
J. Math. Anal. Appl. 500 (2021) 125139
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Mean ergodic composition operators on spaces of holomorphic 

functions on a Banach space
David Jornet, Daniel Santacreu, Pablo Sevilla-Peris ∗

Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, camino de 
Vera s/n, 46022, València, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 December 2020
Available online 10 March 2021
Submitted by R.M. Aron

Keywords:
Holomorphic function on Banach 
space
Composition operator
Power bounded
Mean ergodic
Bounded type

We study mean ergodic composition operators on infinite dimensional spaces of 
holomorphic functions of different types when defined on the unit ball of a Banach 
or a Hilbert space: that of all holomorphic functions, that of holomorphic functions 
of bounded type and that of bounded holomorphic functions. Several examples in 
the different settings are given.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

If X and Y are Banach spaces and U ⊆ X is open, then a function f : U → Y is holomorphic if it is 
Fréchet differentiable at every point of U . If the open unit ball BX of X satisfies BX ⊆ U and ϕ : BX → BX

is a holomorphic self-map on BX , the associated composition operator is defined by Cϕ(f) := f ◦ ϕ. The 
function ϕ is called symbol of the composition operator. When Y = C and U = BX , the space of holomorphic 
functions f : BX → C is simply denoted by H(BX). Our aim is to study the power boundedness and 
(uniform) mean ergodicity of the composition operator Cϕ : H(BX) → H(BX) in terms of the properties 
of the symbol ϕ when H(BX) is equipped with its natural topology, the compact-open topology, and also 
when H(BX) is replaced by the space of holomorphic functions of bounded type Hb(BX) or that of bounded 
holomorphic functions H∞(BX). We study also the case when X is a Hilbert space for each of the settings 
considered above.

Several authors have studied different properties of composition operators on spaces of holomorphic 
functions on the unit ball of a Banach space. See, for instance, [1,14,15,17] and the references therein. 
However, it seems that there is no previous literature about the dynamics of such operators. The present 

* Corresponding author.
E-mail addresses: djornet@mat.upv.es (D. Jornet), dasanfe5@posgrado.upv.es (D. Santacreu), psevilla@mat.upv.es

(P. Sevilla-Peris).
https://doi.org/10.1016/j.jmaa.2021.125139
0022-247X/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jmaa.2021.125139
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2021.125139&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:djornet@mat.upv.es
mailto:dasanfe5@posgrado.upv.es
mailto:psevilla@mat.upv.es
https://doi.org/10.1016/j.jmaa.2021.125139
http://creativecommons.org/licenses/by/4.0/


2 D. Jornet et al. / J. Math. Anal. Appl. 500 (2021) 125139
work can be considered a sequel of [22] by the same authors, where we study some dynamical properties 
(especially mean ergodicity) of composition operators in spaces of homogeneous polynomials. As in [22], the 
motivation and inspiration of our investigation comes from several previous works, as [7], where the authors 
characterise those composition operators Cϕ : H(U) → H(U) which are power bounded, where H(U) is the 
space of holomorphic functions on a connected domain of holomorphy U of Cd. It was proved in [7] that Cϕ

is power bounded if and only if it is (uniformly) mean ergodic, and this happens if and only if the symbol 
ϕ has stable orbits. On the other hand, if the domain is the unit disc, it was characterised in [3] when Cϕ

is mean ergodic or uniformly mean ergodic on the disc algebra or on the space of bounded holomorphic 
functions in terms of the asymptotic behaviour of the symbol. Power boundedness and (uniform) mean 
ergodicity of weighted composition operators on the space of holomorphic functions on the unit disc was 
analysed in [4] in terms of the symbol and the multiplier. In [23] power boundedness and mean ergodicity 
for (weighted) composition operators on function spaces defined by local properties was studied in a very 
general framework which extends previous work. In particular, it permits to characterise (uniform) mean 
ergodicity for composition operators on a large class of function spaces which are Fréchet-Montel spaces 
when equipped with the compact-open topology. Here, the results of [23] do not apply since H(BX), Hb(BX)
or H∞(BX) are not Fréchet-Montel spaces. Other recent contributions to this topic can be found in [24], 
where mean ergodicity of composition operators on the space of bounded holomorphic functions on the 
n-dimensional Euclidean ball is studied, and in [21], where the authors consider composition operators on 
weighted spaces of holomorphic functions on the disc.

The paper is organised as follows. In Section 2 we give some basic definitions and fix the notation used 
throughout the paper. Moreover, we recall a specific result for Hilbert spaces which is useful along the 
text. In Section 3 we analyse some properties of stable and BX-stable orbits. In Section 4 we study the 
mean ergodicity of the composition operator in the space of holomorphic functions on the unit ball of 
a Banach space. In Section 5 we consider the same problem for holomorphic functions of bounded type, 
while in Section 6 we consider the space of bounded holomorphic functions. In each section we treat the 
Hilbert-space case also.

2. Preliminaries

All along this paper E will always denote a locally convex Hausdorff space. The set of continuous semi-
norms on E is denoted by ΓE and L(E) is the space of continuous linear maps T : E → E. We denote 
T 0 = id (the identity), T 1 = T and, for n ∈ N, we write Tn = Tn−1 ◦ T (that is, the n-th composition of T
with itself). With this notation, the n-the Cesàro mean of the sequence (T k)∞k=0 is defined as

T[n] := 1
n

n−1∑
k=0

T k .

The operator T is said to be power bounded if {Tn : n ≥ 0} is equicontinuous. It is called mean ergodic
if there is L ∈ L(E) such that (T[n]x)n is convergent (in E) to Lx for every x ∈ E. It is uniformly mean 
ergodic if (T[n])n converges uniformly on the bounded subsets of E (we will refer to the topology so defined 
as the topology of bounded convergence of L(E)). Finally, we say that T is topologizable if for each q ∈ ΓE

there exist a sequence (an)n∈N of positive numbers and p ∈ ΓE such that

q(anTnx) ≤ p(x), (1)

for all x ∈ E and all n ∈ N (see [5,34]).
Also X will always denote a Banach space and H a Hilbert space. We write E′, X ′ and H ′ for the 

corresponding dual spaces. The set BX is the open unit ball in X. On BH (recall that H is a Hilbert space) 



D. Jornet et al. / J. Math. Anal. Appl. 500 (2021) 125139 3
there is a group of automorphisms that, in some sense, plays the role of Möbius transforms in the unit disc. 
We give here the definition and a basic property that we use later.

From [32, Proposition 1] we know that, given a ∈ BH , the linear operator γa : H → H defined by

γa(x) := 1
1 + v(a)a〈x, a〉 + v(a)x ,

where v(a) =
√

1 − ‖a‖2, satisfies ‖γa(x)‖ ≤ ‖x‖ for all x ∈ H and γa(a) = a. Once we have this, for each 
a ∈ BH we can define an automorphism αa : BH → BH by doing

αa(x) = γa

( a− x

1 − 〈x, a〉
)
. (2)

This satisfies αa(0) = a, αa(a) = 0, and α−1
a = αa (the first two follow by direct computation, and the third 

one proceeding as in [32, Proposition 1]). The following result follows from [32, (9’)]; we include a proof for 
the sake of completeness.

Lemma 2.1. For each 0 < r < 1 there is 0 < ρ < 1 such that

αa(rBH) ⊆ ρBH , (3)

for every a ∈ rBH .

Proof. For x ∈ BH with ‖x‖ < r, we put y := αa(x). Straightforward (though long) computation (see [32, 
(2)]) yields

1 − ‖y‖2 = (1 − ‖a‖2)(1 − ‖x‖2)
|1 − 〈x, a〉|2 .

Since

|1 − 〈x, a〉|2 ≤ (1 + ‖x‖‖a‖)2 ≤ (1 + r)2,

we deduce 1 − ‖y‖2 ≥ (1 − r2)2(1 + r)−2 = (1 − r)2, which gives the conclusion for ρ :=
√

1 − (1 − r)2. �
A mapping P : X → Y between two Banach spaces X and Y is a (continuous) m-homogeneous polynomial

if there is a continuous m-linear mapping L : X × · · ·×X → Y so that P (x) = L(x, . . . , x) for every x ∈ X. 
We write P(mX) for the space of all m-homogeneous polynomials P : X → C, which endowed with the 
norm ‖P‖ = sup‖x‖≤1 ‖P (x)‖ is a Banach space.

We refer the reader to [28,29] for general theory of functional analysis and Banach space theory, to 
[10,12,31] for the theory of holomorphic functions on Banach spaces and to [2,19] for topics related with 
linear dynamics.

3. Stable and BX -stable orbits

Given an open set U ⊆ X, following [7] a self map f : U → U is said to have stable orbits if for every 
compact subset K of U there is a compact subset L ⊂ U such that fn(K) ⊆ L for every n ∈ N or 
equivalently, if 

⋃∞
n=0 f

n(K) is compact in U for every compact set K ⊆ U . This property was already used 
in [7] or [4] to characterise power boundedness and/or mean ergodicity of weighted composition operators.

We introduce now a sort of ‘bounded type’ counterpart. A set A ⊆ U is U -bounded if it is bounded and 
has positive distance to the boundary of U (whenever U = X, the notions of ‘bounded’ and ‘X-bounded’ 
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coincide). Then we say that f has U -stable orbits if for every U -bounded set A ⊂ U there is a U -bounded set 
L ⊂ U such that fn(A) ⊆ L for every n ∈ N (equivalently, 

⋃∞
n=0 f

n(A) is U -bounded for every U -bounded 
set A ⊆ U).

Remark 3.1. The orbit {fn(x) : n ∈ N} of each point x ∈ U is relatively compact if f has stable orbits and 
U -bounded if f has U -stable orbits.

The notion of a function having BX -stable orbits (we only deal with the case U = BX) seems to be new. 
However, it is not hard to find functions with this property. In fact, the following well known version of the 
Schwarz lemma gives immediate examples.

Lemma 3.2. Let ϕ : BX → BX be holomorphic so that ϕ(0) = 0. Then ‖ϕ(x)‖ ≤ ‖x‖ for every x ∈ BX .

Proof. It is enough to apply the classical Schwarz lemma to the family of functions{
[λ ∈ D �→ x∗(ϕ(λx/‖x‖)

)
] : x∗ ∈ X∗, ‖x∗‖ ≤ 1, 0 < ‖x‖ < 1

}
. �

Proposition 3.3. Let ϕ : BX → BX be a holomorphic mapping such that ϕ(0) = 0, then ϕ has BX-stable 
orbits.

Proof. Lemma 3.2 clearly implies ‖ϕn(x)‖ ≤ ‖x‖ for all n ∈ N and all x ∈ BX and, therefore, for each 
0 < r < 1 we have

ϕn(rBX) ⊆ rBX ,

for all n ∈ N. This gives the claim. �
As a consequence, every continuous homogeneous polynomial P : X → X (in particular every linear 

operator) with ‖P‖ ≤ 1 has BX -stable orbits.

Example 3.4. If X is either c0 or �p with 1 ≤ p ≤ ∞ we consider the forward and backward shifts operators 
F, B : X → X defined as

F (x1, x2, . . . ) = (0, x1, x2, . . . ) and B(x1, x2, . . . ) = (x2, x3, . . . ) . (4)

Both are linear and clearly have norm less or equal 1, hence have BX-stable orbits. It is not difficult to see 
that B has stable orbits (just using the characterisation of compact sets in c0 or in �p; see for instance [11, 
p. 6]). For the forward shift, however, we have that the set{

Fn

(
e1

2

)
: n ∈ N

}
=

{en
2 : n > 1

}
is not relatively compact and, by Remark 3.1, F does not have stable orbits.

We may also consider the mapping φ : BX → BX defined as

φ(x1, x2, . . . ) =
(
x1+1

2 , 0, 0, . . .
)
.

Note that φn(0) =
(∑n

i=1
1
2i , 0, 0, . . .

)
and, therefore,

lim
n→∞

‖φn(0)‖ = lim
n→∞

n∑ 1
2i = 1.
i=1
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Hence φ has neither stable nor Bc0-stable orbits.

We do not know so far whether or not having stable orbits implies having BX-stable orbit. However, if 
T : X → X is continuous and linear and has stable orbits, then it is power bounded (because {Tnx}n is 
bounded for every x ∈ X), and a simple computation shows that, then T has X-stable orbits.

3.1. The Hilbert-space case

If H is a Hilbert space, for each a ∈ BH the automorphism αa : BH → BH defined in (2) satisfies 
α−1
a = αa. Hence

∞⋃
n=0

αn
a(A) = A ∪ αa(A) ,

for every A ⊆ BH . If A is compact, αa(A) is again compact, and if A is BH -bounded, by Lemma 2.1, so 
also is αa(A). This shows that αa has both stable and BH -stable orbits.

Using these automorphisms, in the case of Hilbert spaces we can extend Proposition 3.3 showing that 
every holomorphic function with a fixed point has BH-stable orbits.

Lemma 3.5. If ϕ : BH → BH has stable orbits (respectively BH-stable orbits), then the mapping ψ =
αa ◦ ϕ ◦ αa has stable orbits (respectively BH-stable orbits) for every a ∈ BH .

Proof. If K ⊆ BH is compact, then αa(K) is compact and, having ϕ stable orbits, we can find a compact set 
L ⊆ BH so that ϕn(αa(K)) ⊆ L for each n ∈ N. Then αa(L) ⊆ BH is compact and αa

(
ϕn(αa(K))

)
⊆ αa(L). 

Since ψn = αa ◦ ϕn ◦ αa (because α2
a = id), ψ has stable orbits.

The argument if ϕ has BH -stable orbits is exactly the same, using that by Lemma 2.1 αa(A) is BH -
bounded for every BH-bounded A. �
Proposition 3.6. Let ϕ : BH → BH be a holomorphic mapping with a fixed point. Then ϕ has BH-stable 
orbits.

Proof. Take a ∈ BH with ϕ(a) = a. The holomorphic function ϕ = αa ◦ ϕ ◦ αa : BH → BH satisfies 
ϕ(0) = αa(ϕ(αa(0))) = αa(ϕ(a)) = αa(a) = 0. Then, by Proposition 3.3 the function ϕ has BH -stable 
orbits, and Lemma 3.5 gives the conclusion. �
4. The space of holomorphic functions

Given a Banach space X, we define H(BX) as the space of all holomorphic functions f : BX → C, 
endowed with the topology τ0 of uniform convergence on compact sets. This is a locally convex Hausdorff 
space.

Remark 4.1. If ϕ : BX → BX is holomorphic, then the composition operator Cϕ : H(BX) → H(BX) is 
clearly well defined (and continuous). On the other hand, if Cϕ is well defined, then x′ ◦ ϕ is holomorphic 
for every x′ ∈ X ′ and, by Dunford’s theorem (see e.g. [10, Theorem 15.45]), ϕ is holomorphic. Then, there 
is no restriction to assume that ϕ is holomorphic.

Remark 4.2. Suppose that the composition operator Cϕ is topologizable. Given any f ∈ H(BX), a straight-
forward computation using (1) with fm (for m ∈ N) and taking the m-root shows that for every compact 
set K ⊆ BX there is some compact L ⊆ BX so that
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sup
x∈K

|f(ϕn(x))| ≤ 1
a
1/m
n

sup
x∈L

|f(x)| .

Letting m → ∞ yields

sup
x∈K

|f(ϕn(x))| ≤ sup
x∈L

|f(x)| ,

and in particular Cϕ is power bounded. Our aim now is to show that in fact this implication can be reversed 
and characterised in terms of the symbol.

Following [33] and [9], given a family F of C-valued holomorphic functions defined on an open set U , the 
F-hull of A ⊆ U is denoted

ÂF = {x ∈ U : |f(x)| ≤ sup
y∈A

|f(y)|, for all f ∈ F} . (5)

Stable orbits of the symbol is the property that characterises the power boundedness of the composition 
operator.

Theorem 4.3. Let ϕ : BX → BX be holomorphic. The following assertions are equivalent:

(a) ϕ has stable orbits on BX .
(b) Cϕ : H(BX) → H(BX) is power bounded.
(c)

( 1
nC

n
ϕ

)
n

is equicontinuous in L(H(BX)).
(d) Cϕ : H(BX) → H(BX) is topologizable.

Proof. (a) ⇒ (b) If ϕ has stable orbits, given a compact set K ⊆ BX there is a compact set L ⊆ BX such 
that ϕn(K) ⊆ L for every n ∈ N. Hence

sup
x∈K

|Cn
ϕ(f)(x)| = sup

x∈K
|f(ϕn(x))| ≤ sup

x∈L
|f(x)|,

for all f ∈ H(BX) and n ∈ N. So the sequence (Cn
ϕ)n is equicontinuous and Cϕ is power bounded.

(b) ⇒ (c) Suppose now that Cϕ is power bounded, then for each compact set K ⊆ BX we can find c > 0
and a compact set L ⊆ B so that

sup
x∈K

|Cn
ϕ(f)(x)| ≤ c sup

x∈L
|f(x)|

for every f ∈ H(BX) and n ∈ N. This obviously implies

sup
x∈K

∣∣ 1
nC

n
ϕ(f)(x)

∣∣ ≤ c sup
x∈L

|f(x)|

for every f and n, and 
( 1
nC

n
ϕ

)
n

is equicontinuous.
(c) ⇒ (d) follows just taking an = 1

cn in (1).
(d) ⇒ (a) Fix some compact set K ⊆ BX . Since Cϕ is topologizable, we can find some compact set 

W ⊆ BX , and (an)n∈N with an > 0 such that,

sup |f(ϕn(x))| ≤ 1 sup |f(x)| , (6)

x∈K an x∈W
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for all f ∈ H(BX) and n ∈ N. By [31, Corollary 10.7 and Theorem 11.4], the set L = ŴH(BX) (recall (5)) 
is compact and contains W . We see that ϕn(K) ⊆ L for every n. Suppose that this is not the case and take 
x0 ∈ K and n0 ∈ N so that ϕn0(x0) /∈ L. Then there is f ∈ H(BX) such that |f(ϕn0(x0))| > supy∈W |f(y)|, 
and there exists m ∈ N such that

sup
y∈W

|f(y)|m
|f(ϕn0(x0))|m

< an0 ,

and this clearly contradicts (6) (taking g = fm). �
Proposition 4.4. Let ϕ : BX → BX be holomorphic. If Cϕ : H(BX) → H(BX) is power bounded, then it is 
also uniformly mean ergodic.

Proof. From [31, Proposition 9.16] we know that every bounded subset of H(BX) is relatively compact, 
therefore H(BX) is semi-Montel and, in particular, semi-reflexive. Then, as a consequence of [6, p. 917] (see 
also [22, Proposition 3.1]) we have that every power bounded operator is uniformly mean ergodic. �
5. The space of holomorphic functions of bounded type

If X and Y are Banach spaces and U ⊆ X and V ⊆ Y are open sets, a function f : U → V is of bounded 
type if it sends U -bounded sets to V -bounded sets. We consider the space Hb(BX) of all holomorphic 
functions f : BX → C of bounded type, endowed with the topology τb of uniform convergence on BX-
bounded sets. This is a Fréchet space.

If ϕ : BX → BX is holomorphic of bounded type, then clearly Cϕ : Hb(BX) → Hb(BX) is well defined. 
On the other hand, we observe that X ′ ⊆ Hb(BX) because every functional is trivially Fréchet differentiable. 
In fact, X ′ is a complemented subspace of Hb(BX), as we explain below in the proof of Proposition 5.4. So, 
if the composition operator is well defined (as a self map on Hb(BX)), then the argument in Remark 4.1
shows that ϕ has to be holomorphic. Furthermore, [18, Proposition 3] shows that ϕ is of bounded type.

Our first goal in this section is to characterise the power boundedness of composition operators on 
Hb(BX). As in Remark 4.2, if the composition operator Cϕ is topologizable, then for every BX -bounded 
set U there is some BX -bounded set V such that

sup
x∈U

|f(ϕn(x))| ≤ sup
x∈V

|f(x)| ,

and Cϕ is power bounded. We go further.

Lemma 5.1. If U is an absolutely convex open set on a Banach space X, then ÂHb(U) is U -bounded for every 
U -bounded set A.

Proof. The polar set of A is a subset of X ′ and it is contained in Hb(U). Then a straightforward computation 
shows that ÂHb(U) is contained in the bipolar of A, which by the Bipolar Theorem coincides with co(A)
(the closure of the absolutely convex hull of A). Since U is absolutely convex, [8, Remark, p. 527] gives that 
co(A) is U -bounded, which completes the proof. �

With exactly the same proof as in Theorem 4.3, replacing ‘compact’ by ‘BX -bounded’ we have the 
following.

Theorem 5.2. Let ϕ : BX → BX be a holomorphic mapping. The following assertions are equivalent
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(a) ϕ has BX-stable orbits.
(b) Cϕ : Hb(BX) → Hb(BX) is power bounded.
(c)

( 1
nC

n
ϕ

)
n

is equicontinuous in L(Hb(BX)).
(d) Cϕ : Hb(BX) → Hb(BX) is topologizable.

We now show that in this case every mean ergodic composition operator is power bounded, and there 
are power bounded operators that are not mean ergodic.

Proposition 5.3. Let ϕ : BX → BX a holomorphic mapping. If Cϕ : Hb(BX) → Hb(BX) is mean ergodic, 
then Cϕ is power bounded.

Proof. The mean ergodicity immediately gives that the sequence ( 1
nC

n
ϕ) tends to zero (pointwise), so it is 

pointwise bounded. Since Hb(BX) is barrelled (because it is a Fréchet space), it is also equicontinuous on 
Hb(BX). This, in view of Theorem 5.2, gives the conclusion. �

We want to find now composition operators that are power bounded but not mean ergodic. The shifts 
defined in (4) provide us with such examples.

Proposition 5.4. The composition operators CB : Hb(Bc0) → Hb(Bc0) and CF : Hb(B�1) → Hb(B�1) are 
power bounded but not mean ergodic.

Proof. We already noted in Example 3.4 that B has Bc0-stable orbits which, in view of Theorem 5.2, shows 
that CB is power bounded.

We now see that CB is not mean ergodic. We begin by observing that Hb(BX) contains a complemented 
copy of X ′ for every Banach space X. Indeed, given a holomorphic f : BX → C, we denote its differential 
at 0 (that belongs to X ′) by df(0). Then a simple computation shows that the mappings P : Hb(BX) → X ′

and J : X ′ → Hb(BX) defined by P (f) = df(0) and J(u) = u|BX
give our claim.

We consider now the restriction of CB to J(�1) (recall that c′0 = �1) and we have, for each u ∈ �1 and 
x ∈ c0,

〈CBu, x〉 = u(B(x)) = 〈u,B(x)〉 = 〈(u1, u2, u3, . . . ), (x2, x3, x4, . . . )〉
= u1x2 + u2x3 + u3x4 + · · · = 〈(0, u1, u2, u3, . . . ), (x1, x2, x3, x4, . . . )〉 = 〈Fu, x〉 .

Thus F = P ◦ CB ◦ J , which is not mean ergodic on �1 (see, for instance, [6]). This implies that CB is not 
mean ergodic on Hb(Bc0).

For the forward shift, Example 3.4 showed that F has B�1-stable orbits. Essentially the same argument 
as before shows that the restriction of CF to �′1 = �∞ is the backward shift B, which is not mean ergodic. 
This yields the conclusion. �

We look now for sufficient conditions for a given power bounded composition operator to be mean ergodic 
(and up to some point, even to reverse the implication in Proposition 5.3). Before we need the following 
lemma. The argument of the proof is essentially the one in [26, Chapter 2, Theorem 1.1] (see also [6, 
page 908]); since our setting is slightly different we sketch the proof here for the sake of completeness.

Lemma 5.5. Let E be a locally convex Hausdorff space, T ∈ L(E) be power bounded and x ∈ E. If y ∈ E is 
a σ(E, E′)-cluster point of (T[n]x)n∈N , then limn→∞ T[n]x = y.

Proof. Fix p ∈ ΓE . Since T is power bounded we can find q ∈ ΓE so that p(Tnz) ≤ q(z) for every z ∈ E. If 
y is a σ(E, E′)-cluster point of (T[n]x)n∈N then it belongs to the σ(E, E′)-closure of the set which (note that 
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(T[n]x)n∈N ⊆ co(Tnx)n∈N0) is contained in the σ(E, E′)-closure of co(Tnx)n∈N0 . But as a consequence of the 
Hahn-Banach theorem, for convex sets the σ(E, E′)-closure coincides with the closure. So, y ∈ co(Tnx)n∈N0 , 
and for a given ε > 0 we can find z ∈ co(Tnx)n∈N0 so that q(z − y) < ε, so that we can write

p(y − T[n]x) ≤ p(y − T[n]z) + p(T[n]z − T[n]x) . (7)

Note that z =
∑m

k=0 λkT
kx for some 0 ≤ λk ≤ 1 with 

∑m
k=0 λk = 1. We define S =

∑m
k=0 λkT

k ∈ L(E). 
Hence

p(T[n]Sx− T[n]x) ≤
m∑

k=0

λkp(T[n]T
kx− T[n]x) .

If n ≥ m ≥ k, we have

p(T[n]T
kx− T[n]x) ≤ 1

n

( k−1∑
j=0

p(T jx) +
n+k−1∑
j=n

p(T jx)
)
≤ 2k

n
q(x). (8)

With this we can estimate the second addend in the right-hand term of (7). In order to control the first one 
it is enough to see that y = Ty since, if this is the case then y = T[n]y and p(y − T[n]z) ≤ q(y − z). Given 
x′ ∈ E′, we have

|〈y − Ty, x′〉| ≤ |〈y − T[m]x, x
′〉| + |〈T[m]x− TT[m]x, x

′〉| + |〈Ty − TT[m]x, x
′〉|

≤ |〈y − T[m]x, x
′〉| + |〈T[m]x− TT[m]x, x

′〉| + |〈y − T[m]x, T
′x′〉| .

Since y is a σ(E, E′)-cluster point, we can choose m so that the first and third term are arbitrarily small. 
On the other hand, (8) implies that T[m]x −TT[m]x tends to 0 as m → ∞ and, then, so also does the second 
term. This shows that y = Ty and completes the proof. �

We denote by P(X) the algebra of all continuous polynomials on X (these are finite sums of homogeneous 
polynomials), and by σ(X, P(X)) the coarsest topology making all P ∈ P(X) continuous. This is a Hausdorff 
topology satisfying ‖ · ‖ � σ(X, P(X)) � σ(X, X∗), and the concepts of (relatively) countably compact 
subset, (relatively) sequentially compact subset and (relatively) compact subset all agree with respect to 
this topology [15].

Proposition 5.6. Let ϕ : BX → BX be holomorphic, having BX-stable orbits and such that ϕ(A) is relatively 
σ(X, P(X))-compact for every BX-bounded set A. Then Cϕ : Hb(BX) → Hb(BX) is mean ergodic.

Proof. From Theorem 5.2 we have that the composition operator Cϕ is power bounded, and the equiconti-
nuity of (Cn

ϕ)n∈N gives that the set {(Cϕ)[n](f) : n ∈ N} is bounded for every f ∈ Hb(BX). Now, by [16, 
Theorem 2.9] Cϕ maps bounded sets of Hb(BX) into relatively σ(Hb(BX), Hb(BX)′)-compact sets, so for 
every f ∈ Hb(BX) the set

Cϕ

(
{(Cϕ)[n](f)}n

)
=

{ 1
n

n∑
k=1

Ck
ϕ(f) : n ∈ N

}
is relatively σ(Hb(BX), Hb(BX)′)-compact and, therefore it has a σ(Hb(BX), Hb(BX)′)-cluster point. Our 
aim now is to see that {(Cϕ)[n](f)}n has a σ(Hb(BX), Hb(BX)′)-cluster point which, using Lemma 5.5, 
implies that the sequence ((Cϕ)[n](f))n∈N converges in Hb(BX) for all f ∈ Hb(BX), and Cϕ is mean 
ergodic.
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Note that

(Cϕ)[n](f) = 1
n

(f − Cn
ϕ(f)) + 1

n

n∑
k=1

Ck
ϕ(f)

for every n. The fact that Cϕ is power bounded implies that 
( 1
n (id(f) −Cn

ϕ(f))
)
n∈N tends to 0 as n → ∞, 

and this gives that {(Cϕ)[n](f)}n has a σ(Hb(BX), Hb(BX)′)-cluster point, as we wanted. �
Corollary 5.7. Let X be a Banach space such that every BX-bounded set is relatively σ(X, P(X))-compact. 
Then Cϕ : Hb(BX) → Hb(BX) is power bounded if and only if Cϕ is mean ergodic.

An example of a Banach space which satisfies such a property is the Tsirelson space T ∗: it is known that T ∗

is reflexive and the polynomials on T ∗ are weakly sequentially continuous [12, p. 121]. Hence, any sequence 
in the unit ball of T ∗ has a weakly convergent subsequence, which converges in the topology σ(T ∗, P(T ∗)). 
Since σ(T ∗, P(T ∗)) is angelic [15, p. 150], the unit ball is also relatively σ(T ∗, P(T ∗))-compact.

We find now conditions to ensure that a given composition operator is uniformly mean ergodic. Here C0
denotes the composition operator defined by the constant function 0 (i.e. C0(f) = f(0) for every f).

Theorem 5.8. Let ϕ : BX → BX be holomorphic so that for every 0 < t < 1 there exists 0 < ρ < t such that

ϕ(tBX) ⊆ ρBX . (9)

Then

Cϕn → C0,

in the topology of bounded convergence on Hb(BX). In particular,

(Cϕ)[n] → C0, (10)

in the topology of bounded convergence on Hb(BX) and Cϕ : Hb(BX) → Hb(BX) is uniformly mean ergodic.

Proof. Fix some 0 < t < 1. First of all, (9) implies, on the one hand, that ϕn(tBX) ⊂ ρBX for every n ∈ N

and, on the other hand, that ϕ(0) = 0. We can then apply Lemma 3.2 to the function [x � 1
ρϕ(tx)] and get

‖ϕn(x)‖ ≤
(ρ
t

)n

‖x‖, (11)

for every x ∈ tBX and n ∈ N. Now, given f ∈ Hb(BX), we obviously have ‖f ◦ ϕn‖tBX
≤ ‖f‖tBX

for every 
n ∈ N. We define g : BX → D by g(x) = 1

2‖f‖tBX

(
f(ϕ(tx)) −f(0)

)
. This is clearly holomorphic and satisfies 

g(0) = 0. Then we can apply Lemma 3.2 to g and (11) to obtain

‖Cn
ϕ(f) − C0(f)‖tBX

= sup
x∈tBX

|f(ϕn(x)) − f(0)| ≤ 2‖f‖tBX
sup

x∈tBX

‖ϕn−1(x)‖ ≤ 2‖f‖tBX

(ρ
t

)n−1
.

This implies, for every 0 < t < 1 and every bounded set A ⊆ Hb(BX),

lim
n→∞

sup
f∈A

sup
x∈tBX

|Cϕn(f)(x) − f(0)| = 0.

Hence, Cϕn → C0 in the topology of bounded convergence. Once we have this, (10) is a straightforward 
consequence. �
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Remark 5.9. If ϕ : BX → BX is holomorphic and satisfies

ϕ(BX) ⊆ rBX for some 0 < r < 1 and ϕ(0) = 0 , (12)

then, applying Lemma 3.2 to the function [x � 1
rϕ(x)] we get ‖ϕ(x)‖ ≤ r‖x‖ for every x ∈ BX , and this 

implies that ϕ satisfies (9) with ρ = tr.
There are, however, functions satisfying (9) but not (12). To see this just consider the restriction to BX

of any m-homogeneous polynomial (for m > 1) P : X → X with ‖P‖ ≤ 1. For a fixed 0 < t < 1 take any 
0 < ε < t − tm and note that

‖P (tx)‖ ≤ tm‖x‖m ≤ (t− ε)‖x‖,

for every x ∈ BX . That is, every homogeneous polynomial with norm ≤ 1 satisfies (9). If ‖P‖ = 1 and 
attains its norm (that is, there is x0 with ‖x0‖ = 1 so that ‖P (x0)‖ = ‖P‖) then

∥∥P (
(1 − 1

n )x0
)∥∥ =

(
1 − 1

n

)m

,

and there is no 0 < r < 1 so that P (BX) ⊆ rBX . For a concrete example of such a polynomial just consider 
the 2-homogeneous one P : �2 → �2 given by P

(
(xn)n

)
= (x2

n)n (in this case one can take x0 = e1).
In particular, we have that, if m > 1 and P is an m-homogeneous polynomial with ‖P‖ ≤ 1, then 

CP : Hb(BX) → Hb(BX) is uniformly mean ergodic. For m = 1, that is, for linear operators, this property 
does not hold, as Proposition 5.13 shows.

One may also ask if in (12) we can drop the condition on the fixed point and still get (9) just assuming 
that ϕ(BX) ⊆ rBX for some 0 < r < 1. But this is not the case: fix some x0 ∈ BX and consider the constant 
function ϕ(x) = x0 for every x ∈ BX .

5.1. Example of a composition operator which is mean ergodic but not uniformly mean ergodic in Hb(Bc0)

The following result is well known [25, §39, 4(1), p. 138].

Lemma 5.10. Let (Tn)n be a sequence of equicontinuous operators on a locally convex space E. If (Tn)
is pointwise convergent to a continuous operator T on some dense set D ⊆ E, then (Tn)n is pointwise 
convergent to T in E.

We also need the following property [10, Theorem 15.60].

Theorem 5.11. For each m ∈ N, the set Am := {xα : |α| = m} of monomials generates a dense subspace of 
P(mc0).

Remark 5.12. Since Bc0 is a balanced set, the polynomials are dense on Hb(Bc0). Therefore, by Theorem 5.11
we have that the set

span{xα : α ∈ N(N)
0 }

is dense on Hb(Bc0).

Proposition 5.13. Let F : Bc0 → Bc0 be the forward shift. The composition operator CF : Hb(Bc0) → Hb(Bc0)
is mean ergodic but not uniformly mean ergodic.
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Proof. First, we see that CF is mean ergodic. We follow a similar scheme to that in [3, Theorem 2.2], using 
that span{xα : α ∈ N(N)

0 } is a dense subspace of Hb(Bc0) (Remark 5.12) together with Lemma 5.10. Since 
CF is power bounded on Hb(Bc0) (because it has Bc0-stable orbits), (Cn

F )n is equicontinuous. Therefore, (
(CF )[n]

)
n

is also equicontinuous on Hb(Bc0). Since CF (1) = 1 = C0(1) for any constant mapping (this 
is in fact true for any composition operator), it remains to see that 

(
(CF )[n](h)

)
n
τb-converges to C0(h)

for every h ∈ Am and m > 0 (on these cases C0(h) = 0). For h(x) = xα with |α| = m, we define 
nh = max{j ∈ N : (α)j �= 0} which is a finite number. Observe that Cn

F (h) = Cn
F (xα) = (Fn(x))α = 0 for 

all n ≥ nh, and the claim follows.
As in the proof of Proposition 5.4, one can see that P ◦ CF ◦ J = B, where B : �1 → �1 is the backward 

shift (recall (4)). If CF were uniformly mean ergodic on Hb(Bc0), then B : �1 → �1 would be uniformly 
mean ergodic, but this is not the case. Indeed, since Bjx tends to 0 in �1 for all x ∈ �1, the only possible 
value for the limit projection of 1

N

∑N−1
j=0 Bj is 0. But, for each N ∈ N, we have

sup
‖x‖≤1

∥∥∥ 1
N

N−1∑
j=0

Bj(x)
∥∥∥
�1

≥ 1
N

∥∥∥N−1∑
j=0

Bj(eN )
∥∥∥
�1

= 1
N

∥∥(1, (N). . . , 1, 0, . . .)
∥∥
�1

= 1.

And it is not true that

lim
N→∞

∥∥∥ 1
N

N−1∑
j=0

Bj
∥∥∥ = 0. �

5.2. The Hilbert-space case

Let us go back to (12) for a moment. If we only assume ϕ(BX) ⊆ rBX , the Earle-Hamilton fixed point 
theorem [13] implies that there exists a unique a ∈ BX such that ϕ(a) = a. It is then natural to ask if this 
is enough to ensure that the composition operator is uniformly mean ergodic. If we restrict ourselves to 
Hilbert spaces H we can say something in this respect. We need the following lemma.

Lemma 5.14. Let ϕ : BH → BH be holomorphic so that Cϕn → C0 in the topology of bounded convergence 
of L(Hb(BH)). Then for every a ∈ BH the mapping ϕ = αa ◦ϕ ◦αa satisfies that Cϕn → Ca in the topology 
of bounded convergence of L(Hb(BH)).

Proof. Since both ϕ and αa are of bounded type (see Lemma 2.1), the composition αa ◦ϕ ◦αa is of bounded 
type and Cϕ : Hb(BH) → Hb(BH) is well defined. Observe now that ϕn = αa ◦ ϕn ◦ αa for all n ∈ N since 
α−1
a = αa. Then

Cϕn = Cαa◦ϕn◦αa
= Cαa

◦ Cϕn ◦ Cαa
→ Cαa

◦ C0 ◦ Cαa
= Cαa

◦ Cαa(0) = Cαa
◦ Ca = Ca. �

Proposition 5.15. Let ϕ : BH → BH be holomorphic such that

ϕ(BH) ⊆ rBH for some 0 < r < 1 . (13)

Then, for the unique a ∈ BH such that ϕ(a) = a we have Cϕn → Ca in the topology of bounded convergence 
of L(Hb(BH)). In particular (Cϕ)[n] → Ca, and Cϕ : Hb(BH) → Hb(BH) is uniformly mean ergodic.

Proof. Define φ = αa ◦ ϕ ◦ αa : BH → BH , which clearly satisfies φ(0) = 0. Also,

φ(BH) = (αa ◦ ϕ ◦ αa)(BH) = (αa ◦ ϕ)(BH) ⊆ αa(rBH) ,
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and using Lemma 2.1 we can find some 0 < ε < 1 so that

φ(BH) ⊆ (1 − ε)BH .

Then φ satisfies (12) and, by Theorem 5.8, Cφn → C0. Since ϕ = αa◦φ ◦αa (because α−1
a = αa), Lemma 5.14

yields the claim. �
Let us consider any analytic self-map ϕ : BX → BX (being X any Banach space) so that ϕ ◦ ϕ = id. 

Then

Cn
ϕ =

{
Cϕ if n is odd,
CidBX

= idHb(BX) if n is even ,

and for each k ∈ N we have

(Cϕ)[2k−1] = 1
2k − 1

2k−1∑
n=0

Cn
ϕ = k

2k − 1
(
Cϕ + idHb(BX)

)
,

and

(Cϕ)[2k] = 1
2k

2k∑
n=0

Cn
ϕ = 1

2
(
Cϕ + idHb(BX)

)
+ 1

2k idHb(BX) .

This implies that limn→∞(Cϕ)[n] = 1
2
(
Cϕ+idHb(BX)

)
in the topology of bounded convergence of L(Hb(BX)), 

and Cϕ : Hb(BX) → Hb(BX) is uniformly mean ergodic. Note that αa : BH → BH (now H being a Hilbert 
space) satisfies this condition, so that Cαa

: Hb(BH) → Hb(BH) is uniformly mean ergodic. However, αa

does not satisfy neither (9) nor (13).

6. The space of bounded holomorphic functions

We consider now the space H∞(BX) of all holomorphic functions f : BX → C that are bounded. 
With the norm ‖f‖∞ = supx∈BX

|f(x)| it becomes a Banach space. We look at composition operators 
Cϕ : H∞(BX) → H∞(BX). If ϕ : BX → BX , then

‖Cn
ϕ(f)‖∞ = sup

x∈BX

|Cn
ϕ(f)(x)| = sup

x∈BX

|f(ϕn(x))| ≤ sup
x∈BX

|f(x)| = ‖f‖∞ ,

and ‖Cn
ϕ‖ ≤ 1 for all n ∈ N. Hence every Cϕ that is well defined on H∞(BX) is power bounded. Since 

(X ′, ‖ · ‖) = (X ′, τb), the dual space X ′ is also complemented in H∞(BX), and the same arguments as in 
Proposition 5.4 give examples of composition operators Cϕ : H∞(BX) → H∞(BX) which are not mean 
ergodic. However, X ′ is in general not complemented in H(BX) since (X ′, ‖ · ‖) �= (X ′, τ0) and these 
arguments do not work for H(BX).

We give now conditions on the symbol to define a uniformly mean ergodic composition operator on 
H∞(BX).

Proposition 6.1. Let ϕ : BX → BX be holomorphic such that ϕ(BX) ⊆ rBX for some 0 < r < 1 and 
ϕ(0) = 0. Then

Cϕn → C0,
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in the norm operator topology of L(H∞(BX)). In particular, (Cϕ)[n] → C0, and Cϕ : H∞(BX) → H∞(BX)
is uniformly mean ergodic.

Proof. Take some f ∈ H∞(BX) with ‖f‖∞ ≤ 1. Defining g : BX → D by g(x) = 1
2 (f(x) − f(0)) and using 

Lemma 3.2 we get

|f(x) − f(0)| ≤ 2‖x‖

for every x ∈ BX . Proceeding as in (11), we get that ‖ϕn(x)‖ ≤ rn‖x‖ for every x ∈ BX and n ∈ N. This 
yields

∣∣f(ϕn(x)
)
− f(0)

∣∣ ≤ 2‖ϕn(x)‖ ≤ 2rn‖x‖ .

Therefore

‖Cn
ϕ − C0‖L(H∞(B)) = sup

‖f‖∞≤1
sup

x∈BX

∣∣f(ϕn(x)
)
− f(0)

∣∣ ≤ 2 sup
x∈BX

‖ϕn(x)‖ ≤ 2rn ,

which gives the claim. �
We observe that the hypothesis in Proposition 6.1 is exactly the same one as (12) in Remark 5.9. One 

can ask if the result also holds assuming instead (9). This is not the case. We already saw in Remark 5.9
that the mapping P : B�2 → B�2 given by P

(
(xn)n

)
= (x2

n)n satisfies (9). Then, by Theorem 5.8 the Cesàro 
means of CP converge to C0. Hence, CP : Hb(B�2) → Hb(B�2) is uniformly mean ergodic.

However, the operator CP : H∞(B�2) → H∞(B�2) is not even mean ergodic. Notice that H∞(B�2) ⊆
Hb(B�2) and τb is weaker than the norm topology. Then if CP were mean ergodic, 

(
(CP )[n](f)

)
n

should 
converge in norm to C0(f) for every f ∈ H∞(B�2). Take f ∈ H∞(B�2) given by f

(
(xn)n

)
= x1 and consider 

zm = (1 − 1
m )e1 ∈ B�2 for each m ∈ N. Then P k(zm) = (1 − 1

m )2k

e1 for every k and

(CP )[n](f)(zm) − C0(f)(zm) = 1
n

n−1∑
k=0

f
(
(1 − 1

m
)2

k

e1
)
− f(0) = 1

n

n−1∑
k=0

(
1 − 1

m

)2k

.

Thus

sup
x∈B�2

|(CP )[n](f)(x) − C0(f)(x)| ≥ sup
m∈N

1
n

n−1∑
k=0

(
1 − 1

m

)2k

= 1 ,

and 
(
(CP )[n](f)

)
n

does not converge in norm to C0(f). This finally shows that CP : H∞(B�2) → H∞(B�2)
is not mean ergodic.

The same argument as in Lemma 5.14 and Proposition 5.15 shows the following.

Proposition 6.2. Let ϕ : BH → BH be analytic such that ϕ(BH) ⊆ rBH for some 0 < r < 1. Then, for 
the unique a ∈ B such that ϕ(a) = a we have that Cϕn → Ca in the norm of L(H∞(BH)). In particular 
(Cϕ)[n] → Ca and Cϕ is uniformly mean ergodic.

We have formulated our results for the open unit ball of a Banach (or Hilbert) space, mainly with the 
purpose of simplicity and to give a uniform presentation of our results. Our proofs, however, transfer with 
no extra effort, to some other, more general settings. Let us briefly point out how.



D. Jornet et al. / J. Math. Anal. Appl. 500 (2021) 125139 15
• A set U is said to be holomorphically convex if K̂H(U) (recall in (5)) is compact for every compact set 
K ⊆ U (see [31, Definition 11.3]). The proof of Theorem 4.3 transfers word by word if BX is replaced 
by a holomorphically convex set U .

• The proof of Proposition 3.3 works exactly in the same way if BX is replaced by any absolutely convex 
open set U . Then, Theorem 5.2, as well as Propositions 5.3, 5.6 and Corollary 5.7 also hold for arbitrary 
absolutely convex open sets (note that [16, Theorem 2.9] also holds in this case).

• The key element in the proofs of Propositions 3.6, 5.15 and 6.2 (stated for the open unit ball of a Hilbert 
space) is the existence of a family of biholomorphic automorphisms on the ball (as in (2)) satisfying (3). 
Hilbert spaces are not the only examples of such a situation. In every C∗-algebra, for example, also such 
a family of automorphisms can be defined. In fact, there is a wider class of Banach spaces, known as 
JB∗-triples, that also have this property: if X is a JB∗-triple, then there is a family of biholomorphic 
automorphisms {αa}a∈BX

on BX satisfying αa(0) = a, αa(a) = 0, α−1
a = αa. The class of JB∗-triples 

includes Hilbert spaces and C∗-algebras, but also wider classes such as J∗-algebras (closed subspaces 
of the space of operators between two Hilbert spaces L(H1, H2) which are closed under T � TT ∗T , 
being T ∗ the adjoint of T ); the interested reader may find more information on the subject in [20,30]. 
Moreover, these automorphisms satisfy the corresponding analogue of Lemma 2.1 [27, Lemma 1]. So, 
the aforementioned results remain valid if BH is replaced by the open unit ball BX of a JB∗-triple (in 
particular a C∗-algebra) X.

Finally, we observe that some questions remain open. The first one is whether or not (13) implies that the 
composition operator Cϕ is uniformly mean ergodic (that is, Proposition 5.15 extends to arbitrary Banach 
spaces). It would also be interesting to find examples of the following situations:

(a) A composition operator on H(BX) which is mean ergodic but not uniformly mean ergodic.
(b) A composition operator on H(BX) which is mean ergodic but not power bounded.
(c) A composition operator on H∞(BX) which is mean ergodic but not uniformly mean ergodic.
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