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Abstract. In this work, we say that a computation is reversible if one
can find a procedure to undo the steps of a standard (or forward) compu-
tation in a deterministic way. While logic programs are often invertible
(e.g., one can use the same predicate for adding and for subtracting nat-
ural numbers), computations are not reversible in the above sense. In
this paper, we present a so-called Landauer embedding for SLD reso-
lution, the operational principle of logic programs, so that it becomes
reversible. A proof-of-concept implementation of a reversible debugger
for Prolog that follows the ideas in this paper has been developed and is
publicly available.

1 Introduction

In this work, we say that a semantics is reversible if there exists a deterministic
procedure to undo the steps of any computation (often called backward deter-
minism). The ability to explore the steps of a computation back and forth is
particularly useful in the context of program debugging, as witnessed by several
previous tools like Undo [8], rr [6] or CauDEr [4], to name a few.

In this paper, we present a reversible version of SLD resolution [5], the oper-
ational semantics of logic programs, that may constitute the basis of a reversible
debugger for Prolog. As is well known, logic programming is already invertible,
i.e., one can exchange the input and output arguments of a predicate so that,
e.g., the same predicate is used both for addition and for subtraction of natural
numbers. However, SLD resolution is in principle irreversible according to the
definition above. Nevertheless, given an irreversible semantics, one can always
define an instrumented version which is reversible (this process is often called
reversibilization) by defining an appropriate Landauer embedding [3], i.e., by
adding a “history” to each state with enough information to undo the steps of
a computation. However, defining a non-trivial Landauer embedding for SLD
resolution is particularly challenging due to non-determinism and unification.

Let us first briefly recall some basic notions from logic programming (see, e.g.,
[5,1] for more details). A query is a finite conjunction of atoms which is denoted
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by a sequence of the form A1, . . . , An, where the empty query is denoted by true.
A clause has the form H ← B1, . . . , Bn, where H (the head) and B1, . . . , Bn (the
body) are atoms, n ≥ 0 (thus we only consider definite logic programs, i.e., logic
programs without negated atoms in the body of the clauses). Clauses with an
empty body, H ← true, are called facts, and are typically denoted by H.

In the following, atoms are ranged over by A,B,C,H, . . . while queries (pos-
sibly empty sequences of atoms) are ranged over by A,B, . . . Substitutions and
their operations are defined as usual; they are ranged over by σ, θ, . . . In par-
ticular, the application of a substitution θ to a syntactic object o is denoted by
juxtaposition, i.e., we write oθ rather than θ(o). We denote by σ ◦ θ the compo-
sition of substitutions σ and θ. Moreover, id denotes the identity substitution A
variable renaming is a substitution that is a bijection on the domain of variables.
A substitution θ is a unifier of two atoms A and B iff Aθ = Bθ; furthermore, θ
is the most general unifier of A and B, denoted by mgu(A,B) if, for every other
unifier σ of A and B, we have that θ is more general than σ.

A logic program is a finite sequence of clauses. Given a program P , we say
that A,B′ ❀P,σ (B,B′)σ is an SLD resolution step1 if H ← B is a renamed
apart clause (i.e., with fresh variables) of program P , in symbols, H ← B << P ,
and σ = mgu(A,H). The subscript P will often be omitted when the program
is clear from the context. An SLD derivation is a (finite or infinite) sequence of
SLD resolution steps. A terminating SLD derivation can be either successful, if
it ends with the query true, or failed, if it ends in a query where the leftmost
atom does not unify with the head of any clause. SLD derivations are represented
by a (possibly infinite) finitely branching tree, which is called SLD tree, where
choice points (queries with more than one child) correspond to queries where
the leftmost atom unifies with the head of more than one program clause.

Consider, for instance, the following simple logic program:

p(b, b, Y ) ← q(Y ), r(Y, Y ).
q(b).
r(b, b).

Given the query p(X, b, b), r(b,X), we have the following SLD derivation:

p(X, b, b), r(b,X) ❀θ q(b), r(b, b), r(b, b) ❀ r(b, b), r(b, b) ❀ . . .

with θ = {X/b, Y/b}. In order to undo, e.g., the first step in this derivation, we
face several problems:

– First, one needs to know the applied rule, since there exist several possibili-
ties; for instance, one can always consider undoing the application of a fact
by adding a call to this predicate to the left of the current query. E.g., one
could go backwards from q(b), r(b, b), r(b, b) to q(b), q(b), r(b, b), r(b, b), which
is not the desired backward step.

1 In this paper, we only consider Prolog’s computation rule, so that the selected atom
in a query is always the leftmost one.
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– Second, we need to “unapply” the computed substitution in this step (which
is applied to all the atoms of the query). Unfortunately, there is no deter-
ministic way to do that. E.g., given the last atom r(b, b) in the second query,
we can undo the application of θ and get r(b,X) but also r(X, b) or r(X,X).

– Finally, we have no deterministic way to obtain the selected call in the pre-
vious goal, even if we know the applied rule and the computed unifier (this is
also related to the previous point and the fact that there is no deterministic
way to undo the application of a substitution).

Of course, one could define a trivial Landauer embedding where all queries in a
derivation are stored, e.g.,

〈p(X, b, b), r(b,X); [ ]〉 ❀θ 〈q(b), r(b, b), r(b, b); [p(X, b, b), r(b,X)]〉
❀ 〈r(b, b), r(b, b); [q(b), r(b, b), r(b, b); p(X, b, b), r(b,X)]〉
❀ . . .

but the overhead would be very high since we would need to store the entire
derivation. In the next section, we present a more efficient approach.

2 A Reversible Semantics for Logic Programs

In this section, we present a reversible version of SLD resolution. In principle,
in order to avoid the nondeterminism when undoing the application of a substi-
tution, one could consider some non-standard queries where computed substitu-
tions (mgu’s) are not applied to the atoms of the query but stored in a list. For
instance, one could redefine SLD resolution as follows:

〈A,B′; [θn, . . . , θ1]〉 ❀P,θn+1 〈B,B′; [θn+1, θn, . . . , θ1]〉

if H ← B << P and mgu(Aθ1 . . . θn, H) = θn+1. An initial query A would now
have the form 〈A; [ ]〉. Of course, this definition introduces some additional (pos-
sibly unavoidable) overhead since the computed substitutions must be composed
and applied at each resolution step.

However, this is not enough to make SLD resolution reversible. Additionally,
one would also need to store the selected call of the previous query, since it
cannot be obtained even if we know the applied rule and keep the computed
substitutions in a list. Furthermore, we need to know how many (leftmost) atoms
should be discarded when performing a backward step (i.e., we need to store the
number of atoms in the body of the applied clause).

In summary, we define our (forward) reversible SLD resolution semantics
(denoted by ⇀) as shown in Figure 1, where the auxiliary function subst is used
to compute the (partial) answer computed so far from the current history (this
notion is formalized below). In this semantics, reversible queries have the form
〈B;H〉, where B is a standard query (a sequence of atoms) and H, the history,
is a list of elements of the form fail(A) or unf(A,H,m). The first one, fail(A), is
used to denote that A is the last query of a failing derivation (i.e., the leftmost
atom in A unifies with the head of no clause). The second one, unf(A,H,m), is
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(success)
subst(H) = σ

〈true;H〉 ⇀ 〈success(σ);H〉

(failure)
subst(H) = σ∧ ∕ ∃H ← B1, . . . , Bm << P such that mgu(Aσ, H) ∕= fail

〈A,B;H〉 ⇀ 〈fail; fail(A,B) :H〉

(unfold)
subst(H) = σ ∧ ∃H ← B1, . . . , Bm << P such that mgu(Aσ, H) ∕= fail

〈A,B;H〉 ⇀ 〈B1, . . . , Bm,B; unf(A,H,m) :H〉

Fig. 1. Reversible SLD resolution: forward semantics.

used for unfolding steps, where A is the selected call of the query (the leftmost
atom), H is the head of the applied clause, and m is the number of atoms in the
body of this clause. This is enough to make SLD resolution reversible.

It is worthwhile to note that we have chosen to store elements of the form
unf(A,H,m) instead of unf(A, θ,m) as observed above. This decision might intro-
duce some additional overhead since we should not only compose and apply the
computed substitutions at each step, but we must also recompute the mgu’s of
all considered pairs of atoms (A,H) once per forward step. Nevertheless, storing
pairs (A,H) instead of the corresponding mgu’s is rather convenient since we do
not need to implement (expensive) operations like substitution composition and
application, but rely on Prolog’s native unification and propagation of variable
bindings. There are, however, several possible optimizations that can be applied
to improve performance, like storing mgu’s as lists of pairs Variable = value (as
suggested by one of the reviewers of this paper). This is left as future work.

In the following, we use Haskell’s notation for lists so that E : H denotes
a history where E is the first element and H contains the remaining elements
of the list; the empty history is denoted by an empty list [ ]. Morover, we also
use Haskell’s list concatenation operator, ++, so that H++[E] denotes a history
that begins with the elements of list H and ends with element E.

Let us briefly explain the rules of the reversible forward semantics in Fig. 1:

– Rule success is used to denote the end of a successful derivation. Here, σ
denotes the computed answer substitution of the derivation (typically re-
stricted to the variables of the initial goal), where the auxiliary function
subst is defined as follows:

subst(H) =

!
mgu(A,H) ◦ subst(H′) if H = H′++[unf(A,H,m)]
id if H = [ ]

Intuitively speaking, subst(H) computes the substitution encoded by the
elements in H. In this rule, we add nothing to the current history since the
step is trivially reversible.

– Rule failure is used to denote the end of a failing derivation. Essentially, a
query fails when the (instantiated) leftmost atom, Aσ, does not unify with
the head of any program clause, where σ is the substitution encoded by the
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(success) 〈success(σ);H〉 ↽ 〈true;H〉

(failure) 〈fail; fail(A,B) :H〉 ↽ 〈A,B;H〉

(unfold) 〈B1, . . . , Bm,B; unf(A,H,m) :H〉 ↽ 〈A,B;H〉

Fig. 2. Reversible SLD resolution: backward semantics.

current history. In this case, we store an element fail(A,B) since the current
goal is needed to undo the step.

– Finally, rule unfold performs an unfolding step. In this case, we add an ele-
ment unf(A,H,m) to the history, where A is the selected atom (the leftmost
atom of the query), H is the head of the considered (renamed apart) clause,
and m is the number of atoms in the body of this clause.

Consider again the program from Section 1 and the initial query p(X, b, b), r(b,X).
An (incomplete) reversible SLD derivation is then as follows:

〈p(X, b, b), r(b,X); [ ]〉
⇀ 〈q(Y ), r(Y, Y ), r(b,X); [unf(p(X, b, b), p(b, b, Y ), 2)]〉
⇀ 〈r(Y, Y ), r(b,X); [unf(q(Y ), q(b), 0), unf(p(X, b, b), p(b, b, Y ), 2)]〉

Now, we have enough information in each query in order to deterministically
undo a step. The corresponding backward semantics (denoted by ↽) is shown in
Fig. 2, where each forward rule (e.g., unfold) has a counterpart in the backward
semantics (e.g., unfold). The rules are self-explanatory. Note thatH is not needed
in rule unfold; it was only stored in order to be able to compute the mgu’s of the
derivation for the next steps of the forward computation.

We note that extending our developments to SLD resolution with an arbi-
trary computation rule (i.e., different from Prolog’s rule, which always selects
the leftmost atom) is not difficult. Basically, one only needs to extend the unf
elements as follows: unf(A,H, i,m), where i is the position of the selected atom,
and m is the number of atoms in the body of the applied clause (as before).

The following result states the correctness of our reversible semantics (it can
be proved by a simple induction on the length of the considered derivation):

Theorem 1. Let P be a logic program and A a query. Given a forward deriva-
tion 〈A1,H1〉 ⇀ . . . ⇀ 〈An,Hn〉, there exists a unique (deterministic) backward
derivation of the form 〈An,Hn〉 ↽ . . . ↽ 〈A1,H1〉. Moreover, both derivations
perform exactly the same number of steps.

For instance, given the previous (incomplete) forward derivation, we can produce
the following backward derivation:

〈r(Y, Y ), r(b,X); [unf(q(Y ), q(b), 0), unf(p(X, b, b), p(b, b, Y ), 2)]〉
↽ 〈q(Y ), r(Y, Y ), r(b,X); [unf(p(X, b, b), p(b, b, Y ), 2)]〉
↽ 〈p(X, b, b), r(b,X); [ ]〉
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3 Discussion

To the best of our knowledge, no other reversible debugger for Prolog has been
defined. Typical Prolog debuggers are based on the so called “box model”, where
every predicate call or atom, A, has four associated events: call, the initial call
to A; exit, when unification of A with the head of a program clause succeeds;
redo, when A is tried again after backtracking; and fail, when A does not unify
with any other head clause. Typically, debuggers can only proceed forward in
the computation or redo the current goal. The closer aproach we are aware of
is that of Opium [2], which introduces a trace query language for inspecting
and analyzing trace histories. In this tool, the trace history of the considered
execution is stored in a database, which is then used for trace querying. Several
analysis can then be defined in Prolog itself by using a set of given primitives to
explore the trace elements.

A proof-of-concept implementation of a Prolog reversible debugger that fol-
lows the ideas in this paper has been developed. It is publicly available from
https://github.com/mistupv/Prolog-reversible-debugger. The main features of
our debugger are the following:

– It implements both the (nondeterministic) forward semantics and the (deter-
ministic) backward semantics presented in the previous section. Some addi-
tional extensions include dealing with built-in’s, using colors and other visual
improvements, etc. Essentially, the debugger shows a trace including every
call and whether it succeeds (exit) or fails. Calls that unify with the head of
more than one clause (choice points) are distinguished in bold. In contrast
to traditional Prolog debuggers, we show the entire goal and underline the
selected atom, rather than showing only the selected atom.

– The SLD tree of a query can be explored step by step using the cursor ar-
rows: down (next step), up (previous step), left/right (considering alternative
clauses for choice points). When a derivation ends with failure, pressing the
down arrow will jump to the next pending choice (backtracking). In par-
ticular, we follow Prolog’s search strategy, where clauses are considered in
their textual order (from top to bottom) and the SLD tree is explored using
a depth-first strategy with backtracking (despite the fact that this strat-
egy is incomplete [1]). However, the debugger cannot undo a backtracking
step. If we press the up arrow after a backtracking step jumps to the next
alternative of a choice point, the debugger will show the previous goal in
this derivation (the parent of this node) rather than the failing leaf that
caused backtracking. This was a design decision to ease the exploration of a
given computation (following the ideas in this paper). Finally, if a derivation
ends with an empty query (a successful derivation), the computed answer is
shown. Alternative derivations (if any) can be explored by typing “;” (as in
Prolog).

– We have also implemented a “continuous” mode (pressing “s”, a shorthand
for “skip”), where the entire trace up to a leaf of the SLD tree (either a
failure or a success) is shown.

https://github.com/mistupv/Prolog-reversible-debugger
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Consider, for instance, the following example:

p(X,Y) :- q(X), r(X,Y).

q(a).

q(f(X)) :- X is 2+1.

q(c).

r(f(X),f(X)).

where the built-in is/2 evaluates the expression in the second argument and
unifies it with the first argument. A typical session looks as follows:

Call : p(A, B)

Exit : p(A, B) ↓

Call : , r(A, B)

Exit : q(a), r(a, A) ↓

Call : r(a, A)

Fail : r(a, A)

so our first derivation is a failing one. Now, if we press the up arrow once, we
get back to

Call : p(A, B)

Exit : p(A, B)
Call : , r(A, B)

Exit : q(a), r(a, A)

and we can consider the next choice (pressing the right arrow), ending up with
the following successful derivation:

Call : p(A, B)

Exit : p(A, B) ↓

Call : , r(A, B)

Exit : q(f(A)), r(f(A), B) ↓

Call : A is 2+ 1, r(f(A), B)
Exit : 3 is 2+ 1, r(f(3), A) ↓

Call : r(f(3), A)

Exit : r(f(3), f(3))
A = f(3), B = f(3)

Our reversible debugger can be a useful tool both for program understanding
and for locating the source of a misbehaviour.

The development of a reversible debugger is an ongoing work, so several
extensions are planned. In particular, we would like to consider more Prolog
features (e.g., deal with exceptions, so that one can explore a computation back-
wards from a runtime error) as well as introducing a technique for record and
replay. Often, one is not interested in exploring all the SLD tree but just a single
root-to-leaf derivation (the one that led to the misbehaviour). Here, being able
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to produce a log of the considered computation and use this log to replay only
this particular derivation in our reversible debugger might be useful.

As for the overhead, we consider several possibilities: first, we can consider a
more efficient representation by storing pairs Variable = value instead of atoms,
as discussed in Section 2; moreover, we could simplify the stored unification
problems (the pairs A,H) when they cannot affect the current query (e.g., when
they are ground or the bindings do not affect to other atoms); also, one might
consider the introduction of “spy points” (as in the standard debugger for Prolog)
so that the reversible mode is restricted to some computations rather than the
entire SLD tree. Finally, we also plan to explore the definition of a reversible
linear semantics for Prolog, analogous to that of [7]. This approach might be
useful to undo backtracking steps.
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7. Ströder, T., Emmes, F., Schneider-Kamp, P., Giesl, J., Fuhs, C.: A Linear Op-
erational Semantics for Termination and Complexity Analysis of ISO Prolog. In:
LOPSTR’11. pp. 237–252. Springer LNCS 7225 (2011)

8. Undo Software: Increasing software development productivity with reversible de-
bugging (2014), https://undo.io/media/uploads/files/Undo ReversibleDebugging
Whitepaper.pdf

https://doi.org/10.1016/S0743-1066(98)10036-5
https://doi.org/10.1016/S0743-1066(98)10036-5
http://arxiv.org/abs/1705.05937
https://undo.io/media/uploads/files/Undo_ReversibleDebugging_Whitepaper.pdf

