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Abstract

Hashing techniques have become very popular to solve the content-based
image retrieval problem in gigantic image databases because they allow to
represent feature vectors using compact binary codes. Binary codes provide
speed and are memory-efficient. Different approaches have been taken by
researchers, some of them based on the Spectral Hashing objective function,
among these the recently proposed Anchor Graph Hashing. In this paper an
extension to the Anchor Graph Hashing technique which deals with super-
vised /label information is proposed. This extension is based on representing
the samples in an intermediate semantic space that comes from the defini-
tion of an equivalence relation in a intermediate geometric hashing. The
results show that our approach is a very effective way to incorporate such
supervised information to the Anchor Graph Hashing method. On the other
hand, the results show that our approach is very effective to deal with clean
supervised information but still some further efforts are required in those
scenarios where the label information has important presence of noise.
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1 INTRODUCTION

1 Introduction

1.1 Motivation

With the advance of multimedia technology and the Internet, we have at
our disposal billions of images available online. As the amount of the data
available continues to grow, methods to perform efficient searches on these
huge databases becomes vital for many applications. One important applica-
tion for this technology is the visual search or content based image retrieval
(CBIR) on large collections of images, such as those on the Internet or per-
sonal collections. Another important application is image annotation using
data-driven methods. These methods produce an image annotation by means
of searching very similar images in a large-scale database following a search-
to-annotation strategy. In general, these methods derive the content of an
image by propagating the labels of its similar images.

The main objective is thus to be able to retrieve the most similar images
from a large, and possibly distributed database of images. Consequently,
search methods should be memory efficient, allowing to store millions of
images, and also should perform a fast similarity search.

In order to find similar images in a large-scale database, several ap-
proaches from the approximate nearest neighbors search literature are de-
signed to solve this problem. The most successful methods can be mainly
split into two different categories: Tree-decomposition methods and Hashing
methods. Tree-decomposition methods store the reference samples in a tree
structure providing in average, an approximate nearest neighbor search in
logarithmic time with respect to the number of samples. The main draw-
back of these methods when working with images is that images are generally
represented using a very high dimensional vector. In such a situation, tree
indexing structures become inefficient due to an increasing need of backtrack-
ing to explore all the nodes. In order to alleviate this problem and focused
on the high dimensional representation of images, the Hashing techniques
emerged as a solution to the approximate nearest neighbor search in high
dimensional spaces, [111 2].

Hashing methods map the high-dimensional representation into a binary
representation with a fixed number of bits. Binary codes are very storage-
efficient, since relatively few bits are required, millions of images can be
stored into computer memory. Moreover, computing the hamming distance
for binary codes is very fast, as it can be performed efficiently by using bit
XOR operation and counting the number of set bits [13], 27].

The hash function design is crucial, this being mainly the unique differ-
ence among all these methods. Generally the different methods learn a hash
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1 INTRODUCTION

function that preserves the topology of the samples in the original space, i.e.
images that are near in the original high dimensional space share the same
(or similar) binary code, while images far in the original space have very
different binary codes. These methods work with unsupervised information,
thus the preservation of the geometric topology is the unique goal to pursue.
However, when there is additional information available, which could be su-
pervised (i.e. labels annotated by a human) or it could also be what currently
is being called privileged information (i.e. information available only for the
training samples, such as text related to an image) [25], better performance
can be obtained by methods which try to preserve the semantic topology.
Since images visually different could contain similar semantic concepts, in
these cases the hash code should be designed to (also) preserve the semantic
topology.

The document is organized in the following way. This section will in-
troduce the problem of concept based image retrieval, its application and
different system configurations. It will aso define the problems when han-
dling large databases introducing the concepts of similarity search and binary
hashing. Section 2| will briefly introduce the concepts of unsupervised and
supervised methods for image retrieval and the notation used along the docu-
ment. The following sections [3|and [4 will be focused in different unsupervised
and supervised methods in the literature. Section [4] will be completely fo-
cused in the proposed supervised methods. Section [5| contains the different
measures and databases used in the experimentation found in the literature,
and in the following section [6] presents the results obtained with the proposed
methods in two databases. Finally section [7] has the conclusions and future
work.

1.2 Content Based Image Retrieval

Content-based image retrieval (CBIR) is the application of computer
vision techniques to an image retrieval problem, which is the problem of
searching for digital images in large databases.

Content based image retrieval is opposed to a concept based approach.
While the second one relies in metadata such as keywords, tags or descriptions
associated with the image, the first one analyses the actual contents of the
images. The content of the image is information that can be derived from
the image itself such as colors, shapes or textures.
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1 INTRODUCTION

Figure 1: Image Retrieval: the user makes a query and the system retrieves
the most relevant images to the given query.

1.2.1 Content versus Concept

Nowadays most web based image search engines use concept-based search
engines that rely on metadata. The problem with this approach is that we
find a lot of garbage in the results.

e Language: ambiguities, such as polysemy or synonymy (with synonyms
we can miss images. Some systems use supergroups -categorizing im-
ages in semantic classes-, but still scaling issue).

e Textual information: Even though easy to search with existing tech-
nology, impractical for large databases or automatically generated im-
ages (surveillance cameras) because it requires humans to personally
describe with words every image in the database.

e Human Tagging: apart from being expensive and inefficient for large
databases also leads to errors tagging, miswritten or incorrect tags,
images labelled differently by different users and they may not tag
every concept in the image.

1.2.2 Application. Use
Potential uses for CBIR include:

e Art collections
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1 INTRODUCTION

e Photograph archives

e Retail catalogs

e Medical diagnosis

e Crime prevention

e The military

e Intellectual property

e Architectural and engineering design

e Geographical information and remote sensing systems
1.2.3 Content-Based Image Retrieval System Structure
CBIR System

Query p . Feature
reprocessing > .
Image extraction

Feature Extractor

Query
Image
Features

Features Database

Retrieval Indexing + Similarity
Results Retrieval Search

Retrieval Module

Image Database

Figure 2: Diagram of a CBIR system. The training process is done off-
line and is represented with blue arrows. The process of an user query is
performed on-line and is represented with black arrows.

Query Image This component describes the input to the system, it is the
image which is taken as the input query for the search operation. User
is suppose to select an image in order to find similar images for that
particular image.
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1 INTRODUCTION

Feature Extractor This component is an important component of the sys-
tem. It mainly extracts the information from the image. Input images
are processed to extract features in order to represent the image con-
tents in numerical form. These feature vectors are generally used as
the image signature and they can be thought of as points in a high-
dimensional space. Every image is assigned with one of this set of iden-
tifying descriptors which will be used in the retrieval/matching phase
to retrieve relevant images.

Image Database This is the set of all the images that the system is going
to provide as a result to the user queries.

Features Database This is where all the information extracted from the
training images is stored. Feature vectors from all the training images
are extracted and stored. The system will use these to perform feature
comparison during the similarity search process. Features might be
stored as a simple list or set of feature vectors or in more complexes
structures such as k-d-trees, metric trees, etc.

Similarity Search This component basically does the comparison part and
returns its own output according to the technique it uses to do the
comparison. The system provides similarity scores for each one of the
images in its image database. This process is based on some similarity
measure to compute/measure the distance between the query image
descriptors and the feature database. From the system’s viewpoint
the similarity of two images depends on the distance in feature space
between the feature points defined by the descriptors. Therefore, the
shorter the distance between the two points, the more similar the cor-
responding images are.

Indexing and Retrieval The system selects the number of images to present
to the user as a result to the query.
1.2.4 Different system models based on query

There are different ways of providing the user query in a CBIR system.

Query by example

System is provided with an example image to base its search upon. The result
images should share common elements/content with the provided image.
The user can provide images in very different ways:
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e Image provided by the user (uploaded, camera, etc)

e Preexisting image selected from random set (directly or browsing cus-
tomized /hierarchical categories).

e Visual sketch: the user draws a rough approximation of the image they
are looking for (p.e. with blobs of colors or general shapes)

Instead of giving as a query a whole example image, the user can
e Query by image region (rather than the entire image),

e Query by multiple example images,

e Query by direct specification of image features

This query technique removes the difficulties that can arise when trying
to describe images with words or labels.

Semantic retrieval

The user makes a semantic retrieval. Users can directly request certain im-
ages like "find pictures of white cats”. This type of open-ended task is very
difficult for computers to perform.

In order to provide semantic-based retrieval in a CBIR system images
need to be indexed by some textual information. Users usually prefer query-
ing images by keywords. As manual indexing is a tedious task for indexers
and leads to some problematic as we discussed before in [1.2.1] annotating
images automatically would be very useful for semantic-based image retrieval
[16, 21].

Relevance Feedback

CBIR systems can make use of relevance feedback, where users progressively
refine the search results by marking the result images as "relevant”, "not
relevant”, or "neutral” to the search query. Then the search is repeated us-
ing this new information. [3| shows a diagram of this process. After the first
retrieval, the user is asked to provide positive (relevant) and negative (irrele-
vant) examples as feedback among the initial retrieved image sets. Then this
information is used as positive and negative feedback for query refinement.
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CBIR System

Query p . Feature
reprocessing .
Image extraction

Feature Extractor

Query
Image
Features

Image Database Features Database

User Selection
to refine search

Retrieval
Results

Figure 3: Diagram of a CBIR system with relevance feedback. The feedback
process is marked with red arrows.

Indexing + Similarity

Retrieval Search

Retrieval Module

1.3 Similarity Search in Information Retrieval

In the field of Information Retrieval (IR), the problem of Similarity Search
(nearest neighbour search) is given a query document find its most similar
documents from a large document collection (corpus). In the specific case
of CBIR we want to find the most similar images in our corpus to a given
image.

Similarity Search Given a set S of points in a metric space M and a query
point x, € M, similarity search consist on finding the closest point in § to
x,.

Nowadays image databases might contain millions of images so exhaustive
search is not applicable, as it will be too slow. Nearest neighbour search
should meet this requirements in order to be applicable to large databases
problems:

e Memory efficient: Store millions of images in memory efficiently.

e Fast similarity search: Quickly find similar images to a target image.
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Approximated Techniques

Recent work is centered in approximate techniques. Computing exact
nearest neighbors in dimensions seems to be a very difficult task, but for
image search applications sometimes it may be sufficient to retrieve a ”good
guess” of the nearest neighbor, that is, an Approximate Nearest Neigh-
bor (ANN) [3]. We can use an algorithm which doesn’t guarantee to return
the actual nearest neighbor in every case, although with significantly faster
running times and relatively small errors.

Definition Given an € > 0, a (1 4 €)-ANN, to a query point @, is a point
y € S, such that

d(z2,y) < (1+€)d(q, na,)

where ng,, € S is the nearest neighbor to , in S.

Approaches for fast NNS

In order to solve the problem of efficiently finding similar images in a large-
scale database, several approaches have been designed. The most successful
methods can be mainly split into two different categories: Tree-decomposition
methods and Hashing methods.

Tree-decomposition methods partitions the data recursively, storing
the reference samples in a tree structure providing in average, an approximate
nearest neighbor search in logarithmic time with respect to the number of
samples and degenerating to a linear search in the worst case scenario.

This category includes algorithms such as k-d-trees [4], M-trees [6], cover
trees [7], metric trees [24], and other related techniques.

The main drawback when working with images is that these are gener-
ally represented using very high dimensional vectors. In such situation, tree
indexing structures become inefficient due to an increasing need of backtrack-
ing to explore all the nodes. In order to alleviate this problem and focused
on the high dimensional representation of images, the Hashing techniques
emerged as a solution to the approximate nearest neighbor search in high
dimensional spaces, [111 2].

Hashing methods map the high-dimensional feature vector representa-
tion into a binary representation with a fixed number of bits.

Locality-sensitive hashing [I1] has been the most popular method, and
extensions have been explored in order to accommodate different distances
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like [, norms [§], learned metrics [12], and image kernels [I]. Algorithms
based on LSH come with the guarantee that the approximate nearest neigh-
bors (neighbors within (1 + €) times the true nearest neighbor distance) may
be found in time that is sublinear in the total number of database objects
(but as a function of €). Several recent methods have explored ways to im-
prove upon the random projection techniques used in LSH. Some of them
will be discussed later in sections B and

CBIR System

er . . -
015 Preprocessing > Featu::e » Binary Coding
Image extraction

Feature Extractor

Query
Image
Features

Features Database

Retrieval |ndeX|.ng + Similarity
Results Retrieval Search
Retrieval Module

Figure 4: Diagram of a CBIR system using hashing methods for feature
representation.

Image Database

1.4 Similarity-Preserving Binary Hashing

Binary codes are very storage-efficient, since relatively few bits are required,
millions of images can be stored into computer memory. Moreover, binary
embeddings allow extremely fast similarity search operations, as computing
the hamming distance for binary codes can be performed efficiently by using
bit XOR operation and counting the number of set bits [13] 27].

This thesis is going to be centered in the hashing approach to Approxi-
mate Nearest Neighbors, also referred to as Similarity-Preserving Binary
Hashing;:

e Given a hash function, each item x; is mapped into a binary code y;.

e Similar items are mapped to similar binary codes.
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e Given a query point x, one applies the hash functions to the query
{h1(xy),...,h4(x,)}, obtains a query code b(x,) = thr(y,) and finds
all the database entries that are within a small hamming distance from
the query code.

Using binary codes as hash key indexes, search becomes sublinear. Cal-
culating hamming distance in binary codes is very fast, and binary codes are
also very storage-efficient.

e Easily computed for a novel input. Hamming distance between two
binary codes can be computed efficiently by using bit XOR operation
and counting the number of set bits [13], 27]

e Small number of bits required to code the full dataset. As the encoded
data is highly compressed it can be loaded into the main memory.

Therefore, using binary hash codes we can reduce storage requirements
and accelerate search and retrieval in large collections of high-dimensional
data.

Standard simple binary hashing function is a thresholded linear projec-
tion followed by binary quantization, where x is the input vector, W the
parameter matrix, thr represents binary quantization to produce a binary
vector.

b(x) = thr(W)
e Each row of W defines an hyperplane in the input space.

e Two datapoints share the same k™ bit if they fall on the same side of
the hyperplane defined by wy, (the k™ row of W).

e There’s one hyperplane for each bit, and the hamming distance be-
tween the binary codes of two points is the number of hyperplanes that
separate them.
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2 Hashing Methods

The most common methods for solving large scale image retrieval problems
are hashing methods. This methods approximate nearest neighbor search,
converting each vectorized image on the database in a compact binary code,
and providing sublineal search cost.

2.1 Unsupervised and Supervised Learning Methods

We can approach the problem of image retrieval in two different scenarios,
depending if the training data is labelled (supervised) or not. In machine
learning, unsupervised learning refers to the problem of trying to find hid-
den structure in unlabeled data. Since the examples given to the learner are
unlabeled, there is no error or reward signal to evaluate a potential solution.
This distinguishes unsupervised learning from supervised learning. In super-
vised learning the training data consist of a set of training examples where
each example is a pair consisting of an input object (typically a vector; in
image retrieval would be a vectorized image) and a desired output value (also
called the supervisory signal) which in the case of image retrieval is the set
of labels associated to each image.

2.2 Notation

Let X = {x1,...,X,} C R? be the set of n feature vectors extracted from
training images and represented in a d-dimensional space. The goal is to
learn a binary embedding function of ¢ bits:

f R — {—1,1}¢ (1)

where for convenience the binary symbols have been defined as —1 and 1. The
training set X’ produces the set of binary codes Y = {y1,...,yn} C {—1,1}1,
and for an arbitrary input test sample, the same mapping would be used so
that the hamming distance can be employed to find its nearest neighbors
from the training set.

Additionally, in the supervised scenario we assume that each training sample
x; has an associated label vector t; € R! which provides semantic information
about the sample. Usually the label vector t; is a binary vector indicating
the presence or absence of each one of the [ terms, t; € {—1,1}’.
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3 Unsupervised Hashing Methods

In this section we are going to describe unsupervised methods found in the
literature. In the unsupervised scenario, feature vectors extracted from the
images are the only input provided to the hashing method.

3.1 Locality Sensitive Hashing (LSH)

LSH [9] solves the approximate or exact Near Neighbor Search in high di-
mensional spaces. The basic idea of this method is to hash the input items
so that similar items are mapped to the same buckets with high probability.
That means that the probability of collision is much higher for closer objects
than for those that are further apart. This kind of hash functions are called
locality-sensitive hash functions.

Definition Consider a family # of hash functions mapping R? to some
universe U. A family H is called (R, cR, p1, p2)-sensitive if for any x;, x; € R?

o if ||x; — x;|| < R then Prylh(x;) = h(x;)] > p1,
o if ||x; — x;|| > cR then Pryh(z;) = h(z;)] < po.

A standard random hyperplane locality-sensitive hashing generates em-
beddings via random projections. Each hash function hj is generated in-
dependently by selecting a random vector wj, from a multivariate Gaussian
with zero-mean and identity covariance. Then the hash function is given as
hi(x) = sign(xwy).

Y = sign(XW)

If every bit in the code is calculated by a random linear projection followed
by a random threshold, then as the number of bits increases the Hamming dis-
tance between codewords converges to the cosine angle between them. This
means that the Hamming distance between codewords asymptotically ap-
proaches the Fuclidean distance between the items, so therefore this method
maintains the topology of the input data in the limit as the number of bits
increases.

Random projections are used in LSH [II] and related methods. These
methods are dataset independent, make no prior assumption about the data
distribution, and come with theoretical guarantees that specific metrics (e.g.,
cosine similarity) are increasingly well preserved in Hamming space as the
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code length increases. But they require large code lengths for good retrieval
accuracy, and they are not applicable to general similarity measures, like
human ratings. This is the main reason why there’s been a growing interest
in learning the hash functions instead.

Basically, learning hash binary functions provides those two advantages:

e codes can become more compact

e more general classes of similarity measures can be preserved (p.e. based
in human labels, which might not correspond to any measure distance).

Some key learning-based hash approaches:
e Parameter Sensitive Hashing [22]: boosting (Shakhnarovich et al 2003)

e Semantic Hashing [20]: Neural Networks (Salakhutdinov and Hilton
2007)

e Spectral hashing [28]: Spectral Methods (Weiss et al 2008), assumes
uniform distribution over the data.

e Loss-based methods [15 [1§]

Binary codes

Most of the methods that learn hash functions use some restrictions in order
to make sure that the resulting binary codes are short and make a good use
of each one of their bits.

e maximize variance of each bit

max (), var(hg(x)))

e bits independent /balanced

>i(y)) =0fori={1,..,n}

e bits pairwise uncorrelated minimizes the redundancy among bits
%Zz(yz’sz) =1

3.2 Spectral Hashing (SH)

Let A, «, be the affinity matrix for the n datapoints which elements a;; indi-
cate the similarity between training samples ¢ and j. The average Hamming
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3 UNSUPERVISED HASHING METHODS

distance between similar neighbors can be written as a sum of similarity-
weighted squares of differences between codes.

> Aglly — sl
i

Relaxing the bits independence assumption and requiring the bits to be
uncorrelated we obtain the following problem proposed in [[:

ERRS
min 52 aijlly: = y;l°

1,5=1

1
1.y, e {1, -1}, =0, — yl =1 2
sty €{1,-1} Zy nzyy (2)

The solution to this objective function is going to provide similar codes
y, and y; for similar samples x; and ;. This previous objective function is
commonly expressed in terms of the graph Laplacian matrix L € R"*" as:

1 2 T
Hgﬂézl ly: = y;ll*ai; = Tr(Y"LY)
1,)=

st. Ye{l,-1y> 1Y =0, YTY =nl,, (3)
where L = diag(A1) — A.

The first restriction assures to generate codes with balanced bits, and the
second one minimizes the redundancy among bits forcing the codes to be
orthogonal. This restrictions avoid having a closed solution where all codes
are the same.

Spectral relaxation could be applied to make this NP-hard problem tractable,
dropping the integer constraint and allowing Y € R™*?. With this, the so-
lution Y would be the r eigenvectors of length /n corresponding to the ¢
smallest eigenvalues (ignoring eigenvalue 0) of the graph Laplacian L.

3.3 Iterative Quantization (ITQ)

This is a simple and efficient alternating minimization scheme for finding a
rotation of zero-centered data so as to minimize the quantization error of
mapping this data to the vertices of a zero-centered binary hypercube.
After centering the input feature vectors, in order to find codes with max-
imum variance and pairwise uncorrelated, input data X € R"*? is projected

Page 15
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using an unsupervised data embedding such as PCA, even though it can be
used with other unsupervised or supervised embeddings such as canonical
correlation analysis (CCA).

If W € R¥ is the matrix having as column vectors the hyperplane
coefficients w,, obtained using PCA, each bit £ = 1,...,¢ can be encoded
with the function hg(x) = sgn(xwy,).

hi(x) = sgn(xwy) = sgn(v)

The entire encoding process would be:

Y = sgn(XW) = sgn(V)

If W is an optimal solution, so is W R, being R an orthogonal ¢ x ¢ matrix.
Therefore, the projected data V.= X R can be orthogonally transformed.
ITQ will orthogonally transform the projected data in order to minimize the
quantization loss.

Y = sgn(XWR) = sgn(VR)

Definition Let v € R? be a vector in the projected space. It is easy to show
that sgn(v) is the vertex of the hypercube {—1,1}7 closest to v in terms
of Euclidean distance. Quantization loss is the difference obtained when
adjusting the real projected data v into the binary code hypercube {—1,1}1.

llsgn(v) — vl

The smaller the quantization loss, the better the resulting binary code will
preserve the original locality structure of the data. They are going to find an
orthogonal rotation, such that the projected points are as closest as possible
to their binary quantization (minimizing distances to their corresponding
point in the zero-centered binary hypercube in hamming space).

min(Q(Y, R))
QY.R) =Y - VR||r

We can see in the quantization loss function the connection of I'TQ to the
orthogonal Procrustes problem.
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1 [ 1™=1 ] =1 0 1
Average gquantization arrar: 1.00 Average guantization error: 0.83 Average quantization arrar: 0.88

(a) PCA aligned. (b) Random Rotation. (c) Optimized Rotation.

Figure 5: ITQ Method. Left: PCA aligned rotation. Center: Random
rotation. Right: Optimized Rotation

3.4 Binary Reconstructive Embeddings (BRE)

BRE [I5] is a learning-based binary hashing method based on optimizing
a loss function: minimize the reconstruction error between the original dis-
tances and the Hamming distances of the corresponding binary embeddings
via an scalable coordinate-descent algorithm.

In order to compute the g-dimensional binary embedding, the data is
projected using a set of q hash functions hq, ..., hy. Each hash function h;
is a binary-valued function. An input feature vector x; would produce a
low-dimensional binary reconstruction y; = [hy(@;); ha(x;); ...; he(x;)].

In article [I5] the hash functions are dependent on one another.

k
]’LZ(CL') = szgn(z W@‘Ii(&?w’, CB))
j=1
Loss function that penalizes the difference between euclidean distance in
the input space and the hamming distance between binary codes.

O, W) = 3 (dlasas) = dlwzy) = 3 (Glkos = oyl = 2l1ds = 5l

(3,5)EN (i,5)EN

This objective is not continuous nor differentiable, their first approach was
using a sigmoid function, but minimizing O with that approach and using a
quasi-Newton L-BGFS resulted in poor local optima. They consider fixing
all but one weight W,,,, and optimizing O with respect to W,,. An optimal
update of this weight can be achieved in O(nlogn + nk). Such approach will
update a single hash function h,. We can update all functions in O(ng(k +

logn))
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3 UNSUPERVISED HASHING METHODS

3.5 Minimal Loss hashing for Compact Binary Codes
(MLH)

e less training time than BRE
e based on structured prediction with latent variables
e Optimizes empirical loss function

e Applicable to general similarity measures (p.e. Human ratings)

In MLH [18] the loss function assigns a cost given two binary codes y;, y;
and the similarity label s between them.

L:{-1,1}9x {~1,1}9 x {0,1} = R (4)

This loss function L has to measure how compatible are the codes with
the similarity label, and should assign a small cost when h; and h; are nearby
and a large cost when they are not.

They want to minimize empirical loss function £, defined over a subset
of training pairs with similarity labels.

LOW) = > L(b(aiw), bz w), s;)

(i.4)€S
o 1 if x; and s; are similar
K 0 otherwise

They define a hinge-like loss function to capture the similarity princi-
ples said before, defines notions of far and near in hamming space using a
parameter p and the hamming distance between two codes h and g.

L(h,g,8) = L(||h = gllu,s)

L (m S):{ma:v(m—p+1,0) for s =1
PR Amaz((p—m+1,0)  for s=0
As long as codes of similar items are within hamming distance p bits they
have cost zero and beyond that the cost linearly increases. For dissimilar
items codes further than rho bits have cost zero and then as they come
closer their cost linearly increases. Their objective depends on the differences
between codes instead of the actual codes.
They maximize an upper bound on the loss function (motivated by struc-
tural SVM formulations) because it is continuous and non-convex.
Coordinate descent algorithm. Initialize W randomly and then iterate
over pairs, computing the codes, solving the loss-adjusted inference and up-
dating W en each step.
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3.6 Anchor Graph Hashing (AGH)

In Spectral Hashing relaxation solved the problem for similarity search
using binary codes computing the q eigenvectors corresponding to the ¢ small-
est eigenvalues of the graph Laplacian L. Anyway, the problem is still com-
putationally expensive because of the computation of the underlying graph
and the Laplacian when n is too large.

Based on the Spectral Hashing approach, the authors in [I7] introduced
a very effective approach for image hashing: Anchor Graph Hashing (AGH).
This unsupervised technique aims at capturing and preserving the seman-
tic topology assuming that close-by points usually share labels. The solution
proposed to deal with the problem in Spectral Hashing is to avoid computing
the whole similarity matrix A for all the n samples. To this end, a small set of
m points being m < n called anchors, are selected (e.g. using k-means clus-
ters). With these anchors, the matrix A is approximated as A= ZA'Z7,
where A = diag(Z* 1), and the matrix Z € R™™ is highly sparse, each col-
umn only having s values different from zero, which correspond to similarity
values of the s nearest anchors. Because of this sparsity, the solution can be
obtained by an eigenvalue decomposition of a much smaller m x m matrix,
instead of n x n of matrix A.

For further details, the reader should refer to [17].
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4 Supervised Hashing Methods

In a supervised scenario, feature vectors are provided with a set of labels that
describe the content of a training image. Usually the set of labels provided
with the image is represented as a vector of the size of the labels dictionary,
having 1 in the position of the labels that contains and 0 in the ones that
it does not. There are not as much supervised methods in the literature as
unsupervised. Among them, IT(Q method using CCA stands out providing
accurate results. As ITQ method is already discussed in [3.3] this section
will focus completely in the proposed extension to AGH: Supervised Anchor
Graph Hashing method.

4.1 Supervised Anchor Graph Hashing (SAGH)

The aim of Anchor Graph Hashing is to preserve the original topology by
embedding near images to near hashing codes. The results showed in [I7] and
the reduced computational complexity make this technique a very interesting
hashing method for large-scale scenarios. As mentioned above, the main
assumption of AGH is that close-by images share labels. However, we can
assume that images far in the original space could also share labels and thus
being very close in the semantic space. Taking into account that nowadays
the images are represented using a very low-level representation, mainly based
on bag-of-visual-words, this second assumption is reasonable and motivates
the supervised scenario. We propose an extension to AGH that considers
side-information provided by the label vectors t, when such information is
available.

Note that the hashing function of AGH depends on the similarity between
the input sample and the m anchor vectors, and since the label information is
not available for the test samples, the label information cannot be introduced
into the similarity matrix A as can be done for other methods. Therefore
the label information has to be included in an indirect way.

Our extension, that we call Supervised AGH (SAGH), is based on an
two-step repeated application of AGH that uses the label information in an
indirect way and the definition of an equivalence relation ~. The result-
ing procedure can be summarized as follows, first the training samples are
embedded into a geometric binary code, then a semantic representation is
derived from this geometric code and finally a new embedding is performed
into the desired binary hash code.
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original space -------------------------o---- > hash code

/ -7 \ (/ \‘
xe tabels ey

AGH

1

geometric code  semantic space

Figure 6: SAGH can be seen as a repeated application of AGH. A first
embedding is obtained from the original space to a geometric code. Then,
using an equivalence relation and the set of labels, a semantic representation
is produced. Finally, a second embedding is obtained from this intermediate
semantic space to the final binary hash code.

4.1.1 The proposed SAGH approach

In the proposed Supervised AGH, the intermediate semantic representation
of the samples allows that semantically similar samples are coded with similar
binary codes despite of being far in the original representation space. From
this perspective, SAGH not only can have a better performance because of
using the label information, it can also potentially encode the data with
shorter binary codes.

The SAGH is performed by first applying the standard AGH to the train-
ing set providing an initial hash code of p bits U = {uy,...,u,} C {-1,1}7,
usually p > ¢ in order to produce a sparser distribution of the data. We will
refer to this first hash code as a the geometric code. As mentioned above, the
goal of this first hashing is to produce a semantic embedding of the training
data. To this end, we define the equivalence relation ~ in the set X'. Two
samples are equivalent under this relation if these samples have the same
geometric code:

X; ~ Xj = u; = U; (5)

The equivalence class of a particular sample x € X is then defined as:

x] ={x' € X |ux = uy}

With this definition we propose a semantic representation of a particular
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training sample x; as:

1
TR 2 b o

XE[x4]

where | [x;] | is the number of elements in the equivalence class and ty is the
label vector associated to the sample x. In fact, with this definition all the
samples inside an equivalence class share the same semantic representation.
Thus, each equivalence class has an associated semantic representation that
we denote by viy.

Alternative equivalence relations could be defined in order to group sam-
ples depending on different strategies. For instance, several geometric codes
could be obtained from the application of AGH with different parameters,
e.g. number of nearest anchors s, anchor selection, etc., that yield different
geometric codes for the same sample and allowing to define better equivalence
relations.

Independently of the equivalence relation definition, equation @ maps
geometric codes u € {—1, 1} into the semantic representations v € R!. As a
result we have a representation in a semantic space V = {vy,...,v,} C R.
This set of semantic representations for the n training samples is considered
as a new input to a second AGH that produces an embedding into the final
desired binary representation y € {—1,1}¢ with ¢ bits. This second AGH
uses as input the different intermediate semantic codes v generated by the
proposed approach. In principle the number of possible different semantic
codes can be min(n, 2”), but it is much more less in the practical situation.
Figure [77] illustrates the SAGH mechanism.

Using this two-step hashing, points that were far in the original space but
with similar semantic information should have similar intermediate semantic
codes and thus will be mapped to nearby codes in the definitive binary space.

4.1.2 Hashing query images

The process to obtain a hash code for a query image follows a similar pro-
cedure. For a query image X a geometric code 1 is produced using the first
AGH mapping. This geometric code could be the same (i.e. having ham-
ming distance zero) than some geometric code u; seen in the training step,
thus X ~ x; and then we will assign the same intermediate semantic code,
Vv = v;. But the geometric code 1 could also be empty in the training step,
and then there is no semantic code to assign to it. In this case we propose
the following procedure. First we have to find the radius R of the minimum
hamming ball with non-empty geometric code u around t:

R=min{l,...,p} st.IxeX: d(ug,0)=r (7)
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where d(-,-) is the hamming distance. This radius defines the set By of the
different equivalence classes inside this hamming distance. We propose to
obtain the semantic embedding of the query point as an average of all the
semantic representations associated to the equivalence classes inside Bg:

. 1
Y= > v (8)

Finally, the semantic code v will be embedded using again AGH to the
definitive hash code .

It is important to note that the hashing obtained by SAGH will be affected
mainly by the equivalence relation definition , the procedure to obtain
a semantic representation associated to each equivalence class @ and the
semantic embedding for those query images that fall into empty geometric
codes ({g]).

In fact, experimentation with SAGH [6] showed that the performance of
the method decreased as more samples would fall into empty geometric codes.

In order to decrease the number of samples obtaining unknown binary codes,
we modified SAGH approach (4.2]) defining a different equivalence relation.

4.2 Supervised Multiple Random Anchor Graph Hash-
ing (SMRAGH)

When AGH is first run during training, a representation in geometric space
is obtained for all the different samples in the training set. Training samples
are represented as points in this new geometric space. Taking into account
that close samples in appearance should generate similar hashing codes, we
notice that if we represent all training samples in this geometric space {0, 1}7
we could find that the training samples occupy the space in such way that
samples fall closer if they have similar contents, and there are also some areas
in geometric space that remain deserted, because training samples haven’t
generated geometric codes laying in these areas.

Later on, during test, a geometric representation for the test feature vec-
tors is obtained. If this point in geometric space lays in the same place as
one of the training samples did, then the test sample is assigned the same
label as the training sample. On the other hand, if the test sample lays in a
deserted area, as explained in we assign the label of the closest sample,
that is, the one included in the minimum radio hamming ball around the test
sample.

During test, in the first step of geometric representation using AGH
method, we notice that most of the test samples obtain a geometric code
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4 SUPERVISED HASHING METHODS

representation that lays on empty buckets, that is, generates geometric codes
that have never seen during training. We wish to reduce the probability of
test samples obtaining geometric codes unknown in the geometric training
codes set. Then, we need to cover more area in this geometric space.

In order to reduce this probability of obtaining geometric codes falling
in empty buckets we propose generating n geometric representations of the
training samples that complement each other and thus reduce the number of
geometric areas uncovered which are those in which an unknown geometric
code would be obtained.

The proposal is based in generating different geometric representations
that can be seen as different layers of SAGH method each one of them cov-
ering different areas of the geometric space.

We would need to run AGH method n times but using different anchors
each time, in order to obtain different geometric codes for each representation.
Therefore, k-nn is no longer suitable to obtain the anchors. We propose to
use random samples obtained from the training set as anchors.

------------------------------ > hash cod

- \
\

labels ) oy !

/

I
1

s
1 _____AGH,

L
’ \

| ! h
\\ un //' "

geometric code  semantic space

Figure 7: SMRAGH approach diagram.

In query time, the first geometric representation of the test sample is
computed. In the case that a geometric code falling in an empty bucket
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is obtained, then the next geometric representation is computed. This is
repeated until a geometric code falls in a non-empty bucket.

If during the process a sample @ falls in a non-empty bucket in an specific
layer k, we proceed the same way as in SAGH, computing the intermediate
representation by averaging the intermediate representation of the samples
having the same geometric representation but only including the training
samples of layer k. We will represent this as Brj. In this case we already
know that the minimum radio of the hamming ball containing the test sample
is zero.

If none of the geometric representations in each one of the n layers obtains
a geometric code that falls in a non-empty bucket, then we proceed similarly
than in SAGH method and compute the intermediate representation
¥ from the intermediate representation of the training sample/s inside the
hamming ball with minimum radio around the test sample geometric codes
among the n sets of training samples Bg,, = Br, U---U Bg,.

The whole test process intermediate representation is expressed in equa-
tion [I0] The equation should be called initially being k the number of AGH
layers.

R, =min{l,...,p} st.IxecX: due,;)=r, i=1...n (9)

@ZMGBM v, ifk<nanddy(ugr @)=0
v(a, k) = v(a,k—1) if kK <nand dy(ugg, @) #0 (10)

1 : _
‘BRazz|Z[w]€BRau ve if k=0
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5 Literature Experimentation

5.1 Measures

Precision: Ratio of relevant images to the total number of images retrieved
in the query. Example: if 8 images are retrieved and only 4 belong to the
category being searched we have 50% precision.

Recall: Ratio of relevant images retrieved in a query to the total number of
images in the database. For example if only the top 8 matches are retrieved
from a database that contains 80 images, recall is 10 percent.

Precision vs. Recall curves Precision is important for retrieval tasks and
Recall for recognition tasks like retrieving the most similar points to a query.
This curves are used to represent and compare the performance of a system.
The curves show, in general, how precision decreases as larger fractions of the
image database are retrieved. An ideal precision versus recall curve would
have 100% precision for all values of recall: that would mean that all the
relevant images are retrieved before any irrelevant ones.

Precision @ top returned images Shows the average precision for the
first k£ retrieved images. This measures the hash ranking performance of
the method.

Precision @ hamming distance Shows the average precision for an spe-
cific hamming radius hr. This measures the hash lookup performance of the
method. Many articles in the literature provide Precision @ hr = 2 figures
because this restriction provides very fast algorithms for retrieval.

5.2 Datasets used in literature

Below are listed the different datasets have been used to perform the exper-
imentation of the different methodologies revised in the literature. Among
them we chose CIFAR and NUS-WIDE to do the experimentation (section

[6).

LabelMe (GIST)

MNIST)| (pixels)

PhotoTourism (SIFT)

Peckaboom (GIST)
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Nursery (8D attributes)
10D Uniform

80 million Tinylmages
CIFAR-10 and CIFAR-100

CIFAR-11 (not published on the internet. Provided by Rob Fergus for
[101)

NUS-WIDE
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6 EXPERIMENTS

6 Experiments

In order to assess the performance of the proposed SAGH technique, we have
performed experiments using two datasets widely used in the literature. The
first dataset is a version of the CIFARH dataset [14], which consists 64,185
images selected from the Tiny Images dataset [23]. The original Tiny Images
are 32x32 pixels, although they have been represented with grayscale GIST
descriptors [19] computed at 8 orientations and 4 different scales, resulting in
320-dimensional feature vectors. These images have been manually grouped
into 11 ground-truth classes (airplane, automobile, bird, boat, cat, deer, dog,
frog, horse, ship and truck), thus we shall refer to this version of the dataset
as CIFAR-11, and it is the same dataset that was used in [10].

The second dataset is the NUS-WIDF|dataset [5], which contains 269,648
images labelled using 81 concept tags. Each image is represented by an [,
normalized 1024-dimensional sparse-coding feature vector [26] in the same
way as it is done in [I7]. Unlike CIFAR, images in NUS-WIDE are multi-
labelled, i.e. each image can have multiple labels.

For comparison, we also ran the experiments with other hashing tech-
niques found in the literature for which there was code freely available.
Namely we have compared with the original Anchor Graph Hashing (AGH)
[17], Locality Sensitive Hashing (LSH) [I1], Spectral Hashing (SH)[28] and
Iterative Quantization with Canonical Correlation Analysis (ITQ-CCA) [10].
Unfortunately, the only supervised hashing method for which we had code
available was ITQ-CCA. In the results there is also a comparison with the
feature vectors in the original space using the Euclidean distance, i.e. not
doing hashing, and this is referred to as L2.

6.1 CIFAR-11

To estimate the performance of the different methods for the CIFAR-11
dataset, we have employed a 5-time repeated hold-out procedure. In each of
the five rounds, 3,000 images were randomly selected for the test set and the
remaining was left as the training set. The final results are the average over
the five partitions.

For each of the methods being compared, the corresponding parameters
were varied and only the best results are presented in each case. The number
of anchors was kept fixed at 300, both for AGH and SAGH which was the
value used in [17] for NUS-WIDE. The number of nearest anchors for AGH

"http://www.cs.toronto.edu/~kriz/cifar.html
Zhttp://1ms.comp.nus.edu.sg/research/NUS-WIDE.htm
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was varied for s = 2,3,5. For SAGH the number of nearest anchors to
consider for the first geometric AGH also varied for s, = 2,3,5 and for
simplicity the second semantic AGH nearest anchors parameter s; had the
same value than s;. The number of bits for the intermediate geometric
hashing was varied for 10, 16, 32, 64, 128, 256 and 512 bits, although always
higher or equal than the number of final semantic code size.

The results are presented in Figure[§] The performance is measured using
the class labels as ground truth. In the figure one of the graphs presents the
average precision for the first 500 retrieved images when varying the number
of bits, this measures the hash ranking performance. For retrieved images
having exactly the same hamming distance, a random reordering was applied.
The other graph in the figure shows the average precision for a hamming
radius of 2 and this measures the hash lookup performance.

As was expected, the two supervised methods, SAGH and ITQ-CCA, per-
form much better than all of the other unsupervised methods. This is quite
understandable since the labels of CIFAR-11 are manually selected and not
noisy, thus there is much to gain by using this additional available informa-
tion. The performance of SAGH is better than ITQ-CCA. Note that in this
case, because there are only 11 classes, ITQ-CCA is limited to a maximum of
10 bits, which is a severe limitation. As can be observed, the performance of
the proposed SAGH is better than its unsupervised counterpart AGH. This
confirms that the proposal effectively is capable of taking advantage the ad-
ditional information to achieve a better performance. In these results the
same behavior as in [I7] is observed both for AGH and SAGH. The precision
at a hamming radius of 2 does not decrease for large code sizes. Although
the performance is not better than for fewer bits.

Figure [9] shows the top 10 images retrieved using the different hashing
techniques. AGH shows a better performance for this particular query image
than the other unsupervised techniques. For the supervised techniques, ITQ-
CCA and SAGH show a very different performance. In this case ITQ-CCA
code was formed by only 10 bits so it is not a truly fair comparison. Anyway,
it is important to note that visually the results of SAGH are clearly more
diverse than the other techniques but semantically all the images retrieved
by SAGH are correct. This agrees with the behavior we were expecting of
the proposed SAGH.

6.2 NUS-WIDE

For the NUS-WIDE dataset, the evaluation protocol is exactly the same as
the one used in [I7]. For test set, the 21 most frequent tags are considered,
and for each of these tags, 100 images were randomly selected. Thus in total
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Figure 8: CIFAR-11 dataset. On top, average precision of the top-500 ranked
images for each method varying the hash code size. Below, average precision
for a hamming radius of 2 for each method varying the hash code size.

2,100 images are used for the test set, and the remaining are used as training.

Analogously to the CIFAR experiments, for each of the methods the
corresponding parameters were varied and the best result is presented. The
parameters tried for AGH and SAGH were the same than for the CIFAR-11
experiments.

The results are presented in Figure [10] using the same performance mea-
sures as for CIFAR, although in this case using precision for the first 5,000
retrieved samples since this was the value used in [I7]. As ground truth la-
bels, images are considered being semantically the same if they have at least
one common tag. For more details on the protocol please refer to [17].
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Figure 9: Query image and the 10-nearest images retrieved using different
hashing techniques. From top to down: LSH, SH, AGH, ITQ-CCA (10 bits)
and SAGH.

The results are somewhat similar to the ones for CIFAR. The supervised
methods perform better than the unsupervised ones, and again SAGH is
better than the original AGH. However, the difference between SAGH and
AGH is much smaller and in this case ITQ-CCA has a better performance
than SAGH.

In order to clarify this behavior we should take into account the proposed
procedure for generating the intermediate semantic code in SAGH. Table
shows first the percentage of test samples for which the geometric codes fell
into an non-empty geometric code, i.e. the radius of the minimum hamming
ball is R = 0, and also shows the percentage of test samples for which the
radius is very large R > 3. When R > 0, the intermediate semantic represen-
tation has to be obtained by means of averaging the semantic representations
of the equivalence classes in Bg.

Table 1: Percentage of test samples with radius 0 and higher than 3 w.r.t.
the number of geometric bits p for the NUS-WIDE dataset (AGH).

. p | R=0 | R>3 |
32 80 0.2
64 o8 20
128 44 32
256 20 43

When the value of R is high, it is highly probable that this averaging is
done for very different semantic regions. This problem becomes important
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Figure 10: NUS-WIDE dataset. On top, average precision of the top-5,000
ranked images for each method varying the hash code size. Below, average
precision for a hamming radius of 2 for each method varying hash code size.

when the number of geometric bits p increases, as can be observed in table ]
The results obtained for NUS-WIDE are motivating us to look for different
approaches for obtaining a better semantic representations in such situations.

On the other hand, in the same way as the AGH behavior, SAGH main-
tains a good hash lookup precision even though code size increases, unlike
the rest of the methods. SAGH obtains a better average precision than AGH
for a hamming radius of 2 for small code sizes.

The percentage of test samples obtaining a training hash code has incre-
mented as we expected. By generating codes with other AGH more geometric
space is covered. This increments the probability of obtaining lower ham-
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Table 2: Percentage of test samples with radius 0 and higher than 3 w.r.t.
the number of geometric bits p for the NUS-WIDE dataset (SMRAGH) using
number of randoms = 3.

. p | R=0 | R>3 |
32 91.43 0
64 68.81 8
128 59.81 21.14
256 40.05 28.95

ming distances between test and train codes. As we can see in figure
first we can notice that the behaviour of the technique slightly varies when
using random anchors, but then as expected the minimum radio of the ham-
ming ball decreases as the number of layers in the Multiple Random AGH
increases. This finally produces an increment in the precision of the method
even beating the results obtained with I'TQ method (Figure .
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Figure 11: NUS-WIDE dataset: Minimum radio of hamming ball containing
at least a training sample around the test sample geometric code. Methods
SAGH, and SMRAGH with 1 to 5 layers
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7 Conclusions

In this master thesis we propose an extension to the Anchor Graph Hashing
technique which is capable of taking advantage of supervised/label informa-
tion. This extension is based on representing the samples in an intermediate
semantic space that comes from the definition of an equivalence relation
in an intermediate geometric code. The results show that our approach is a
very effective way to incorporate such supervised information to the standard
AGH. The standard AGH is clearly outperformed by our SAGH in the CI-
FAR dataset where the supervised information can be considered very clean.
Moreover, SAGH is clearly the best technique on this dataset compared to
the state-of-the-art ITQ-CCA. On the other hand, slight improvements are
obtained using our approach in the NUS-WIDE dataset with respect to the
AGH. In this multi-label dataset the label information is known to have an
important presence of noise. In order to improve the results of the method,
a new approach is defined to obtain a semantic representation for those test
samples that fall far from a non-empty geometric code. This approach im-
proved the precision in the results, making this technique achieve the best
results for this dataset. There are other possible flaws of the proposed ap-
proach in this noisy scenario. Thus, future work will be focused on defining
better equivalence relations should be derived which give the equivalence
classes a more discriminative power under the semantic point of view, and
furthermore being robust to the presence of noisy labels.
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