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ABSTRACT
Let A ∈ Rn×n be an irreducible totally nonnegative matrix with rank r and principal
rank p, that is, every minor of A is nonnegative and p is the size of the largest
invertible principal submatrix of A. Using Number Theory, we calculate the number
of Jordan canonical forms of irreducible totally nonnegative matrices associated
with a realizable triple (n, r, p). Moreover, by using full rank factorizations of A and
applying the Flanders theorem we obtain all these Jordan canonical forms. Finally,
some algorithms associated with these results are given.
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1. Introduction

A ∈ Rn×n is called totally nonnegative if all its minors are nonnegative and it is
abbreviated as TN, see for instance [1–5]. Due to its wide variety of applications in
algebra, computer aided geometric design, differential equations, economics, quantum
theory and other fields, TN matrices have been studied by several authors who have
obtained properties, the Jordan structure and characterizations by using the Neville
elimination [5–10].

We recall that A is an irreducible matrix if there is not a permutation matrix P

such that PAP T =

[
B C
O D

]
, where O is an (n− r)× r zero matrix (1 ≤ r ≤ n− 1).

In general, the rank of a given matrix A, denoted by rank(A), is the size of the largest
invertible square submatrix of A. The principal rank of A, denoted by p-rank(A), is
the size of the largest invertible principal submatrix of A. Obviously the following
inequality holds,

0 ≤ p-rank(A) ≤ rank(A) ≤ n. (1)
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Fallat et al. [2–4] characterized all possible Jordan canonical forms of irreducible
TN matrices using weighted planar diagrams associated with TN matrices. In [4, p.87]
the authors denoted by ITN the irreducible TN matrices and they began the study
using the triple (n, rank, p-rank) among the class of ITN matrices.

Definition 1.1 (p.709 [2]). A triple (n, r, p) is called realizable if there exists A ∈ Rn×n
ITN matrix such that rank(A) = r and p-rank(A) = p.

From Definition 1.1, if A is an n×n ITN matrix with rank(A) = r and p-rank(A) =
p, then we say that A is associated with the realizable triple (n, r, p).

If A is TN with p-rank(A) = p, its characteristic polynomial is given by

qA(λ) = λn−p
(
λp − c1λ

p−1 + c2λ
p−2 + · · ·+ (−1)pcp

)
,

where cp 6= 0. Then, n − p-rank(A) is the sum of the sizes of zero Jordan blocks
of A, i.e., the algebraic multiplicity of the zero eigenvalue of A which we denote by
am(0) = n−p-rank(A). Furthermore, n−rank(A) = dim Ker(A) is the number of zero
Jordan blocks of any matrix A, i.e., the geometric multiplicity of the zero eigenvalue
of A which we denote by gm(0) = n− rank(A). By [2, p.709], p-rank(A) is the number
of positive eigenvalues of A.

In [3, Theorem 3.3] it is shown that the nonzero eigenvalues of a singular ITN
matrix A are positive and distinct. As a consequence, if rank(A) = r, p-rank(A) = p
and λ1, . . . , λp, . . . , λn are the eigenvalues of A, we have

λ1 > λ2 > . . . > λp > 0, and λp+1 = λp+2 = . . . = λn = 0.

In [11] the authors use the principal rank to study the dependence relations be-
tween rows and columns of an ITN matrix and they introduce the sequence of the
first p-indices of linearly independent rows and columns of A. They consider the no-
tation given in [1], that is, for k, n ∈ N, 1 ≤ k ≤ n, Qk,n denotes the set of all
increasing sequences of k natural numbers less than or equal to n. If A ∈ Rn×n,
α = (α1, α2, . . . , αk) ∈ Qk,n and β = (β1, β2, . . . , βk) ∈ Qk,n, A[α|β] denotes the
k × k submatrix of A lying in rows αi and columns βi, i = 1, 2, . . . , k. The principal
submatrix A[α|α] is abbreviated as A[α].

Definition 1.2 (Definition 1 of [11]). Let A ∈ Rn×n be a matrix with p-rank(A) = p.
We say that the sequence of integers α = {i1, i2, . . . , ip} ∈ Qp,n is the sequence of the
first p-indices of A if for j = 2, . . . , p we have

det(A[i1, i2, . . . , ij−1, ij ]) 6= 0,

det(A[i1, i2, . . . , ij−1, t]) = 0, ij−1 < t < ij .

We study the structure of zero Jordan blocks of A, that is, Jordan blocks corre-
sponding to the zero eigenvalue in the Jordan canonical form of A. First, we consider
some results to characterize ITN matrices.

Lemma 1.3 (Lemma 2.2 of [3]). Let A = (aij) ∈ Rn×n be a TN matrix with no zero
rows or columns. Then A is irreducible if and only if aij > 0 for all |i− j| ≤ 1.
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Theorem 1.4 (Theorem 10 of [4], Theorem 1 of [11]). Let A ∈ Rn×n be an ITN
matrix with p-rank(A) = p, 1 ≤ p < n. Then rank(Ap) = p-rank(A) = p. In particular,
the size of the largest zero Jordan block is at most p.

Lemma 1.5 (Lemma 2.2 of [11]). Let A ∈ Rn×n be an ITN matrix with rank(A) = r
and p-rank(A) = p. Then

p ≤ r ≤ n−
⌈
n− p
p

⌉
. (2)

Lemma 1.5 implies that a triple (n, r, p) is realizable if equation (2) holds.

The paper is organized as follows: in the next section by using Number Theory and
Combinatorics we prove Theorem 2.2 to get the number of Jordan canonical forms of
ITN matrices associated with a realizable triple (n, r, p). Furthemore, from Theorem
2.2 we develop a Matlab algorithm to compute this number.

In Section 3 we study some properties of ITN matrices by using full rank factoriza-
tions and the Flanders theorem. Using the results of Section 3 we calculate all Jordan
canonical forms of these matrices in Section 4 and we introduce a Matlab algorithm
associated with these results.

2. The number of Jordan canonical forms of ITN matrices

A partition of a positive integer n is a nonincreasing finite sequence of positive integers
whose sum is n. Two sums that differ only in the order of their summands are consid-
ered the same partition (see [12]). We denote by p(n) the total number of partitions
of n, by pk(n) the number of partitions of n into exactly k parts and we denote by

p
(h)
k (n) the number of partitions of n into exactly k parts, with largest part at most h.

The aim of this section is to obtain the number of zero Jordan canonical forms of an
ITN matrix A associated with a realizable triple (n, r, p). By Section 1 we have that
am(0) = n− p, gm(0) = n− r and the size of the largest zero Jordan block is at most
p. So, the number of zero Jordan canonical forms of A is the number of partitions of
n − p into exactly n − r parts with the largest part at most p, and our purpose is to

calculate p
(p)
n−r(n− p).

Remark 1. We take p(n) = 0 for all negative values of n and p(0) is defined to be

1. Note that pk(n) = 0 holds if k > n. Thus, p(n) =
n∑
k=1

pk(n). Moreover, it is verified

that

p1(n) = 1, for n ≥ 1,

p2(2) = p2(3) = p3(3) = 1,

and for n ≥ 4,

p2(n) =
⌊n

2

⌋
, pn−2(n) = 2, pn−1(n) = pn(n) = 1.

Each partition of n into exactly k parts can be represented graphically by the Ferrers
diagram with exactly k rows having each row the same number of dots as the k-th
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term in the partition and all rows have at least one dot. The Ferrers diagram is used
to prove the following well-known result in an easy way. We include the proof of this
result because it is useful for Theorem 2.2.

Theorem 2.1. Given n > 1 and 1 ≤ k ≤ n, then

pk(n) =

min{k,n−k}∑
j=1

pj(n− k). (3)

Proof. Since the partitions are exactly in k parts, all of them need k dots in order
to complete the first column of its Ferrers diagram and the remaining n− k dots can
be distributed in the k rows arbitrarily in nonincreasing form; that is, we should fix
n− k dots in at most k rows. As a consequence,

pk(n) = p1(n− k) + p2(n− k) + · · ·+ pk(n− k) =

k∑
j=1

pj(n− k)

If n− k < k, by Remark 1 we have that
k∑
j=1

pj(n− k) =
n−k∑
j=1

pj(n− k). Therefore,

pk(n) =

min{k,n−k}∑
j=1

pj(n− k).

It is known that an algorithm, due to C. F. Hindenburg’s 18th-century dissertation
Infinitinomii Dignitatum Exponentis Indeterminati (Göttingen, 1779), pp.73-91, gen-
erates all partitions of n into exactly k parts (see [13]). However, if we want that the
largest part of a partition to be less than or equal to a number h, then equation (3)
has to be updated. For example, by equation (3) and Remark 1 we obtain

p7(17) =
7∑
j=1

pj(10) = 1 +
⌊

10
2

⌋
+

7∑
j=3

pj(10) = 1 + 5 +
3∑
j=1

pj(7) +
4∑
j=1

pj(6)+

5∑
j=1

pj(5) +
4∑
j=1

pj(4) +
3∑
j=1

pj(3) = 1 + 5 + 8 + 9 + 7 + 5 + 3 = 38.

However, if we want that the largest part of the partition to be less than or equal
to h = 3, then the number of partitions is significantly reduced to only 3 as we will
show in Example 2.3-b.

In 1976 George E. Andrews (see [12, Chapter 3]) studied some properties of the
Restricted Partitions, that is partitions of a positive integer n in which the largest
part is at most h and the number of parts is less than or equal to k. He denoted this
kind of partition by p(h, k, n) and using our notation we have that

p(h, k, n) =

k∑
j=1

p
(h)
j (n).
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These partitions are the coefficients of the generating function

G(h, k; q) =
∑
n≥0

p(h, k, n) qn

which is a polynomial in q of degree hk known as a Gaussian polynomial. Its coefficients
are called the q-binomial coefficients or Gaussian binomial coefficients.

An interesting property is that p(h, k, n)− p(h, k − 1, n) enumerates the number of
partitions of n into exactly k parts, each part ≤ h, that is

p(h, k, n)− p(h, k − 1, n) = p
(h)
k (n),

which is precisely what we want to obtain. So, we must calculate the Gaussian poly-
nomials G(h, k; q) and G(h, k − 1; q), and subtract the coefficients of qn of each poly-
nomial. Since the rest of the q-binomial coefficients of G(h, k; q) and G(h, k− 1; q) are
not necessary to solve our problem, we give Theorem 2.2 to calculate directly the value

of p
(h)
k (n).

Remark 2. Note that

(1) if n is negative then p
(h)
k (n) = 0 ,

(2) if k > n then p
(h)
k (n) = 0 for all h ≥ 1,

(3) if k = n then p
(h)
n (n) = 1 for all h ≥ 1,

(4) if k < n and h = 1 then p
(h)
k (n) = 0,

(5) if k = 0 then p
(h)
k (n) = 0 ,

(6) if k = 1 then

 if h < n then p
(h)
1 (n) = 0,

if h ≥ n then p
(h)
1 (n) = 1.

Theorem 2.2. Given n > 1, 1 < k < n and 1 < h, with k, h ∈ Z+, the number of
partitions of n into exactly k parts with the largest part at most h is given by

(1) If kh < n then p
(h)
k (n) = 0.

(2) If kh = n then p
(h)
k (n) = 1.

(3) If kh > n and
(3.1) n− k + 1 ≤ h then

p
(h)
k (n) = pk(n) =

min{k,n−k}∑
j=1

pj(n− k)

(3.2) n− k + 1 > h and
(3.2.1) k(h− 1) = n then

p
(h)
k (n) = 1 + p

(h)
k−1(n− h)

(3.2.2) k(h− 1) < n . Let i = n− k(h− 1), then

p
(h)
k (n) = 1 + p

(h)
k−(i+1)(n− (i+ 1)h)
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(3.2.3) k(h− 1) > n, and t0 =
⌊
n+k

2

⌋
− 1

(3.2.3.1) if s0 ≤ t0, with k − 1 ≤ s0 ≤ n− (h+ 1), then

p
(h)
k (n) =

min{k,n−k}∑
j=1

pj(n− k) −
n−(h+1)∑
s0=k−1

pk−1(s0).

(3.2.3.2) Otherwise, p
(h)
k (n) =

=

min{k,n−k}∑
j=1

pj(n− k) −
t0∑

s0=k−1

pk−1(s0) −
n−(h+1)∑
s0=t0+1

p
(n−s0)
k−1 (s0).

Proof. (1) Obvious.
(2) Obvious.
(3) Now, suppose that kh > n.

(3.1) Following the proof of Theorem 2.1, since n − k + 1 ≤ h, any distribution
of the n− k dots in k rows gives partitions with the largest part less than

or equal to h. Then, p
(h)
k (n) = pk(n) and

p
(h)
k (n) = pk(n) =

min{k,n−k}∑
j=1

pj(n− k)

(3.2) Now, n− k + 1 > h
(3.2.1) Since k(h − 1) = n, we have only one partition whose largest part is

h − 1. In fact, the k entries of the partition are equal to h − 1. If we
complete the first row with h dots, we obtain all possible partitions of
n− h in k − 1 dots with the largest part h. Thus,

p
(h)
k (n) = 1 + p

(h)
k−1(n− h)

(3.2.2) Since k(h − 1) < n, if we want to obtain a partition of n in exactly
k parts with the largest part less than or equal to h, it is necessary
that almost the first term of the partition is equal to h. Moreover, if
n − k(h − 1) = i, we need that the first i terms of any partition are
equal to h. The rest of terms n− ih are distributed in k− i parts with
the largest part less than or equal to h. Thus,

p
(h)
k (n) = p

(h)
k−i(n− ih).

As

(k − i)(h− 1) = k(h− 1)− i(h− 1) = (n− i)− i(h− 1) = n− ih

applying the previous result we have

p
(h)
k (n) = 1 + p

(h)
k−(i+1)(n− (i+ 1)h).
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(3.2.3) Finally, k(h−1) > n. We obtain the number of partitions of n in exactly
k parts, pk(n), removing those that have terms greater than h, from
n− k + 1 to h+ 1. Then, the number of partitions that we remove is

p
(n−k+1)
k−1 (k − 1) + p

(n−k)
k−1 (k) + p

(n−k−1)
k−1 (k + 1) + · · ·

· · · + p
(n−(h+1))
k−1 (n− h− 1) =

n−(h+1)∑
s0=k−1

p
(n−s0)
k−1 (s0).

(3.2.3.1) If for each s0, with k − 1 ≤ s0 ≤ n− (h+ 1), it is satisfied that

s0 − (k − 1) + 1 ≤ n− s0 ←→ s0 ≤
⌊
n+ k

2

⌋
− 1 = t0.

From (3.1) we have

n−(h+1)∑
s0=k−1

p
(n−s0)
k−1 (s0) =

n−(h+1)∑
s0=k−1

pk−1(s0).

Thus,

p
(h)
k (n) =

min{k,n−k}∑
j=1

pj(n− k)−
n−(h+1)∑
s0=k−1

pk−1(s0).

(3.2.3.2) Otherwise, p
(h)
k (n) =

=

min{k,n−k}∑
j=1

pj(n− k)−
t0∑

s0=k−1

pk−1(s0)−
n−(h+1)∑
s0=t0+1

p
(n−s0)
k−1 (s0).

Example 2.3. Calculate p
(8)
4 (9), p

(3)
7 (17), p

(4)
6 (20) and p

(7)
8 (50).

(a) By (3.1) we have

p
(8)
4 (9) = p4(9) =

4∑
j=1

pj(5) = 6.

(b) By (3.2.2) with i = 3 we have

p
(3)
7 (17) = 1 + p

(3)
3 (5) = 1 + p3(5) = 1 +

2∑
j=1

pj(2) = 1 + 2 = 3.
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(c) By (3.2.2) with i = 2, and by (3.2.3.1) with t0 = 6 we obtain

p
(4)
6 (20) = 1 + p

(4)
3 (8) = 1 +

3∑
j=1

pj(5)−
3∑

s0=2

p2(s0).

Thus,

p
(4)
6 (20) = 1 + p1(5) + p2(5) + p3(5)− p2(2)− p2(3) = 4.

(d) By (3.2.2) with i = 2, and by (3.2.3.2) with t0 = 16 we have

p
(7)
8 (50) = 1 + p

(7)
5 (29) = 1 +

5∑
j=1

pj(24)−
21∑
s0=4

p
(29−s0)
4 (s0) =

= 1 +
5∑
j=1

pj(24)−
16∑
s0=4

p4(s0)−
21∑

s0=17
p

(29−s0)
4 (s0).

Applying Theorem 2.2 to each term of the last summation

p
(7)
8 (50) = 1 +

5∑
j=1

pj(24)−
16∑
s0=4

p4(s0)−
21∑

s0=17

p
(29−s0)
4 (s0)

= 1 + 333− 155− (p
(12)
4 (17) + p

(11)
4 (18) + p

(10)
4 (19) + p

(8)
4 (20) + p

(8)
4 (21))

= 1 + 33− 155− (37 + 40 + 38 + 33 + 20) = 11.

Now, consider a realizable triple (n, r, p) and an ITN matrix A associated with this

triple. The number of zero Jordan canonical forms of A is p
(p)
n−r(n−p). Since (n, r, p) is

a realizable triple equation (2) holds, therefore (n− r)p ≥ n− p and we only consider
the third item of Theorem 2.2. We introduce the following algorithm, which first checks

if the triple (n, r, p) is realizable and after that, it computes p
(p)
n−r(n− p).
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Algorithm 1 c = numberpartitions(n, r, p)

1: j = 1; A(j, 1 : 11) = [n− p, n− r, p, (n− r) ∗ p, zeros(1, 7)]; w = size(A, 1);
2: if r < p || r > n− ceil((n− p)/p) then
3: It is not a realizable triple
4: A(j, 10) = 0;
5: else if r == p || r == n− ceil((n− p)/p) then
6: A(j, 10) = 1;
7: end if
8: A(j + 1, 1 : 11) =zeros(1, 11);
9: while A(j, 1) > 0 do

10: if A(j, 4) > A(j, 1) then
11: A(j, 5) = A(j, 1)−A(j, 2) + 1;
12: end if
13: if A(j, 5) <= A(j, 3) then
14: [T, h] =triangle(A(j, 1) +A(j, 3), A(j, 1) +A(j, 3)−A(j, 2), A(j, 3)); A(j, 10) = h;
15: if j + 1 > w then
16: A(j + 1, 1 : 11) =zeros(1, 11); w = w + 1;
17: end if
18: else
19: A(j, 6) = A(j, 2) ∗ (A(j, 3)− 1);
20: if A(j, 6) <= A(j, 1) then
21: A(j, 7) = A(j, 1)−A(j, 6); A(j, 10) = 1;
22: A(w + 1, 1 : 11) = [A(j, 1) − (A(j, 7) + 1) ∗ A(j, 3), A(j, 2) − (A(j, 7) +

1), A(j, 3), (A(j, 2)− (A(j, 7) + 1)) ∗A(j, 3), zeros(1, 7)];
23: w = w + 1;
24: else
25: A(j, 8) =floor((A(j, 1) +A(j, 2))/2)− 1; A(j, 9) = A(j, 1)− (A(j, 3) + 1);
26: l =min(A(j, 8), A(j, 9)); v =max([A(j, 2), A(j, 1)−A(j, 2), l]);
27: [T, h] =triangle(v + 2 ∗A(j, 2), v +A(j, 2), A(j, 2));
28: b =min([A(j, 2), A(j, 1)−A(j, 2)]);
29: if A(j, 9) <= A(j, 8) then
30: A(j, 10) = T (A(j, 1) − A(j, 2), 1 : b)∗ones(b, 1)−ones(1, A(j, 1) − (A(j, 2) +

A(j, 3)− 1)) ∗ T (A(j, 2)− 1 : A(j, 9), A(j, 2)− 1);
31: if j + 1 > w then
32: A(j + 1, 1 : 11) =zeros(1, 11); w = w + 1;
33: end if
34: else
35: (j, 10) = T (A(j, 1) − A(j, 2), 1 : b)∗ones(b, 1)−ones(1, A(j, 8) − A(j, 2) + 2) ∗

T (A(j, 2)− 1 : A(j, 8), A(j, 2)− 1);
36: for i = 1 : A(j, 9)−A(j, 8) do
37: A(w+ i, 1 : 11) = [A(j, 8) + i, A(j, 2)− 1, A(j, 1)− (A(j, 8) + i), (A(j, 2)− 1) ∗

(A(j, 1)− (A(j, 8) + i)), zeros(1, 6), A(j, 11) + 1];
38: end for
39: w =size(A, 1);
40: end if
41: end if
42: end if
43: j = j + 1;
44: end while
45: for q = 1 : j do
46: A(q, 10) = A(q, 10) ∗ (−1)A(q,11);
47: end for
48: c =ones(1, j) ∗A(1 : j, 10);

We need the following procedure for Algorithm 1, which constructs a lower trian-
gular matrix as a consequence of Remark 1 and Theorem 2.1.
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Algorithm 2 [T, h] = triangle(n, r, p)

1: T =zeros(r − p, r − p); T (1 : 3, 1 : 3) =tril(ones(3, 3));
2: for i = 4 : r − p do
3: T (i, 1 : 2) = [1, floor([i/2])]; T (i, i− 2 : i) = [2, 1, 1];
4: end for
5: for i = 6 : r − p do
6: for j = 3 : i− 3 do
7: q = 0; t =min([j, i− j]);
8: for h = 1 : t do
9: q = q + T (i− j, h);

10: end for
11: T (i, j) = q;
12: end for
13: end for
14: u =min([n− r, r − p); h = 0;
15: for j = 1 : u do
16: h = h+ T (r − p, j);
17: end for

Example 2.4. We apply Algorithm 1 to the corresponding triples associated with
the four cases of Example 2.3, taking into account the conversion n̂ = n− p, k = n− r
and h = p, where n̂ is renamed the number n in Section 2. That is,

(a) p
(8)
4 (9) corresponds to the triple (17, 13, 8).

(b) p
(3)
7 (17) corresponds to (20, 13, 3).

(c) p
(4)
6 (20) corresponds to (24, 18, 4).

(d) p
(7)
8 (50) with (57, 49, 7).

3. Properties of ITN matrices by full rank factorizations and the
Flanders theorem

We have computed the number of zero Jordan canonical forms associated with a
realizable triple (n, r, p) in Section 2. Now, we study some properties related to full
rank factorizations of ITN matrices to obtain these Jordan structures. We recall the
following definition [14].

Definition 3.1. Let A ∈ Rn×n be a matrix with rank(A) = r. We say that A = FG
is a full rank factorization of A if F ∈ Rn×r and G ∈ Rr×n.

Note that a full rank factorization of any singular matrix is not unique. For ITN
matrices we use the following factorization in echelon form.

Definition 3.2. Let A be an n × n ITN matrix with rank(A) = r. We say that
A = LU is the full rank factorization in echelon form of A, if L ∈ Rn×r is a lower
echelon matrix and U ∈ Rr×n is an upper echelon matrix.

We recall [15, Section 1] that U ∈ Rr×n with rank(U) = r is an upper echelon
matrix if it satisfies the following conditions:

(1) The first nonzero entry in each row is called leading entry for that row.
(2) Each leading entry is to the right of the leading entry in the row above it.

10



L is a lower echelon matrix if its transpose is an upper echelon matrix.

The full rank factorization in echelon form of A can be obtained using the quasi-
Neville elimination process [16]. It is a variant of the Neville elimination process for
singular matrices which consists of leaving the zero row in its position and continuing
the elimination process with the matrix obtained by deleting the zero rows. It allows
one to obtain the unique TN matrices L and U without zero rows and columns.

In general, the spectral relations between two matrices FG and GF have been
proved by Flanders [17]. In the particular case of full rank factorizations, the next
theorem [14, Theorem 4.1] gives the spectral relations between A = LU and A1 = UL.

Theorem 3.3. Let A ∈ Rn×n be an ITN matrix with rank(A) = r. Let A = LU be
the full rank factorization in echelon form of A. If A1 = UL ∈ Rr×r then

(1) A and A1 have the same elementary divisors with nonzero roots.
(2) If s1 ≥ s2 ≥ · · · ≥ sm > 0 and s′1 ≥ s′2 ≥ · · · ≥ s′m ≥ 0 are the sizes of zero

Jordan blocks of A and A1 respectively, then si − s′i = 1 for all i.

Definition 3.4 ([18]). The Segre characteristic of a matrix A ∈ Rn×n relative to its
eigenvalue λ is the non-increasing ordered sequence of sizes of Jordan blocks of A
associated with λ.

By Theorem 3.3, the Segre characteristic of A relative to 0 is the sequence
{s1, s2, . . . , sm}.

Definition 3.5 ([18]). The Weyr characteristic of a matrix A ∈ Rn×n relative to its
eigenvalue λ is the conjugate partition of the Segre characteristic of A relative to λ.

If {s1, s2, . . . , sm} is the Segre characteristic of A relative to 0 and {w1, w2, . . ., ws1}
is the Weyr characteristic of A relative to 0, then wi is the number of sj ’s which are
greater than or equal to i. Note that

w1 = dimKer(A) = m
wi = dimKer(Ai)− dimKer(Ai−1), i = 2, 3, . . . , s1.

By [18] we consider the Ferrers diagram to represent the Weyr and the Segre char-
acteristics of A relative to 0. The number of dots in row j is wj , while si is the number
of dots in column i.

Remark 3. If A = LU is the full rank factorization in echelon form of a singular ITN
matrix A ∈ Rn×n and A1 = UL ∈ Rr×r, then by Theorem 3.3 we have that

rank(A1) = rank(A2)
⇓

w2 = dim Ker(A2)− dim Ker(A) = dim Ker(A1).
(4)

If A1 ∈ Rr×r is singular, we can obtain the full rank factorization A1 = L1U1 and by
Theorem 3.3 the matrix A2 = U1L1 satisfies that

rank(A2) = rank(A2
1) = rank(A3)

⇓
w3 = dim Ker(A3)− dim Ker(A2) = dim Ker(A2).

(5)
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Proceeding in this way, we can construct a sequence of matrices A1, A2, . . . , Aq, with
Aq nonsingular. For i = 2, 3, . . . , q, we have that

rank(Ai) = rank(A2
i−1) = rank(A3

i−2) = · · · = rank(Ai1) = rank(Ai+1)
⇓

wi+1 = dim Ker(Ai+1)− dim Ker(Ai) = dim Ker(Ai).
(6)

If we calculate the rank of each matrix Ai, i = 1, 2, . . . , q−1, q, by (6) we can obtain
the Weyr characteristic of A relative to 0.

The following results give properties related to the positivity, the principal rank and
the irreducibility of A1 = UL, when LU is the full rank factorization in echelon form
of the ITN matrix A. These results can be extended to matrices Ai, for all i > 1.

Theorem 3.6. Let A ∈ Rn×n be an ITN matrix such that rank(A) = r and
p-rank(A) = p. Let A = LU the full rank factorization in echelon form of A. If
A1 = UL ∈ Rr×r then, A1 is a TN matrix with p-rank(A1) = p.

Proof. A1 is a TN matrix because it is product of TN matrices. Now, we are going
to prove that p-rank(A1) = p-rank(A) = p.

Suppose that {i1, i2, i3, . . . , ip} is the sequence of the first p-indices of A (see Defi-
nition 1.2), then

detA[i1, i2, i3, . . . , ip] > 0.

By the Binet-Cauchy formula, we have that

detA[i1, i2, i3, . . . , ip] =
∑
∀γ∈Qp,r

detL[i1, i2, i3, . . . , ip | γ] detU [γ |i1, i2, i3, . . . , ip] > 0,

then, there exists at least a sequence γ = (γ1, γ2, . . . , γp) such that

detL[i1, i2, i3, . . . , ip | γ1, γ2, . . . , γp] > 0

detU [ γ1, γ2, . . . , γp | i1, i2, i3, . . . , ip] > 0.

Therefore,

detA1[γ1, γ2, . . . , γp] =
∑
∀ρ∈Qp,n

detU [γ1, γ2, . . . , γp | ρ] detL[ρ |γ1, γ2, . . . , γp]

= detU [ γ1, γ2, . . . , γp | i1, i2, i3, . . . , ip] detL[i1, i2, i3, . . . , ip | γ1, γ2, . . . , γp] +∑
∀ρ ∈ Qp,n

ρ 6= {γ1, γ2, . . . , γp}

detU [γ1, γ2, . . . , γp | ρ] detL[ρ |γ1, γ2, . . . , γp] > 0

that is, p-rank(A1) ≥ p.

Now, we suppose without loss of generality that p-rank(A1) = p + 1. As a conse-
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quence, there exists a sequence ξ = {ξ1, ξ2, . . . , ξp, ξp+1} such that

detA1[ξ1, ξ2, . . . , ξp, ξp+1] > 0.

By the Binet-Cauchy formula, we have that

detA1[ξ1, ξ2, . . . , ξp, ξp+1] =∑
∀ρ∈Qp,n

detU [ξ1, ξ2, . . . , ξp, ξp+1 | ρ] detL[ρ |ξ1, ξ2, . . . , ξp, ξp+1] > 0.

That is, there exists at least a sequence ρ = (ρ1, ρ2, . . . , ρp+1) such that

detU [ ξ1, ξ2, . . . , ξp, ξp+1 | ρ1, ρ2, . . . , ρp+1] > 0

detL[ρ1, ρ2, . . . , ρp+1 | ξ1, ξ2, . . . , ξp, ξp+1] > 0.

Therefore,

detA[ρ1, ρ2, . . . , ρp+1] =

=
∑
∀γ∈Qp,r

detL[ρ1, ρ2, . . . , ρp+1 | γ] detU [γ |ρ1, ρ2, . . . , ρp+1]

= detL[ρ1, ρ2, . . . , ρp+1 | ξ1, ξ2, . . . , ξp, ξp+1] detU [ξ1, ξ2, . . . , ξp, ξp+1 | ρ1, ρ2, . . . , ρp+1]

+
∑

∀γ ∈ Qp,r
γ 6= {ξ1, ξ2, . . . , ξp, ξp+1}

detL[ρ1, ρ2, . . . , ρp+1 | γ] detU [γ |ρ1, ρ2, . . . , ρp+1] > 0,

which implies that p-rank(A) ≥ p + 1. This contradicts the initial hypothesis, then
p-rank(A1) = p.

Theorem 3.7. Let A = (aij) ∈ Rn×n be an ITN matrix such that rank(A) = r
and p-rank(A) = p. Let A = LU the full rank factorization in echelon form of A. If

A1 = (a
(1)
ij ) = UL ∈ Rr×r, then A1 is an irreducible TN matrix.

Proof. By Theorem 3.6, we know that A1 is a TN matrix. Moreover, since L and U
are TN matrices without zero rows and columns then, A1 also has no zero rows and
columns.

By Lemma 1.3 if we prove that a
(1)
ij > 0, for all i, j = 1, 2, . . . , r with |i− j| ≤ 1 we

will have that A1 is irreducible.

(1) Since A is ITN, by Lemma 1.3, a11 > 0 and therefore a
(1)
11 > 0.

(2) Suppose that a
(1)
12 = 0. Since A is ITN, suppose that a1j is the last nonzero

element of its first row, with 2 ≤ j ≤ n. Then,
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(2.1) if j = n we have that

a
(1)
12 = U(1, :)L(:, 2) = [a11 a12 . . . a1n]



0
l22
...
lj2
...
ln2


=

n∑
i=1

a1ili2 = 0,

which implies that li2 = 0, for i = 1, 2, . . . , n. This is a contradiction because
L has no zero columns.

(2.2) if 2 ≤ j < n, then

a
(1)
12 = U(1, :)L(:, 2) = [a11 a12 . . . a1j 0 . . . 0]



0
l22
...
lj2
...
ln2


=

j∑
i=2

a1ili2 = 0,

that is, li2 = 0, for i = 2, 3, . . . , j. Therefore, rows 2, 3, . . . , j of A are linear
combinations of the first row of A. Concretely, A(j, :) = αjA(1, :), then
aj,j+1 = 0, which contradicts the irreducibility of A.

We conclude that a
(1)
12 > 0. Analogously by columns we can demostrate that

a
(1)
21 > 0. Since A1 is TN we have that a

(1)
22 > 0.

(3) Now, suppose that the submatrix A1[1, 2, . . . , r−1] is an ITN matrix and a
(1)
r−1,r =

0, with 3 ≤ r ≤ n. Since A1 is TN then, a
(1)
j,r = 0, for j = 1, 2, . . . , r − 2, that is,

A1(1 : r − 1, r) = U(1 : r − 1, :)L(:, r) = O(r−1)×1.

We have that ar,r+1 > 0 because A is ITN. If arj is the last nonzero entry of
the r-th row of A, with r + 1 ≤ j ≤ n, then ais = 0 for i = 1, 2, . . . , r and
s = j + 1, j + 2, . . . , n.

Let 2 ≤ t1 ≤ t2 ≤ . . . ≤ tr−1 ≤ tr = j ≤ n be the indices of the last
nonzero elements of A in rows 1, 2, . . . , r− 1, r, respectively, with tq ≥ q + 1, for
q = 1, 2, . . . , r. Then, these are also the indices of the last nonzero elements of
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U in rows 1, 2, . . . , r − 1, r. As a consequence, from

A1(1 : r − 1, r) = U(1 : r − 1, :)L(:, r) = U(1 : r − 1, :)



0
...
0
lrr
lr+1,r

...
lnr


= O(r−1)×1

we conclude that lsr = 0 for s = 1, 2, . . . , tr−1. Therefore, we have

A(j, :) =

r−1∑
i=1

αiA(i, :) =

r−1∑
i=1

αi[ai1 · · · aiti 0 · · · 0], ti ≤ j.

This implies that aj,j+1 = 0, which contradicts the irreducibility of A. Thus,

a
(1)
r−1,r > 0, with 2 ≤ r ≤ n − 1. Analogously by columns we can prove that

a
(1)
r,r−1 > 0 and since A1 is TN we conclude that a

(1)
r,r > 0.

The obtained results prove that A1 is irreducible.

Summarizing, we have shown that if A ∈ Rn×n is an ITN matrix with rank(A) = r
and p-rank(A) = p, and A = LU is the full rank factorization in echelon form of A
then, matrix A1 = UL ∈ Rr×r is also an ITN matrix such that p-rank(A1) = p.

4. Jordan canonical forms of ITN matrices

In this section we give a procedure to obtain all Jordan canonical forms associated
with a realizable triple. Consider an ITN matrix A associated with the realizable
triple (n, r1, p). If p = 1 then by equation (2) we have that r1 = 1. In this case, A is
associated with the realizable triple (n, 1, 1), which implies that am(0) = gm(0) = n−1.
Therefore, A has n− 1 zero Jordan blocks of size 1× 1. Now we study the case p > 1.

Let A = LU be the full rank factorization in echelon form of A and A1 = UL. By
Theorems 3.6 and 3.7, A1 is an ITN matrix with p-rank(A1) = p-rank(A) = p, but we
do not know the value of rank(A1), that is, A1 is an ITN matrix associated with the
realizable triple (r1, r2, p), where the value of r2 is unknown. Taking into account that
the relation (2) for n, r1 and p is

p ≤ r1 ≤ n−
⌈
n− p
p

⌉
the next theorem obtains the corresponding relations between r1, r2 and p, with all
possible values for r2.

Theorem 4.1. Let (n, r1, p) be a realizable triple and let A ∈ Rn×n be an ITN matrix
associated with this triple. We consider A = LU the full rank factorization in echelon
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form of A. If A1 = UL ∈ Rr1×r1, then A1 is an ITN matrix associated with the
realizable triple (r1, r2, p) where

max{p, 2r1 − n} ≤ r2 ≤ r1 −
⌈
r1 − p
p− 1

⌉
.

Proof. As we have already seen, A1 is an ITN matrix associated with the triple
(r1, r2, p). To obtain all possible values of r2 note that p ≤ r2 and, by Theorem 3.3,
the number of eigenvectors of A1 corresponding to 0 is less than or equal to the number
of eigenvectors of A corresponding to the same eigenvalue, that is, n − r1 ≥ r1 − r2

which implies that r2 ≥ 2r1 − n. Then,

max{p, 2r1 − n} ≤ r2.

By expression (6) rank(Ai1) = rank(Ai+1), for i = 1, 2, . . .; then we have that

rank(Ap−1
1 ) = rank(Ap) = p, and dim Ker(Ap−1

1 ) = r1 − p, that is, the maximum size
of zero Jordan blocks of A1 is less than or equal to p− 1. So, (p− 1)(r1− r2) ≥ r1− p
and therefore

r2 ≤ r1 −
⌈
r1 − p
p− 1

⌉
.

Remark 4. Consider Theorem 4.1,

(1) If r2 = p, A1 is associated with the triple (r1, p, p) and am(0) = gm(0) = r1 − p,
which implies that A1 has r1−p zero Jordan blocks of size 1×1. Since rank(A) =
r1 by (4) we have that A has r1−p zero Jordan blocks of size 2×2 and n+p−2r1

zero Jordan blocks of size 1× 1.
(2) If r2 > p, we repeat the previous process, that is, we obtain the full rank factoriza-

tion in echelon form of A1, A1 = L1U1 and construct the ITN matrix A2 = U1L1

associated with the triple (r2, r3, p). Since rank(A2) = rank(A2
1) = rank(A3)

reasoning similarly to Theorem 4.1 we obtain that r3 satisfies the following in-
equalities

max{p, 2r2 − r1} ≤ r3 ≤ r2 −
⌈
r2 − p
p− 2

⌉
.

Now, for each value of r3, we study the different possibilities. This process follows
with each ri until all obtained triples have the same rank and principal rank.

(3) For each item of this process we obtain the new full rank factorization in ech-
elon form Ai−1 = Li−1Ui−1 and a new matrix Ai = Ui−1Li−1. This matrix is
associated with the realizable triple (ri, ri+1, p) and the following inequalities
hold

max{p, 2ri − ri−1} ≤ ri+1 ≤ ri −
⌈
ri − p
p− i

⌉
. (7)

Note that the different zero Jordan canonical forms of an ITN matrix associated with
a realizable triple can be directly obtained from the values of ri and the new realizable
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triples following the above process taking into account equation (7). It is not necessary
to calculate the full rank factorizations in echelon form. The next procedure computes
the process.

Procedure 1. Given the realizable triple (n, r1, p), where

1 ≤ r1 ≤ n− 1, p ≤ r1 ≤ n−
⌈
n− p
p

⌉
the following steps compute all Jordan canonical forms associated with this triple.

Let r0 = n, for i = 1, 2, . . .,

Step 1. Obtain the triples (ri, ri+1, p) where

max{p, 2ri − ri−1} ≤ ri+1 ≤ ri −
⌈
ri − p
p− i

⌉
For each ri+1 do
Step 2. If ri+1 = p −→ end.
Step 3. If ri+1 > p −→ go to Step 1.

From each sequence of realizable triples obtained by this procedure, we calculate
the Weyr and the Segre characteristics of an ITN matrix associated with the initial
realizable triple (n, r1, p). The following example shows this process.

Example 4.2. Obtain all possible zero Jordan canonical forms of an ITN matrix
associated with the realizable triple (17, 13, 8).

By applying Algorithm 1 to Example 2.4-a, we have that the number of the zero
Jordan canonical forms that we can obtain is 6. Now, we calculate these zero Jordan
canonical forms.

From the triple (17, 13, 8) we have n = r0 = 17, r1 = 13, p = 8, am(0) = n− p = 9
and gm(0) = n− r1 = 4.

Applying Procedure 1 to the triple (17, 13, 8) we obtain the triples (13, r2, 8), where
r2 satisfies the inequalities of Theorem 4.1. Then, 9 ≤ r2 ≤ 12:

If r2 = 9, since it is greater that p = 8, we apply again Procedure 1 obtaining the triple
(r2, r3, p) = (9, 8, 8). Now, r3 = p = 8 and therefore, we finish to apply Procedure 1.
The sequence of realizable triples obtained is the following,

A A1 A2

(17, 13, 8) −→ (13, 9, 8) −→ (9, 8, 8)

dim Ker(A) = 4 dim Ker(A1) = 4 dim Ker(A2) = 1.

By (4) and (5) the Weyr characteristic of A relative to the eigenvalue 0 is (w1, w2, w3) =
(4, 4, 1) and its conjugated sequence (s1, s2, s3, s4) = (3, 2, 2, 2) is the Segre character-
istic of A relative to 0. Using the Ferrers diagram in French notation we represent the
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Weyr and Segre characteristic of A relative to the eigenvalue 0,

• w3 = 1

• • • • w2 = 4

• • • • w1 = 4

s1 = 3 s2 = 2 s3 = 2 s4 = 2

If r2 = 10, applying again Procedure 1 we obtain that r3 satisfies 8 ≤ r3 ≤ 9:
• If r3 = 8 we have

A A1 A2

(17, 13, 8) −→ (13, 10, 8) −→ (10, 8, 8)

dim Ker(A) = 4 dim Ker(A1) = 3 dim Ker(A2) = 2.

In this case, the Weyr and the Segre characteristics of A relative to 0 are (4, 3, 2) and
(3, 3, 2, 1), respectively. Graphically,

• • w3 = 2

• • • w2 = 3

• • • • w1 = 4

s1 = 3 s2 = 3 s3 = 2 s4 = 1

• If r3 = 9, reapplying Procedure 1 we obtain the triple (9, 8, 8). So, we have

A A1 A2 A3

(17, 13, 8) −→ (13, 10, 8) −→ (10, 9, 8) −→ (9, 8, 8)

dim Ker(A) = 4 dim Ker(A1) = 3 dim Ker(A2) = 1 dim Ker(A3) = 1

Now, the Weyr and the Segre characteristics of A relative to 0 are (4, 3, 1, 1) and
(4, 2, 2, 1), respectively. The corresponding Ferrers diagram in French notation is

• w4 = 1

• w3 = 1

• • • w2 = 3

• • • • w1 = 4

s1 = 4 s2 = 2 s3 = 1 s4 = 1

If r2 = 11 we proceed as in the previous cases obtaining the following two sequences
of realizable triples and the corresponding Jordan structures.

A A1 A2 A3

(17, 13, 8) −→ (13, 11, 8) −→ (11, 9, 8) −→ (9, 8, 8)

dim Ker(A) = 4 dim Ker(A1) = 2 dim Ker(A2) = 2 dim Ker(A3) = 1
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The Weyr and the Segre characteristics of A relative to 0 are (4, 2, 2, 1) and (4, 3, 1, 1),
respectively.

A A1 A2

(17, 13, 8) −→ (13, 11, 8) −→ (11, 10, 8) −→
dim Ker(A) = 4 dim Ker(A1) = 2 dim Ker(A2) = 1

A3 A4

−→ (10, 9, 8) −→ (9, 8, 8)

dim Ker(A3) = 1 dim Ker(A4) = 1.

Now, the Weyr and the Segre characteristics of A relative to 0 are (4, 2, 1, 1, 1) and
(5, 2, 1, 1), respectively.

Finally, if r2 = 12, by Procedure 1 we obtain the following sequence of realizable
triples

A A1 A2

(17, 13, 8) −→ (13, 12, 8) −→ (12, 11, 8) −→
dim Ker(A) = 4 dim Ker(A1) = 1 dim Kerr(A2) = 1

A3 A4 A5

−→ (11, 10, 8) −→ (10, 9, 8) −→ (9, 8, 8)

dim Ker(A3) = 1 dim Ker(A4) = 1 dim Ker(A5) = 1.

The Weyr and the Segre characteristics of A relative to 0 are (4, 1, 1, 1, 1, 1) and
(6, 1, 1, 1), respectively.

The described process is given by the tree digraph that appears in Figure 1. In that
tree, each branch represents the sequence of realizable triples obtained when we apply
Procedure 1 to (17, 13, 8).

From the described Procedure 1 we give the following algorithm which first checks
if the triple (n, r, p) is realizable and after that, its computes the different zero Jordan
canonical forms corresponding to this triple.
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(17,13,8)  

(13,9,8) (13,10,8) (13,11,8) (13,12,8)

(9,8,8)      (10,8,8)         (10,9,8)        (11,9,8)       (11,10,8)        (12,11,8)

(3,2,2,2) (3,3,2,1) (9,8,8)          (9,8,8)        (10,9,8)        (11,10,8)

(4,2,2,1)       (4,3,1,1)      (9,8,8)          (10,9,8)

(5,2,1,1)          (9,8,8)

(6,1,1,1)

Figure 1. Digraph associated with the triple (17, 13, 8)

Algorithm 3 Program(n, r, p)

1: if r < p || r > n− ceil((n− p)/p) then
2: It is not a realizable triple
3: else if r == p then
4: w = ones(1, n− p) = 1;
5: else
6: M = [n, r, p, 1, 0, 0]; j = 1; d = 1;
7: while j <= d do
8: if M(j, 5) == 0 then
9: M(j, 5) == 1; a = M(j, 1); b = M(j, 2); i = M(j, 4);

10: t =max([p, 2 ∗ b− a]); s = b− ceil((b− p)/(p− i));
11: for k = t : s do
12: d = d+ 1;
13: if k > p then
14: M(d, :) = [b, k, p, i+ 1, 0, j];
15: else
16: M(d, :) = [b, k, p, i+ 1, 1, j]
17: end if
18: end for
19: end if
20: j = j + 1;
21: end while
22: k = 0; i = d− k;
23: while i > 1 do
24: if M(i, 5) == 1 then
25: H = zeros(1, 3);
26: for j = M(i, 4) : −1 : 1 do
27: H(j, 1 : 3) = M(i, 1 : 3);M(i, 5) = 0; i = M(i, 6);
28: end for
29: g = size(H, 1); v = (H(:, 1)−H(:, 2))′; z = ones(g, 1);
30: for w = 1 : v(1) do
31: x = v > w − 1; s(w) = x ∗ z;
32: end for
33: w
34: v = 0; M(1, 5) = 1
35: end if
36: k = k + 1; i = d− k;
37: end while
38: end if
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Example 4.3. Applying Algorithm 3 to the realizable triple (17, 13, 8) we compute
the 6 zero Jordan canonical forms that we have already obtained by Procedure 1 in
Example 4.2.

The Segre characteristic
s1 = (6, 1, 1, 1)
s2 = (5, 2, 1, 1)
s3 = (4, 3, 1, 1)
s4 = (4, 2, 2, 1)
s5 = (3, 3, 2, 1)
s6 = (3, 2, 2, 2)
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