being the most powerful tool for checking both infeasibility and
feasibility. In the near future, we plan to extend infChecker to provide full support to
our framework, by allowing the explicit definition of (not necessarily binary) predicates
and independent first-order theories associated to such predicates besides the built-in
set of predicates PiCh and associated theories which are available now.

Acknowledgments We thank the anonymous referees for many remarks and sugges-
tions that led to improve the paper.
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