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ABSTRACT. In this paper we propose a stochastic mathematical model with
distributed delay in order to describe the transmission dynamics of cocaine
consumption in Spain. We investigate conditions to guarantee the stability in
probability of the equilibrium points under stochastic perturbations via the
white noise processes. The results are applied to the model cocaine con-
sumption using data retrieved from the Spanish Drug National Plan, http:
//www.pnsd.mscbs.gob.es/. The obtained results may be useful for policy
health authorities in order to improve the strategies against the drug con-
sumption in the long-run.

1. Introduction. Drug consumption is a serious public health concern. In Spain it
is increasing over the last years, [4]. To deal with this problem, the Spanish Health
Ministry developed a Drug National Plan (DNP) with two main objectives: the
first one focused on preventing drug consumption, bringing awareness of different
related diseases, delaying the age of the first contact with drugs, etc; the second
on implementing new treatments, evaluating current therapy programmes, trying
to increase professional competence of people who work with drug consumers, etc.
In order to reflect the impact of the DNP, every two years, the Spanish Health
Ministry publishes surveys collecting the percentage of the misuse of different drugs,
including alcohol, tobacco, cocaine, etc., so that the evolution of the prevalence of
drugs consumption can be assessed.

The goal of this paper is to model the transmision dynamics of cocaine consump-
tion using an epidemiological modelling approach. In agreement with [3], individual
habits are shaped by the influence of our peers. Concretely, in this paper, cocaine
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consumption is going to be considered as a social habit that may be transmitted
by influence of people in our environment (peers’ influence in our social network).
On the other hand, the study of the long-run trend of cocaine consumption may
be useful for health policy makers in order to assess the effectiveness of the current
policies. As we will see later the stability analysis of the proposed mathematical
model is one of the main objectives of the present paper.

The transmission dynamics of social habits have been study using different ap-
proaches. In [7] a system of differential equations is proposed to study the tobbaco
smoke dynamics as well as how the new laws in rule have affect it. An homotopy
technique to numerically solve this tobbaco model is presented in [8]. In [13], a
deterministic system of differential equations to study the dynamics of the alcohol
consumption in Spain over the time is proposed. In [15, Chapter 12] stability of
the above model is studied under stochastic perturbations of the white noise type.
Recently, in [1] the authors have proposed a dynamical model to describe the use
of the electronic commerce in Spain. This study includes a full stochastic stability
analysis of equilibrium points under stochastic perturbations.

Regarding the cocaine consumption modelling, in [2] the authors formulate a
dynamic mathematical model to model the relation between the personality and
drug consumption. In [12] the authors present a deterministic system of differential
equations to describe the transmission dynamics of cocaine consumption in Spain.
Furthermore, in [14] the same authors propose a social network model to study
its short term evolution. In [9] a homothopy approach is introduced to numerically
solve the system of differential equations proposed in [12]. The aim of this paper is to
introduce some additional valuable aspects in modelling the transmision of cocaine
consumption that were not contemplated in the model formulation proposed in [12].

It is remarkable that our decisions and habits are directly influenced by our peers
[3]. This fact applies to the cocaine abuse. However, the cocaine consumption does
not start immediately after the encounters with cocaine abusers, and the transition
to become a consumer requires certain time lag. Moreover, there are also indepen-
dent and complex factors in the transmission of cocaine consumption, as behaviour,
personality, habits, etc., whose nature is not deterministic because it contains a
degree of uncertainty. Also it is known that the avaliable data from [4] is retrieved
from surveys and it comprises sampling errors. These reasons aim us to model the
dynamics of cocaine consumption in Spain considering both delay and randomness
in the mathematical formulation. As the long-run behaviour of cocaine consumption
may be affected by uncertainty factors, we perform an analysis of stability under
stochastic perturbations around the equilibrium points. This paper is organised
as follows. Section 2 is devoted to build the deterministic model of transmission
dynamics of cocaine consumption including the delay in the transmission term. Fur-
thermore, in that section the model is calibrated and model parameter values are
obtained to portray the Spanish data. In Section 3 the equilibrium points of the
deterministic model are calculated. The randomness of the model is introduced, via
stochastic perturbations around the equilibrium points, in Section 4. In Section 5,
we give sufficient conditions to guarantee the steady state of the delayed stochastic
model is stable in the probability sense. Section 6 is devoted to carry out numerical
simulations by the retarded stochastic model in order to illustrate the application
of our theoretical results and to construct predictions of cocaine consumption in
Spain in the long-run. Finally, conclusions are outlined in Section 7.
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2. A dynamic mathematical model to study cocaine consumption with
delay. This section is addressed to introduce the mathematical model proposed in
this paper to study the dynamics of cocaine consumption in Spain over the time.
This model is inspired in a previous deterministic mathematical model by one of
the coauthors that was presented in [12]. For the sake of clarity, later we will raise
the differences between both models.

2.1. Data for Spanish cocaine consumption. We are going to work with data
in Table 1. This table collects the percentage of Spanish people who consumed
cocaine during the period 2001 — 2017. These data has been retrieved from the
Spanish Health Ministry Report [4, p. 96].

Percentages Dec 2001 Dec 2003 Dec 2005 Dec 2007 Dec 2009
Non-consumers 91.4% 90.3% 88.4% 87.4% 86.0%
Occasional consumers 4.8% 5.9% 7.0% 8.0% 10.2%
Regular consumers 2.5% 2.7% 3.0% 3.0% 2.6%
Habitual consumers 1.3% 1.1% 1.6% 1.6% 1.2%
Percentages Dec 2011  Dec 2013  Dec 2015 Dec 2017
Non-consumers 87.9% 86.7% 88.3% 86.9%
Occasional consumers 8.8% 10.2% 8.9% 10.0%
Regular consumers 2.2% 2.1% 1.9% 2.0%
Habitual consumers 1.1% 1.0% 0.9% 1.1%

TABLE 1. Percentage of non-consumers, occasional consumers, reg-
ular consumers and habitual consumers of cocaine during the pe-
riod 2001 — 2017 for Spanish population aged 15 — 64, [4].

2.2. Mathematical model formulation. Following the approach proposed in
[12], we are going to consider the cocaine consumption as an addiction that spreads
through social peer pressure or social contact. These social contacts have an influ-
ence on the transmission rate of cocaine consumption.

To conduct our study, according to the Spanish Health Ministry [4], we are going
to consider the Spanish population between 15 — 64 years old. This population is
divided into the four groups shown in Table 1 and defined as (¢ in months):

e N(t): Non-Consumers, percentage of population who has never consumed

cocaine at time ¢.

e (C,(t): Occasional consumers, percentage of population who has consumed

sometimes cocaine in their life at time ¢.
e C,(t): Regular consumers, percentage of population who has consumed co-
caine in the last year at time ¢.
e (y(t): Habitual consumers, percentage of population who has consumed co-
caine in the last month at time t.
The total population is defined as P(t) = N(t) + C,(t) + C(t) + Cp(t), for each
t>0.

As in [12], we assume homogenous population mixing [11]; the transition of
individuals between each subpopulations is determined as follows:

o We assume that the new 15-years-old individuals who enter in the system have
never consumed cocaine before, that is, they will be in N(t) subpopulation.
It is modeled by pP(t), where p > 0 is the monthly birth rate in Spain, since
the death rate of people 0 — 15 years old is negligible, [16].

e An individual, that belongs to subpopulation N (t), starts consuming cocaine
by peer pressure (influence) of cocaine consumers, C,(t),C,(t),Cy(t), and



1236

ol N (1)

C. BURGOS, J. C. CORTES, L. SHAIKHET AND R. J. VILLANUEVA

dN(t)T dCO(t;]\ dc, (t;]\ dCh(t;I\

Co(t) 7Colt) o) oC, (1) Cot)

B(Co(t) + Cr(t) + Co(1))

Gy (t) |

FIGURE 1. Compartmental diagram of the dynamic model for co-
caine consumption depicted from equations (1). The boxes repre-
sent the four different subpopulations and the arrows the transi-
tions between them.

moves to C,(t) at rate 8 > 0, and it is modelled by the nonlinear term
BN (t)(Co(t) + C(t) + Cy(1)).

Once an individual of subpopulation C,(t) begins to consume cocaine he/she
may become a regular consumer, C..(t), at rate v > 0, and this transition is
modelled by the linear term yC,(t).

If a person in C.(t) increases his/her cocaine consumption, he/she may become
a habitual consumer, Cy(t), at rate o > 0, and it is modelled by oC,(t).

An individual in Cy(t) may move to N(t) subpopulation if he/she decides to
give up cocaine consumption, goes into therapy and he/she does not consume
cocaine in at least 6 months. It is modelled by the linear term £Cj(t), where
€ > 0 is the transition rate.

As it has been pointed out in Section 1, in this study we introduce relevant
mathematical differences with respect to the deterministic model described in [12],
namely, randomness and a delay which makes the mathematical model more real-
istic. This leads us to formulate a more complex model which treatment requires
advanced technical mathematical tools. With the spirit of not to complicate too
much the subsequent analysis, in the present study, we assume that the death rate d
is the same for all the subpopulations and equal to the birth rate, u, that is, d = pu.
As a consequence, the total population is constant, i.e., P(t) =1 for all ¢ > 0.

Using the above assumptions, a dynamic cocaine consumption model for Span-
ish population is given by the following system of non-linear ordinary differential
equations:

N(t) = p— dN(t) — BN () (Co(t) + Cr(t) + Co(t)) + £Cy(2),

éo(t) = BN (t)(Co(t) + Cr(t) + Cb(t)) — dCo(t) — vCo(2), )
Cr(t) = v7Co(t) — dC.(t) — o Cy (1),

Cy(t) = 0Cp(t) — dCy(t) — eCh(t).

A compartmental diagram representing model (1) is shown in Figure 1. The
boxes represent the four subpopulations described above and the arrows represent
the transitions between them.
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As the total population is constant and equal to 1, then, Cy(t) = 1 — N(t) —
C,(t) — Cp(t), and the system (1) can be simplified as follows:

N(t) = p—dN(t) = BN(t)(1 = N(t)) + e (1 = N(t) = Co(t) — Cr (1)),
Colt) = BN(£)(1 = N(t)) = (d +7)C,l(t), (2)
Cr(t) = YO, (t) — (d 4 0)C,(2).

In order to apply the model for describing the dynamics of the cocaine consump-
tion in Spain, we need to estimate the model parameters p, d, 8, €, v, o of (2), that
best adjust the information collected in Table 1. To this end, we apply Particle
Swarm Optimization (PSO) technique [10]. The values of the estimations of the
model parameters are shown in Table 2.

Model parameters | Estimations
1.587198 102
1.587198 10
5.013946 10~°
5.855882 10~ °
1.003084 10
o 1.137033 10 °
TABLE 2. Values of the parameters that best fit model (2) with the
data in Table 1 using PSO algorithm [10]. Recall that we assumed
that p = d.

2L |0 R

Now, we are going to introduce the delay in the nonlinear term of the model
(2). This term represents the transmission of the cocaine misuse habit between
individuals, being this transition not instantaneous but with a certain lag. However,
to the best of our knowledge the size of this delay is unknown. Thus, we introduce
the delay via an integral modeling the possibility of becoming a cocaine consumer
by contact with consumers in the last months.

Using the approach presented in [15], the system of non-linear differential equa-
tions (2) is formulated as

N(t)=p —dN(t) — BN (t) (1 — /OOON(t - s)dK(s))
+e(1=N(t) = Co(t) — Cr(1)),

Cult)=BN (1) (1 - TN - s)dK<s>) @+,
Cr(t)=AColt) — (d + YO (1),

where K (s) is a non-decreasing function such that fooo dK (s) =1 and the integrals
should be understood in the Stieltjes sense.

3. Existence of equilibrium points. In dealing with the mathematical models
formulated via non-linear differential equations, a main goal is the analysis of equi-
librium of the solution. The interest of this objective is justified because slight
changes in the model inputs may lead to important deviations in the model output
resulting in inaccurate solutions.
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Now, we determine the equilibrium (N*,C}, C},Cf) of (3), by imposing that
N(t) = Co(t) = Cr.(t) = 0 in (3). This leads to
O=p+e(l—N*—C%—C%) —dN* — BN*(1 — N*),
0=pBN*(1-N7)—(d+7)C5,
0=1C; —(d+0)C7,
Cy=1-N"-C;—-Cy.

From the third equation in (4) we can obtain C} in terms of C}.

* * . fy
Cr=cCy, Cr= (5)

If we add the two first equations in (4) and we apply (5), one gets
pt+e—[e(l+c)+d+~]C; = (d+e)N".
Thus, we can obtain the value of N* in terms of C}

a_,u+6
Cd+e’ n d+e’

N* =a—bC*, (6)

Substituting the expression of N*, obtained in (6), into the second equation in
(4) one gets
0= Bb*(C;)* — (Bb(2a — 1) — d —~)C; + Ba(a —1). (7)

In order to obtain the values of C) we need to solve the quadratic algebraic
equation, (7). To simplify it, note that its discriminant is given by

D = (Bb(2a — 1) —d —v)? — 45%b%a(a — 1)
= B20%[(2a — 1)? — 4a(a — 1)] — 26b(2a — 1)(d +7) + (d + 7)?
= B%% — 26b(2a — 1)(d + ) + (d +7)?
= 2b* + 28b(d + ) + (d + v)* — 4aBb(d + 7)
= (Bb+d +7)* — 4aBb(d + 7).

So, the values of C; are given by

Bb(2a — 1) — (d+ ) £ /(Bb+ d +7)2? — 4Bab(d + )

05 = o . ®)
Summarizing, the equilibrium points are given by
Cr=cC;
N*=a—-bC}
o P20 1) — (d+7) £ (Bb+d+7)? — 4Bab(d + 1) (9)
° 2362 ’
Cy=1-N*"-C;-Cr,
where
. (10)

C=axe d+¢c' ‘T d+o
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4. Stochastic perturbations, centering and linearization. As it has been ex-
plained in Section 1, there are complex factors having a considerable influence on
cocaine consumption. The nature of such factors are mainly random and until now
they have not been considered in the model previously formulated. Consequently,
the equilibria of (3) will be affected by this uncertainty. This section is devoted to
consider this randomness in the mathematical model formulation. In the introduc-
tion Section we have justified that the dynamics of cocaine consumption is subject to
numerous independent random factors. The central Limit Theorem justifies Gauss-
ian distribution as a suitable pattern to model this kind of uncertainties. This
motivates assuming that the deviation of the steady state (N*,C* C*) from the
current state (N(t),C,(t),Cr(t)) is proportionally affected by perturbations via a
Gaussian stochastic process, namely the so called white noise (w1 (t), w2(t), ws(t)).
Specifically, using the approach proposed in [15], this permits the formulate the
following model based upon stochastic differential equations of It6-type.

We will assume that system (3) is exposed to stochastic perturbations of the
white noise type, hence Gaussian, that we will denote by (w1 (t), wa(t), ws(t)) which
are directly proportional to the deviation of the system state at (N (t), Co(t), Cr(t))
from the equilibrium point (N*, Cx,C), given by (9)-(10). This leads to consider
the following system of stochastic differential equations [6]

oo

N(t) = — dN(t) — BN(t) (1 -/ N(t— s)dK(s))
+e(1 = N(t) = Co(t) — Cr(t)) + o1 (N(t) — N*)n (t),
cut=one) (1- [

= (d+7)Co(t) + 02(Co(t) — CF)ta(t),
Cr(t) =7Co(t) = (d+ 0)Cr(t) + a3(Cr(t) — CF)ina (8),

oo

N(t - s)dK(s)) (11)

where o; > 0, ¢ = 1,2, 3, denote constant levels of noise to be determined later and
w;(t), i = 1,2, 3, are mutually independent standard Wiener processes [15, 6].

Now, we centralize the system (11) around the equilibria obtained in Egs. (9).
Note that the equilibrium points in both systems, (3) and (11), are the same. First
of all, we center the unknowns with respect to the equilibrium points using the
following transformation.

yi(t) = N(t) = N*, () = Co(t) = C5, ys(t) = Crn(t) — C7.

Substituting this into (11) and using (4) we obtain the following equations for
y1(t), y2(t) and ys(t), respectively,

91 (t) =p —d(y1(t) + N*) = B(ya(t) + N¥) <1 - /Ooo(yl(t —5)+ N*)dK(S)>
be(l— N* = CF — CF) — e(yi(t) + ya(t) + ys(8)) + ovyn (£ (t)
=p—dN* = BN*(1 = N*) — dy:(t)
= B (®) + BN () + B 0+ M) [ (e = )aK (o)
+e(1=N*"=C; —CF) —e(yr(t) + yo(t) +y3(t)) + o1y (t)wr(t)
=—dyi(t) — By (t) + BNy (1)
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AN / Tyt — ) (s) + B (1) / Tt — s)dK(s)

—e(y1(t) + ya(t) +y3(t)) + o1y (t)wi(t)
—(d+B(1 = N*) +e)yr(t) — e(ya(t) +y3(t))

o0

+ BN* /000 y1(t — s)dK(s) + 51/1(75)/ yi(t = s)dK(s) + oryi (t)uin (t),

0

a(t) =By (8) + V) (1 - Cnlt- )+ N*)dK<s>)
— (d+7)(y2(t) + C;) + o2y (t)wa(t)

AN (1= N) = BN [T (e = K () - (@) - (@ +9)C
NN = G [ (e = 9K (S) + a0
BN (1= N = (@ = BV [ e - s)aK ()
o [ (e = 9K (S) + ran(0yiat)

U3(t) =v(y2(t) + C5) — (d+ 0)(y3(t) + Cy) + o3ys(t)ws(t)
=7y2(t) — dys(t) + o3ys(t)ws (),

or equivalently
U1(t) = — (d+ B(1 = N*) + )y (t) — e(ya(t) + ya(t))
N* — s)dK(s —s)dK(s
+8 /0 y1(t — ) )+ By (t _/0 yi(t —s)
o1y () (),

| S (12)
Jn(t) =BN*(1 — N*)yy — (d + 7)yz — BN" / un(t — $)dK (s)

=By /000 y1(t — 8)dK(s) + ooy (t)a(t),
U3 (t) =vya(t) — dys(t) + o3ys(t)ws(t).

It is clear that stability of the equilibrium of the system (11) is equivalent to
stability of the zero solution of system (12).

Rejecting the non-linear terms in (12), we obtain the linear part of the system
(12)

Z2(t) == (d+B(1 = N*) + &)z (t) — e(z2(t) + 23(1))
+ BN / nlt — $)dK(s) + 0121 ()i (1),
0
20(t) =BN*(1 = N*)z1 — (d + )22 — ﬁN*/ 1t — )dK(s) (13)
0

)
+ o222(t)a(t),
23(t) =v22(t) — dz3(t) + o323(t)ws(1).
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5. Studying the steady state. Now we shall provide conditions so that the null
solution of (12) is stable in probability. To this end, via [15, Remark 5.3], it is
enough to establish asymptotic mean square stability of the zero solution of the
linear system (13) that is the linear part of the non-linear system (12).

Putting z(t) = (21(t), 22(t), z3(t))T, the system (13) can be rewritten in the
following matrix form

e 3
(1) = Az(t) +/0 Bz(t = s)dK (s) + ) Ciz(t)i (1), (14)

where the matrix C; = [¢;; = 0;] ¢ = 1,2, 3 has the element ¢;; = 04,7 =1,2,3, and
all other elements are zeros, and

—(d+B(1=N*)+¢) —e —€ BN* 0 0
A= BN*(1— N*) —~d+v) 0 |, B=| —BN* 0 0
0 ~ —d 0 0 0

The following theorem gives a sufficient condition for asymptotic mean square
stability of the zero solution of the linear stochastic differential equation (14). This
condition is derived using the Lyapunov method introduced in [15] by taking the
advantage of Linear Matrix Inequalitites (LMIs) [5].

Theorem 5.1. Let us assume that for some positive definite matrices P, R € R3*3
the following LMI

3
PA+A'P+ 3 CiPC;+R PB
Uy = j=1
* -R
holds. Then, the zero solution of the equation (14) is asymptotically mean square
stable and the equilibrium E = (N*,Cy,Cx, Cy) of the system (11) is stable in
probability.

<0 (15)

Example 5.1. Using the values of the parameters from the Table 2, we have
c=0.3682, a = 1 and b = 1.6310, and as a consequence, 8b > d + . Therefore,
since a = 1, from (8) it follows

o - Bb—(d+7) = (B~ (d+7))
o 23b2 ’

ie,
. . b—(d+
Co1 =0, 02 — o 5(172 ,Y)'
So, we obtain two equilibria: Ey, = (N*,C,Cx CF) = (1,0,0,0) and E; =
(N*,C%,Cx, C¥) = (0.3167,0.4189,0.1542,0.1101). Using MATLAB and Theorem
5.1, it is shown that the equilibrium Ej is unstable and the equilibrium Fj is stable
in probability by the following levels of noises: o1 = 0.08, o5 = 0.07, o5 = 0.05.

6. Building simulations from real data. Once the theoretical analysis of the
stochastic model has been addressed, we shall apply the model to check whether is
suitable to describe the dynamics of cocaine consumption in Spain. To this end,
we will construct numerical simulations of model (11) using the figures reported in
Table 2 and Example 5.1 for the model parameters (u, di, 8, €,7, 01, 02,03) and the
endemic steady state £ = (N*,C%,C,Cy). To perform these simulations, we fix
the delay, h > 0, and we take into account that dK(s) = d(s — h)ds, being J(s)
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the Dirac delta function. The continuous model (11) has been discretized using the
Euler-Maruyama scheme [15, pp. 309-310]. This yields:

Niy1 = Ni + At (p — dN; — BNi(1 = Ni_p,) + (1 = N; — Co i — Cr3))
+ o1 (N; = N*) (Wi — Wi)
Co,it1 = Coi + At (BN;(1 — Ni—ym) — (d+7)Co.:)
+02(Coi — CF) (Waiv1 — Way)
Critv1=Cri+ At (vCoi — (d+ 0)C,y)
+03(Cri = CF) (Wa i1 — W),

where At is the discretization time step, m = h/At is the discretized delay, N; =
N(tl), Co,i = Co(ti), CTJ' = Cr(ti)7 ti = ZAt, 1= 0,1,2,... and Wk,i = Wk(t7)7
k =1,2,3, are the values of the Brownian motion of standard Wiener process at t;.
These values are obtained via simulations (see [15, Section 2.1.1]).

In particular, we have considered the discretization time step as one month (At =
1) and as the delay to become a cocaine consumer until one year, i.e, 12 months
(h = 12), then m = h = 12. This value of m is assumed, and it means that in any
moment during a year, a non-cocaine consumer may become a cocaine consumer
due to peer pressure.

As m = 12, in order to run the numerical scheme, we need setting values of the
previous 12 months, from Dec 2000 to Nov 2001. As these values are not available,
we use a numerical backward approach [17] in the discretized stochastic system (16)
in order to set N;, C, i, Cr; from N;i1,Co 41, Crit1. This backward process starts
with the data corresponding to Dec 2001 (see first column of Table 1) and ends in
Dec 2000.

In Figure 2, we have represented 500 simulations of the discretized model given in
(16). From this graphical representation, we can see that the numerical simulations
converge, in the long-run, to the endemic steady state calculated in Example 5.1,
ie. By = (N*C;, Cr CF) =(0.3167,0.4189,0.1542,0.1101) (dashed line).

7. Conclusions. In this paper we have proposed a stochastic model based on a
non-linear system of differential equations with delay to describe the dynamics of
cocaine consumption. We have applied appropriate tools in order to establish condi-
tions so that the stochastic stability of the steady state is guaranteed. Furthermore,
we have carried out simulations of the proposed model that are in full agreement
with real data. These simulations have been used to predict the long-run behaviour
of cocaine consumption in Spain. The stochastic model approach may be useful to
Spanish Health Ministry policy makers to designing future strategies based upon
the knowledge about the consumption of cocaine in Spain on the long term pro-
vided the current health policy does not change. Moreover, taking into account the
interpretation of the model parameters and their relationship with specific health
campaigns detailed in [12], the model can be also applied to quantify the effect of
health campaigns to reduce the consumption of cocaine on the long term. For in-
stance, and with the aim of being more illustrative, if policy makers decide to apply
a specific health campaign addressed to the subpopulation, say Cy (habitual cocaine
consumers), and afterwards the data of cocaine consumption is collected (similarly
to Table 1), then the model parameters can be determined using our approach and,
the model will permit to predict how the long term behaviour of subpopulation C}
will change. In this manner, the model may be useful to have a picture of the effect
of the implemented health campaign.
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FIGURE 2. Simulations of 500 trajectories of the approximated so-
lution stochastic process modelling the dynamics of cocaine con-
sumption in Spain according to stochastic system with delay (11).
Those approximations have been constructed using the numeri-
cal scheme (16) taking At = 1 month and delay A = 12 months.
Red line represents the average of the trajectories and the black
one represents the equilibrium point, By = (N*,C},Ck,Cy) =
(0.3167, 0.4189, 0.1542, 0.1101).
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