Document downloaded from:

http://hdl.handle.net/10251/178923
This paper must be cited as:

Muratore, G.; Rincon Arango, JA.; Julian Inglada, VJ.; Carrascosa Casamayor, C.; Greco,
G.; Fortino, G. (2020). Towards a Dynamic Edge Al Framework applied to autonomous
driving cars. Springer. 406-415. https://doi.org/10.1007/978-3-030-51999-5 34

The final publication is available at

https://doi.org/10.1007/978-3-030-51999-5 34

Copyright gpringer

Additional Information

Towards a Dynamic Edge AI Framework applied
to autonomous driving cars

G. Muratore?, J. A. Rincon', V. Julian', C. Carrascosa!, G. Greco?,G. Fortino®

! Universitat Politécnica de Valencia. VRAIN. Valencian Research Institute for
Artificial Intelligence {jrincon, vinglada, carrasco@dsic.upv.es}

2 Department of Mathematics and Computer Science (DeMaCS), University of
Calabria, Via P. Bucci, 87036 Rende (CS), - Italy
{mrtgpp921011063v@studenti.unical.it, gianluigi.grecoQunical.it }

3 Department of Informatics, Modeling, Electronics and Systems (DIMES)
University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy
{g.fortino@unical.it}

Keywords: Autonomous Driving, Internet of Things, Edge Al Intelligent Agents

Abstract. This work proposes an innovative solution in the field of Edge
AT in order to efficiently exploit new hardware components available on
the market at low cost. Edge AI means that algorithms are processed
locally on a hardware device. The algorithms use data (sensor data or
signals) that are created on the own device. The idea of this paper focuses
on demonstrating the validity of the proposed solution by implementing
an autonomous driving system that exploits communication between in-
telligent agents. In this case, our self-driving cars are equipped with a
low-cost device that allows you to recognise objects along the way and
consequently take actions by running a machine learning model. The
presence of a machine learning model also allows the developer to modify
it by extending the flexibility and application possibilities of the proposed
solution.

1 Introduction

In the last decade we have been able to observe how Artificial Intelligence (AI)
has advanced continuously, playing an important role in different areas of knowl-
edge such as medicine [1], robotics [2], or autonomous cars [3], among others. In
all these applications were necessary large computing units, high-performance
servers, capable of executing millions of calculations per second. Some exam-
ples are Cloud services such as Amazon Web Services (AWS)* (that introduced
its Elastic Compute Cloud and was the first public Cloud Computing service
available), Microsoft Azure® (that was announced as Azure) and Google Cloud

* https://aws.amazon.com/es/
® https://azure.microsoft.com /es-es/

PlatformS. However, so much computing power has some drawbacks, such as the
space they need and their high energy consumption.

At the same time as Al evolved, electronics and microelectronics evolved as
well. This evolution has made it possible to create smaller and more powerful de-
vices capable of accessing sensors, actuators and being connected to the Internet.
This is what we now call the Internet of Things (IoT) [4] [5], which allows almost
any everyday element (refrigerators, lights, televisions, etc.) to be connected to
the Internet. However, there are still some cases in which complex processes are
required in which it is necessary to use some Al tools. Therefore, these devices
are seen in the need to use the cloud as an Al computing tool and return to the
device the results obtained. This process in some cases is too costly, due to the
time required to send such data. It is for this reason that some of these devices
have evolved to what we know today as EDGE Computing [6], [7], [5], [8]. Edge
Computing allows all data generated by IoT devices to be processed where they
have been generated, thus avoiding sending data from point A (fridge) to a far-
ther B point (cloud or data centre). This means that the refrigerator collects
and processes the data at its place of origin, thus avoiding the massive sending
of information to the cloud. According to Cisco, some 50 billion IoT devices will
be connected by 2020, but all these volumes of data are passive if they cannot
be analysed or interpreted.

This data processing in most cases, are used to perform simple actions on
the systems. However, some of these actions could be performed within each of
the devices, to do this it is necessary that these devices have the ability to use
AT techniques such as machine learning models. These models would help detect
patterns in the lower layers of the system, thus avoiding the massive sending of
information to higher layers. This would decrease response times, as well as, the
massive sending of information to the same point.

These devices capable of performing these actions at a low level is what we
know today as Fdge Al Edge Al enables the creation of intelligent solutions in
real-time using deep learning techniques. These solutions must have a number of
key features, such as energy efficiency, low-cost and a balance between precision
and energy consumption. Currently, deep learning techniques are conventionally
deployed in centralised computing environments. However, these applications
have some limitations such as costs generated by energy consumption, and la-
tency in the network due to massive data sending. To address these limitations,
Edge Computing, often referred to as Artificial Edge Intelligence, has been in-
troduced in which calculations are performed locally from data acquired from
various devices or sensors. The challenges of meeting the requirements for imple-
menting Edge Al are to ensure high accuracy of the algorithms while having low
power consumption. However, this would not be possible without the latest hard-
ware innovations, including central processing units (CPUs), graphics processing
units (GPUs), application-specific integrated circuits (ASICs) and system-on-a-
chip (SoC) accelerators, which have made Edge AI possible. Thanks to these

5 https://cloud.google.com/

advances there are applications such as the one presented by [9], in which they
detect apples in real-time using Edge AI or Smart Parking using Edge AI [10].

This article presents a tool based on Edge AI, which incorporates deep learn-
ing techniques, allowing the user to modify the models online.

2 System Description

This section describes the framework developed, which enables interaction be-
tween intelligent entities and Edge AI devices. This framework provides the
developer with a series of tools that allow him to train models of deep learn-
ing, dynamic change of learned models and communication between intelligent
entities. One of the most important characteristics of the framework presented
in this article is the ability to dynamically modify learned models. Allowing the
developer to deploy the system anywhere and through a WiFi network send the
new model. This dynamism makes this framework an ideal tool for applications
in smart homes, smart cities, health care, among others. Another important
feature is the ability to be used in different low cost and energy consumption
devices such as Rasberry Pi 7, Beagle Bone ® and any device that incorporates
Linux.

The Figure 1 shows the diagram of the proposed framework. Which incor-
porates two types of intelligent entities or agents. The first is the edge agent,
this agent is located within the environment, then we have the manager agent,
this agent is in charge of the actions at high level as the training of the models.
Each of the agents presented in this framework was carried out using the SPADE
platform and these are explained below.

2.1 Manager Agent

The manager agent is the one in charge of performing the actions at a high level,
that is, he is in charge of performing the tasks that require high computational
performance. Such as the training of the different deep learning models and the
transmission of those models to the Edge Agents. This agent is composed by a
two-state machine (figure 2, in the first state it takes a set of data to learn.

It is in this state, where the agent performs the image pre-processing tasks,
the resizing and the division of the data set in three: training, validation and
testing. Once this is done, the agent starts the training process of the Mobilenet
network, the result of this training is a model. To which a series of transforma-
tions must be made, so that it can be embedded inside the Edge device. These
transformations consist in converting from a *.h5 file to a *.kmodel file. For this
it is necessary to perform intermediate transformations such as *.h5 to *.pb and
then from *.pb to *.tflite and this last one to *.kmodel as can be seen in the
Figure 3

" https://www.raspberrypi.org/
® https://beagleboard.org/bone

Edge
Agent - 0

— O
fe———»
o)
= <

Developer Aoard

Edge Agent
Manage Agent

2 Edge

v Agent-1
a - »
E . Machine Learning Model

'@’ <

A .
A4 < O
Developer Aoard
Edge Agent <—® «
2

A

A

Edge Server
v Agent - n

~ o
= <
& <

Developer Aoard

Edge Agent

Fig. 1: Framework Diagram

STATE 1
Learning
Process

STATE 2
Send a model

Fig. 2: State machine of Manager Agent.

Once the model is obtained the agent manager goes to state two, in this
state the agent waits for a request from the edge agents. If in this state the
agent receives a request from an edge agent, it sends the new model to the
agent.

2.2 Edge Agent

The Edge agent is located within the environment, it is in charge of interacting
with the environment. This interaction is done using sensors or actuators, which
are connected to the system. The sensors allow the agent to introduce informa-
tion to the machine learning model. the results provided by the model are used
by the actuators to interact in the environment.

Image Database

Training
Process

{Keras Mode (*.h5) J

v

TensorFlow Lite
Model (*.tflite)

Learning
Achievement

v
{ Edge Al Model l

- J

Fig. 3: Process to get the learning achievement.

This agent is composed by a state machine with two states (Figure 4). The
first state is the main process, in this state the agent executes the actions. These
actions will be determined by the application in which it is being used. It is
in this state where the agent is perceiving the information of the environment,
using the different sensors connected to it. This information is then used by the
machine learning model, the result obtained from this model will serve the agent
to interact with the environment.

The second state of the edge agent is in charge of making the requests to
the agent manager, in order to know if there is a new model available. If there
is a new model, the Edge Agent receives a message containing a URL. This
URL allows the agent to download the model and the labels associated to this

STATE 2
Ask for a new
model

STATE 1
Edge process

Fig.4: Edge Agent State Machine

model. Once the template has been downloaded, Edge Agent can now use the
new template.

3 Case study

This section describes a case study, in which we will use the system proposed
above. The case study focuses on the use of autonomous cars, capable of dy-
namically modifying the learning models. This dynamism will allow the car to
identify objects within the road, acting according to the results delivered by the
model.

The Edge agents are built using a Raspberry Pi 3 - Model B and a Grove
AT Hat for Edge Computing. Each car is equipped with 2 different cameras one
for the Raspberry Pi and the other for the Edge device. The camera used by
the Raspberry is in charge of performing the autonomous driving, performing a
line tracking. The second camera is in charge of classifying the objects within
the environment and sends the processed information to the Raspberry. This
information contains the probabilities of the objects to be classified, extracting
the maximum probability and associated index. once these two elements are in
place the Raspberry can know which object is being classified and acts according
to the programmed behavior. This action can be to completely stop the car,
reduce the speed or increase the speed.

The figure shows in more detail the main objective of the case study. In this
case we have an edge agent represented by a car, which has as its initial model
the detection of a horse on the road. Once the edge device detects the horse, it
sends the information to the Raspberri and this causes the car to stop. spend a
time (t), the model changes and now the object to be classified is an other car,
once Edge device detects the police car the Edge Agent reduces its speed.

To train the neural network of the proposal presented, the first thing is to
build a dataset. In a first approach it was decided to perform this task automat-
ically, our system will be given the class names and the system will download
the images from Google. After several tests, we decided to give up this idea be-
cause too many images were not suitable for classification tasks and the network

@—.

Machine Ledming maodel Shared llocalioﬂ

=

g \“] ‘ | N
N = D (C(®)
Dataset of images @ Edge Agent
User Maodel Agent
~ s

™~ IR B oo DI

By il — TR

Camera 1 N4 hd Camera 2
Raspberry Pi Grove Al HAT

Fig. 5: Case study diagram

performance was very low. For this reason, we decided to use part of the WSID-
100 [11] data set. The Manage Agent uses the data set to train the network, to
perform such training the agnete manager divides the data set into a proportion
of 80% for training, 10% for testing and 10% for validation. As a result of this
training process, a machine learning model and a firmware suitable for cars are
obtained. Once you have the trained model, the Agent manager loads this model
into a shared resource so that it is available for Edge Agents (cars).

The Figure 7 shows the accuracy of our training process, it can be seen that in
these two graphs the accuracy is very high, which indicates that the classification
process is good.

After the evaluation of the model the agent starts a series of transformation
on it to make it suitable for EdgeAl devices. In particular the first transformation
convert our H5 model in a TensorFlow Lite model [12]. However this conversion
is not yet sufficient in fact the agent has to convert the obtained TensorFlow Lite
model in a Kmodel file through nncase®, a neural network compiler for Kendryte
K210 AI accelerators'®. To flash the model in an EdgeAl device we need also a
custom firmware. The agent create the firmware bin file exploiting the Kendryte
K210 standalone SDK'!. To do this process is needed to provide the Kmodel file
and to put some information in the C source file of the firmware.

An important information needed is the memory location where is located
the machine learning model. To flash properly the firmware and the Kmodel
file into the EdgeAl device is needed Kflash!'?, a Python-based Kendryte K210
UART ISP utility. In order to do this we need a Json file that reports the details

9 https://github.com/kendryte/nncase
10 https://kendryte.com/
' https://github.com/kendryte/kendryte-standalone-sdk
'2 https://github.com/kendryte/kflash.py

Edge Agent

model, with a new object to

After a while get another
classify.

Object to Recognice

Edge Agent

New Object to
Recognice

Fig. 6: Case study Approach

and the size of the two files in a standardised way. The agent then packs the bin,
the Kmodel and the Json files in a kfkpg file.

Once obtained a file ready to be flashed in the EdgeAl device, the agent
uploads it on a shared resource reachable from Edge Agent then it goes into
State 2. Now, Car Agent can request for a new model to the Model Agent. If the
Model Agent has calculated a new model it sends an URL and a list of labels
to the car. The car stops driving to download and burn the model in the HAT.
When it finishes to burn the model returns to the driving mode. If a new model
is not available the car returns to drive without the burning process. If this is
the case the Edge Agent receives a message containing an URL to the kfpkg file
and a list of labels.

The kfpkg file contains three files.

1. A Bin file — This file is the firmware of the IOT device and comes from the
compilation of source code in the Kendryte K210 standalone SDK

2. A Kmodel file — This is the file of the Machine Learning model in the special
format Kmodel.

model accuracy

10 —wain __— -

0.9

0.8 1

accuracy
o
~
L

o
o
.

0.5

0.4 1

T
o] 5 10 15 20 25 30
epoch

Fig. 7: Accuracy Graph

3. A Json file — This is a file in which are listed in a formatted way the file
that the tool has to flash and the location of memory where to flash each
file. We noticed that the device arise errors when the file are not burned in
an aligned way so the address are calculated in a proper way.

4 Conclusions and future work

This article presents a tool that allows the integration of two Edge AI tech-
nologies for the classification and dynamic modification of deep learning models.
This dynamic modification of models, allows us to perform the classification of
objects within the Edge device. In this way, the developed system does not need
to send the information obtained to the servers for analysis, thus reducing the
latency in obtaining answers. Our system was built using a low cost and low en-
ergy consumption development system. As future work, tests are being carried
out that will allow us to use our tool in other scenarios, as well as the possibility
that the systems can learn other types of input data, such as sounds or sensor
signals.

5 Acknowledgements

This work was partly supported by: ERASMUS+ Programme, KA1 Istruzione
Superiore, Carta, Erasmus+: 29388-EPP-1-2014-1-IT-EPPKA3-ECHE, ACCORDO
PER LA MOBILITA ERASMUS PER STUDIO - a.a. 2019/2020, Progetto n°

2019-1-IT02-KA103-061203 - CUP: H25J19000080006, Generalitat Valenciana

(PROMETEO/2018/002).
References
1. Anthony Chang. The role of artificial intelligence in digital health. In Digital

10.

11.

12.

Health Entrepreneurship, pages 71-81. Springer, 2020.

Li Yang, Tony L Henthorne, and Babu George. Artificial intelligence and robotics
technology in the hospitality industry: Current applications and future trends. In
Digital Transformation in Business and Society, pages 211-228. Springer, 2020.
Hamid Khayyam, Bahman Javadi, Mahdi Jalili, and Reza N Jazar. Artificial intel-
ligence and internet of things for autonomous vehicles. In Nonlinear Approaches
in Engineering Applications, pages 39-68. Springer, 2020.

He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in edge: Deep learning for
the internet of things with edge computing. IEEE network, 32(1):96-101, 2018.
Ricardo S Alonso, Inés Sittén-Candanedo, Sara Rodriguez-Gonzélez, Oscar Garcia,
and Javier Prieto. A survey on software-defined networks and edge computing over
iot. In International Conference on Practical Applications of Agents and Multi-
Agent Systems, pages 289-301. Springer, 2019.

Tian Wang, Yaxin Mei, Weijia Jia, Xi Zheng, Guojun Wang, and Mande Xie.
Edge-based differential privacy computing for sensor—cloud systems. Journal of
Parallel and Distributed Computing, 136:75-85, 2020.

Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge
intelligence: Paving the last mile of artificial intelligence with edge computing.
arXiv preprint arXi:1905.10083, 2019.

Inés Sittén-Candanedo, Ricardo S Alonso, Juan M Corchado, Sara Rodriguez-
Gonzélez, and Roberto Casado-Vara. A review of edge computing reference archi-
tectures and a new global edge proposal. Future Generation Computer Systems,
99:278-294, 2019.

Ruimin Ke, Yifan Zhuang, Ziyuan Pu, and Yinhai Wang. A smart, efficient, and
reliable parking surveillance system with edge artificial intelligence on iot devices.
arXiwv preprint arXiw:2001.00269, 2020.

Vittorio Mazzia, Aleem Khaliq, Francesco Salvetti, and Marcello Chiaberge. Real-
time apple detection system using embedded systems with hardware accelerators:
An edge ai application. IEEE Access, 8:9102-9114, 2020.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. CoRR, abs/1704.04861,
2017.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Tan Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqgiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

