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Abstract

Extracellular electrophysiology is a technique widely used in neuroscience re-
search. It can o�er insights on how the brain works by measuring the electrical
�elds generated by neural activity. This is done through electrodes implanted
in the brain and connected to ampli�cation and digitization electronic cir-
cuitry. Of the many animal models used in electrophysiology experimentation,
rodents such as rats and mice are among the most popular species thanks to
their small size, breeding speed and strong social and exploratory behaviors.

Modern electrophysiology experiments seek increasingly complex conditions
that are limited by acquisition hardware technology. Two particular aspects
are of special interest: Closed-loop feedback and naturalistic behavior. In this
thesis, we present developments aiming to improve on di�erent facets of these
two problems.

Closed-loop feedback encompasses all techniques in which stimuli is produced
in response of an event generated by the animal. Latency, the time between
trigger event and stimuli generation, must adjust to the biological timescale
being studied. While modern acquisition systems feature latencies in the order
of 10ms, response to fast events such as high-frequency electrical transients
created by neuronal activity require latencies under 1ms. In addition, algo-
rithms for triggering or generating closed-loop stimuli can be complex, inte-
grating multiple inputs in real-time. Integration of algorithm development into
acquisition tools becomes an important part of experiment design.
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For electrophysiology experiments featuring naturalistic behavior, animals must
be able to move freely in ecologically meaningful environments, mimicking nat-
ural conditions. Experiments featuring elements such as large arenaa, environ-
mental objects or the presence of another animals are, however, hindered by
the wired nature of acquisition systems. Other physical constraints, such as
implant weight or power restrictions can also a�ect experiment time, limiting
their duration. Beyond the technical limits, complex experiments are enriched
when electrophysiology data is integrated with multiple sources, for example
animal tracking or brain microscopy. Tools allowing mixing data independently
of the source open new experimental possibilities.

The technological advances presented on this thesis addresses these topics. We
have designed devices with closed-loop latencies under 200µs while featuring
high-bandwidth interfaces. These allow the simultaneous acquisition of hun-
dreds of electrophysiological channels combined with other heterogeneous data
sources, such as video or tracking. The control software for these devices was
designed with �exibility in mind, allowing easy implementation of closed-loop
algorithms. Open interface standards were created to encourage the develop-
ment of interoperable tools for experimental data integration.

To solve wiring issues in behavioral experiments, we followed two di�erent ap-
proaches. One was the design of light headstages, weighing less than 2 grams,
coupled with ultra-thin coaxial cables and active commutator technology, mak-
ing use of animal tracking. This allowed to reduce animal strain to a minimum
allowing large arenas and prolonged experiments with advanced headstages
featuring high channel counts and extra features.

A di�erent, wireless headstage was also developed. We created a digital com-
pression algorithm specialized for neural electrophysiological signals able to
reduce data bandwidth to less than 65.5% its original size without introducing
distortions. Bandwidth has a large e�ect on power requirements. Thus, this
reduction allows for lighter batteries and extended operational time. The al-
gorithm is designed to be able to be implemented in a wide variety of devices,
requiring low hardware resources and adding negligible power requirements to
a system.

Combined together, the developments we present open new possibilities for
neuroscience experiments combining electrophysiology acquisition with natural
behaviors and complex, real-time, stimuli.
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Resumen

La electro�siología extracelular es una técnica ampliamente usada en investi-
gación neurocientí�ca, la cual permite estudiar el funcionamiento del cerebro
mediante la medición de campos eléctricos generados por la actividad neuronal.
Esto se realiza a través de electrodos implantados en el cerebro y conectados
a dispositivos electrónicos para ampli�cación y digitalización de las señales.
De los muchos modelos animales usados en experimentación electro�siológica,
las ratas y los ratones se encuentran entre las especies más comúnmente uti-
lizadas, gracias a su pequeño tamaño, velocidad reproductiva y sus fuertes
comportamientos sociales y exploratorios.

Actualmente, la experimentación electro�siológica busca condiciones cada vez
más complejas, limitadas por la tecnología de los dispositivos de adquisición.
Dos aspectos son de particular interés: Realimentación de lazo cerrado y com-
portamiento en condiciones naturales. En esta tesis se presentan desarrollos
con el objetivo de mejorar diferentes facetas de estos dos problemas.

La realimentación en lazo cerrado se re�ere a todas las técnicas en las que los
estímulos son producidos en respuesta a un evento generado por el animal.
La latencia, el tiempo transcurrido entre el evento desencadenante y la estim-
ulación, debe ajustarse a las escalas temporales bajo estudio. Los sistemas
modernos de adquisición presentan latencias en el orden de los 10ms,. Sin
embargo, para responder a eventos rápidos, como pueden ser los transitorios
de alta frecuencia creados por la actividad neuronal, se requieren latencias por
debajo de 1ms. Además, los algoritmos para detectar los eventos desencade-
nates o generar los estímulos pueden ser complejos, integrando varias entradas
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de datos en tiempo real. Integrar el desarrollo de dichos algoritmos en las
herramientas de adquisición forma parte del diseño de los experimentos.

Para que experimentos electro�siológicos incluyan comportamientos naturales,
los animales deben ser capaces de moverse libremente en entornos ecológica-
mente signi�cativos, emulando condiciones naturales. Experimentos de este
tipo, que incluyen elementos como espacios amplios, objetos en el entorno o
la presencia de otros animales, se ven di�cultados por la naturaleza cableada
de los sistemas de adquisición. Otras restricciones físicas, como el peso de los
implantes o limitaciones en el consumo de energía, pueden también afectar a la
duración de los experimentos, limitándola. Más allá de los límites tecnológicos,
la experimentación puede verse enriquecida cuando los datos electro�siológicos
se ven complementados con datos procedentes de múltiples fuentes distintas.
Por ejemplo, seguimiento de los animales o miscroscopía. Herramientas ca-
paces de integrar datos independientemente de su origen abren la puerta a
nuevas posibilidades experimentales.

Los avances tecnológicos presentados en esta tesis abordan estas limitaciones.
Se han diseñado dispositivos con latencias de lazo cerrado inferiores a 200µs.
Estos presentan además interfaces de elevado ancho de banda, lo que permite
la adquisición de cientos de canales electro�siológicos combinados con otras
fuentes de datos de naturaleza heterogénea, como vídeo o seguimiento. El
software de control para estos dispositivos se ha diseñado manteniendo la �ex-
ibilidad como objetivo, permitiendo una fácil implementación de algoritmos
de lazo cerrado. Se han desarrollado interfaces y estándares de naturaleza
abierta para incentivar el desarrollo de herramientas compatibles entre ellas,
para facilitar la integración de de datos experimentales.

Para resolver los problemas de cableado en experimentos conductuales se sigu-
ieron dos métodos distintos. Uno fue el desarrollo de headstages ligeros, con
pesos inferiores a los 2 gramos, combinados con cables coaxiales ultra �nos
y conmutadores activos, posibles gracias al seguimiento de animales. Este
desarrollo permite reducir el esfuerzo impuesto a los animales al mínimo, per-
mitiendo espacios amplios y experimentos de larga duración, al tiempo que
permite el uso de headstages con elevado número de canales y características
avanzadas.

Paralelamente se desarrolló un tipo diferente de headstage, con tecnología in-
alámbrica. Se creó un algoritmo de compresión digital especializado para
señales electro�siológicas neuronales capaz de reducir el ancho de banda a
menos del 65% de su tamaño original, sin introducir distorsiones. Dado que el
ancho de banda juega un papel fundamental en los requisitos energéticos, esta

viii



reducción permite baterías más ligeras y mayores tiempos de operación. El
algoritmo fue diseñado para ser capaz de ser implementado en una gran var-
iedad de dispositivos, requiriendo pocos recursos de hardware y una cantidad
nimia de energía.

Combinados, los desarrollos presentados en esta tesis abren la puerta a nuevas
posibilidades experimentales para la neurociencia, combinando adquisición elex-
tro�siológica con estudios conductuales en condiciones naturales y estímulos
complejos en tiempo real.
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Resum

L'electro�siologia extracel·lular és una tècnica àmpliament utilitzada en la in-
vestigació neurocientí�ca, aquesta tècnica permet estudiar el funcionament del
cervell mitjançant el mesurament de camps elèctrics generats per l'activitat
neuronal. Això es realitza a través d'elèctrodes implantats al cervell, connec-
tats a dispositius electrònics per a l'ampli�cació i digitalització dels senyals.
Dels molts models animals utilitzats en experimentació electro�siològica, les
rates i els ratolins es troben entre les espècies més utilitzades, gràcies a la
seu reduïda grandària, velocitat reproductiva i forts comportaments socials i
exploratoris.

Actualment, l'experimentació electro�siològica busca condicions cada vegada
més complexes, limitades per la tecnologia dels dispositius d'adquisició. Dos
aspectes són d'especial interès: La realimentació de sistemes de llaç tancat
i el comportament en condicions naturals. En aquesta tesi es presenten de-
senvolupaments amb l'objectiu de millorar diferents aspectes d'aquestos dos
problemes.

La realimentació de sistemes de llaç tancat es refereix a totes aquestes tèc-
niques on els estímuls es produeixen en resposta a un esdeveniment general
per l'animal. La latència, el temps transcorregut entre l'esdeveniment desen-
cadenant i l'estimulació, ha d'ajustar-se a les escales temporals sota estudi. Els
sistemes moderns d'adquisició presenten latències en l'ordre dels 10ms,. No
obstant això, per a respondre a esdeveniments ràpids, com poden ser els tran-
sitoris d'alta freqüència creats per l'activitat neuronal, es requereixen latències
per davall de 1ms. A més a més, els algoritmes per a detectar els esdeveni-
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ments desencadenants o generar els estímuls poden ser complexos, integrant
varies entrades de dades a temps real. Integrar el desenvolupament d'aquests
algoritmes en les eines d'adquisició forma part del disseny dels experiments.

Perquè els experiments electro�siològics incloguen comportaments naturals, els
animals han de ser capaços de moure's lliurement en ambients ecològicament
signi�catius, emulant condicions naturals. Experiments d'aquest tipus, que
inclouen elements com grans espais, objectes en l'entorn o la presència d'altres
animals, es veuen limitats per la natura cablejada dels sistemes d'adquisició.
Altres restriccions físiques, com el pes dels implants o les limitacions al con-
sum d'energia, poden també afectar a la duració dels experiments, limitant-
los. Més enllà dels límits tecnològics, l'experimentació es pot enriquir quan
les dades electro�siològiques es complementen amb dades de múltiples fonts.
Per exemple, el seguiment d'animals o microscòpia. Eines capaces d'integrar
dades independentment del seu origen obrin la porta a noves possibilitats ex-
perimentals.

Els avanços tecnològics presentats a aquesta tesi tracten aquestes limitacions.
S'han dissenyat dispositius amb latències de llaç tancat inferiors a 200µs. Els
quals presenten també interfícies d'elevada amplada de banda, la qual cosa
permet l'adquisició de centenars de canals electro�siològics combinats amb al-
tres fonts de dades de naturalesa heterogènia, com vídeo o seguiment. El
software de control per a aquests dispositius s'ha dissenyat mantenint la �exi-
bilitat com a objectiu, permetent una fàcil implementació d'algorismes de llaç
tancat. S'han desenvolupat interfícies i estàndards de naturalesa oberta per a
incentivar el desenvolupament d'eines compatibles entre elles, per a facilitar la
integració de dades experimentals.

Per a resoldre els problemes de cablejat a experiments conductuals es van seguir
dos mètodes diferents. Un va ser el desenvolupament de headstages lleugers,
amb pesos inferiors als 2 grams, combinats amb cables coaxials ultra �ns i
commutadors actius, possibles gràcies al seguiment d'animals. Aquest desen-
volupament permet reduir al mínim l'esforç imposat als animals, permetent
espais amplis i experiments de llarga durada, al mateix temps que permet l'ús
de headstages amb elevat nombre de canals i característiques avançades.

Paral·lelament es va desenvolupar un tipus diferent de headstage, amb tecnolo-
gia sense �l. Es va crear un algorisme de compressió digital especialitzat per
a senyals electro�siològiques neuronals capaç de reduir l'amplada de banda a
menys del 65% de la seua grandària original, sense introduir distorsions. Atès
que l'amplada de banda juga un paper fonamental en els requisits energètics,
aquesta reducció permet bateries més lleugeres i majors temps d'operació.
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L'algorisme va ser dissenyat per a ser capaç de ser implementat a una gran
varietat de dispositius, requerint pocs recursos de hardware i una quantitat
nímia d'energia.

Combinats, els desenvolupaments presentats en aquesta tesi obrin la porta a
noves possibilitats experimentals per a la neurociència, combinant l'adquisició
electro�siològica amb estudis conductuals en condicions naturals i estímuls
complexos en temps real.
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Chapter 1

Introduction

The brain, its functions and how its physiological processes relate to behavior
and cognition has been a research topic since ancient times, with multiple
techniques and tools created devoted to its study. Even so, no complete theory
on how the brain works has yet been formulated [1].

Modern neuroscience understanding can be traced to the late nineteenth cen-
tury. The Golgi stain method [2], [3] allowed individual neurons to be visualized
(Figure 1.1). Santiago Ramón y Cajal created the neuron doctrine [4], which
describes the nervous system as a collection of individual neurons. The notion
of di�erent areas of the brain being responsible for speci�c functions was pi-
oneered by Jean Pierre Flourens and Paul Broca, with Korbinian Brodmann
publishing the �rst map of cerebral regions [5]. While some of these hypothe-
ses have been updated, for example with compound neural activity now being
considered important, opposed to only individual activation[6], most of these
principles hold and have been veri�ed by modern techniques, such as electro-
physiology or neuroimaging [7].

The twentieth century gave rise to an increased understanding of the neuron
molecular structure and how they communicate. Edgar Adrian was among
the �rst to notice signals transmitted through individual nerves, related to
speci�c stimuli. He measured a series of electric potential changes, called
action potentials or spikes, and surmised the existence of a common neural
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Figure 1.1: Neurons easily visible through the Golgi-Cox staining method. Modi�ed from
Zaquot et Al. [3].

communication method [8]. A mathematical model for these action potentials
was later presented by Alan Loyd Hodgkin and Andrew Huxley by studying
their initiation and propagation in a squid axon, creating the Hodgkin-Huxley
model [9].

Research on spike and cell activity in living animals has led to discoveries
about brain function [10]�[12] and remains an important tool for neuroscience
research.

1.1 Extracellular electrophysiology

Electrophysiology refers to the set of techniques able to measure the electrical
properties generated by cell activity. Extracellular electrophysiology in par-
ticular measures the electric potential created in the extracellular space by
transmembrane ionic �ows related to neuron activation.

Neurons in rest state are held in an electrochemical equilibrium governed by
the ionic concentrations in the intracellular and extracellular �uids. The rest-
ing electric potential across the membrane of a neuron, referred to its exterior,
is approximately −70mV [13], meaning that the ionic concentration is more
negatively charged in the intracellular side of the membrane than in the extra-
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cellular space. This ionic concentration is maintained by a molecular structure
present in the membrane called Sodium-Potassium pump which continuously
expends energy to ensure that ionic concentrations are not equalized between
the intracellular end extracellular mediums [14], creating a chemical gradient
in addition to the electrical potential.

Neurons can communicate with each other through the release of chemical
messengers called neurotransmitters. These bind to selective receptors on the
synapses of the receiving cell, which can open ion channels, a molecular struc-
ture in the cellular membrane. These structures allow ions, often Na+ or
Ca2+ to �ow from the extracellular to the intracellular space, where their con-
centration is higher. The change on charge distribution provoked by this ion
in�ux causes a local change, or depolarization, of the membrane electric poten-
tial. This change in the electrical �eld propagates through the membrane and
can trigger the opening of a di�erent structure, voltage-gated Na+ channels,
present through all the cell membrane. These structures open when exposed to
a voltage over a certain threshold, reinforcing the propagation. Na+ channel
distribution is not homogeneous, its density being signi�cantly higher in the
axon initial segment (AIS) than in the cell body or dendrites [15].

Potentials initiated in the synapses are attenuated along the way to the AIS
[16]. However, multiple simultaneous stimuli can overlap, resulting in a summed
potential enough to trigger voltage-sensitiveNa+ channels at the AIS [17]. Due
to the higher channel density, this process initiates a fast cascade e�ect which
propagates through the axon, creating a fast in�ux of Na+ ions. This �ow con-
tinues until the membrane potential crosses a positive threshold triggering the
opening of a di�erent structure, voltage-dependent K+ channels open. These
allow a �ow of K+ ions from the intracellular medium, where their concentra-
tion is higher, to the extracellular space. This results in an electric current
in the opposite direction, repolarizing the cell. Repolarization overshoots the
original resting potential, creating a period of hyperpolarization. The contin-
uous e�ect of the Sodium-Potassium pump eventually returns the cell to its
resting state, when the process can be triggered again. While this process is
considered the main e�ect of cell activation, other molecular events contribute
to the electrical currents �owing through the cellular membrane, such as Ca2+

spikes [18].

While the individual transmembrane currents can be measured [19], their com-
pound e�ect can be observed in the extracellular space as variations on the
electric �eld potential. The e�ect is described in Equation 1.1 [20]�[22]:
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Vn(rm, t) =
1

4πρ

N∑
n=1

In(t)

|rm − rn|
(1.1)

In which Vn is the electric potential, with respect to a point in the in�nite
according to Coulomb's law, ρ the extracellular medium conductivity value,
rm the position in which the measurement is taking place and In and rn the
di�erent individual currents. The resulting waveforms from an action potential
have the topology seen in Figure 1.2, where the initial slope is created by the
Na+ ion in�ux, then followed by the reverse polarity of the outwards K+ ion
�ow before �nally settling back into the resting potential.

Figure 1.2: Extracellular action potentials from the visual cortex of a rat. The darker line
represents the mean waveform.

It is important to note that at any given time, hundreds of neurons are spiking
simultaneously. Thus, for any given sensing site, the measured potential is
theoretically the sum of the activity of every single cell, resulting in a signal
similar to the one see in Figure 1.3. Due to the inverse distance factor, the
conductivity value ρ being dependent on frequency and the interference of
di�erent neurons �ring o�-phase, only the spikes of cells located physically close
to the recording site can be extracted. Contrariwise, synchronized activity of
multiple neurons in the area surrounding the site result in low-frequency, high-
amplitude oscillations, referred to as Local Field Potentials (LFP) [23]. While
the former gives information about individual cells, LFPs mostly represent the
aggregated synaptic activity and active dendritic currents in the tissue. [23]�
[26].
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Figure 1.3: Combined measured potential in an extracellular site. Recorded from the
hippocampal region on a rat.

Since a single site detects action potentials from di�erent neurons, analyzing
spike activity requires multiple steps. First, the signals are high-pass �ltered
to remove the compound LFP elements, leaving only high frequency spike
waveforms. An amplitude threshold method can be used to locate individual
events by detecting the large depolarization peaks [27]. While this detects
the spikes, extra steps are needed to di�erentiate events originating in distinct
neurons, a process called spike sorting. While there are multiple algorithms to
separate spikes into clusters of common neuron origin [28], many of them take
advantage of measured waveforms from di�erent neurons being non-identical
due by both biological and geometrical di�erences. Most such algorithms use
windowing methods to detect speci�c waveform features that cross with time-
amplitude areas [29] or perform mathematical component extraction such as
Principal Component Analysis (PCA) [30] to separate events in a projected
space.

1.2 Extracellular electrophysiology recording systems

Since no electronic circuit can be physically tied to in�nity, measuring an
electric potential implies measuring the potential di�erence between two points.
In the case of electrophysiological signals, a recording probe is inserted next
to the cells of interest with the potential Vn created by their transmembrane
currents, and a reference electrode is placed far from the region interest, located
at a potential Vr. The actual measured voltage Vm is thus the di�erence Vm =
Vp− Vr, assuming there is no current �ow through the electrodes which would
provoke voltage drops resulting in measurement distortions.

The challenge of recording extracellular potentials reside on the small scale
required, both physical and electrical. As previously discussed, the signals are
in the range of µV , which require ampli�cation to be properly recorded an
analyzed. Moreover, to reduce tissue damage, probes inserted into the brain
must have a thickness measured in µm [31]. Figure 1.4.B shows the equivalent
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circuit of a probe, the input of an ampli�er and the wire connecting both.
To avoid a potential drop in the order of the interest signal, ampli�er input
impedance must be as high as possible, while wire and probe impedances must
be kept low.

A

Pre-amp
Filter

Gain ADC

µV V

+

-

Vn

Vr

B

Probe Cable Amplifier

Rp

Cp

Rc

Cc

Rc

Ca Ra

Figure 1.4: A: Diagram of an extracellular electrophysiology circuit. B: Equivalent circuit
of the probe-wire-ampli�er path

The �rst neural potentials were recorded from individual neurons using a single
ultra-thin wire, or microwire [32]. Over time, as ampli�er technology was
re�ned, channel count increased in the form of microwire bundles [33]. Progress
in semiconductor manufacturing processes led to silicon probes. These feature
long shafts with multiple electrode sites [34]�[36]. Both types of probes are in
use nowadays, with microwires o�ering �exibility on precise electrode position
while silicon probes o�er higher channel count and the ability to reach deeper
parts of the brain. Recently CMOS semiconductor technology has been used
to develop a new family of probes, featuring even higher channel densities
[37]�[41]. As previously stated, probe impedance has to be kept low, even
with an increased electrode density. Thus, extensive research has been done
to develop electrodes with lower impedance [42]�[45] and techniques, such as
electroplating [46]�[48] exist to lower electrode impedance by coating them
with a di�erent material.

While the increasing electrode density allows recording from di�erent neuron
groups with a single probe, it o�ers other advantages. Since signal amplitude
is proportional to the distance between the neuron that produced it and the
electrode, by grouping electrodes in pairs, called stereotrodes [33] or groups of
four referred as tetrodes [49], [50] physically close it is possible to use the small
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di�erences in amplitude of otherwise identical spike waveforms to di�erentiate
the individual neurons that produced each spike though simple triangulation
methods.

Ampli�er technology has also improved from the valve ampli�ers used in the
�rst electrophysiology recordings [8]. Modern bioampli�ers are di�erential am-
pli�ers that apply a gain to only the di�erence between the probe potential
and the reference electrode, thus removing any common noise that could be
received by the wires or electrode, for example 50/60Hz noise from the elec-
tric installation. This ability to only amplify the di�erential signals, referred
as Common-Mode Rejection Ratio (CMRR), has been accompanied by and
increasingly high input impedance and noise reduction [51]. Thanks to the
semiconductor industry, Integrated Circuits (ICs) packing multiple low-power,
high-performance ampli�ers are possible [52].

A modern extracellular acquisition system is described in Figure 1.4.A. In
general, the µV potentials are preampli�ed by a high input impedance ampli�er
to a manageable range, then �ltered to remove all unwanted frequencies and
�nally ampli�ed to a tension range able to be captured by an Analog-Digital
converter (ADC), which then sends the data to a recording device. As discussed
and shown in Figure 1.4.B, wire impedance has to be kept as low as possible.
However, this value is proportional to wire length, with longer wires providing
larger impedances. Moreover, long wires can act as antennas, receiving noise
from nearby electrical �elds or even radiofrequency emissions. As such, it is
important to keep wires carrying analog signals, specially the ones connected
to the brain, sensing low-voltage signals.

To keep noise-sensitive wiring short, there has been a tendency to place elec-
tronics as close to the brain as possible. The hardware located at the head
of the experimental subjects is what is commonly referred as the headstage.
Originally, only the smaller preampli�er could be located there, with wires car-
rying analog signals routed to a larger ampli�er and recording system. Tech-
nology and miniaturization advances have allowed to move more elements to
the headstage [36], with modern devices featuring ampli�cation, �ltering and
digitization for all channels on the same headstage [53]. Newer CMOS probes
go one step further, integrating some circuitry into the probe itself, reducing
impedance and noise of the probe-ampli�er electrical interface even further
[38], [40], [54]. Having the ADC in the headstage o�ers two big advantages:
Since its outputs are digital signals, longer wires become a less prominent is-
sue, thanks to the natural noise resilience of digital communication. This is
specially true if a di�erential pair signaling method, such as Low-Voltage Dif-
ferential Signaling (LVDS), is used. Also, since data from multiple channels
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can be multiplexed into a high-speed digital link, communication can be per-
formed over a dozen or less wires, instead of requiring one wire per channel,
reducing tether complexity.

Digitizing neural data o�ers many advantages, allowing more e�ective storage
and analysis. However, sampling frequency must be carefully selected. A
neural spike has a duration of 1-2ms, its waveform containing high-frequency
components. Due to the Nyquist theorem, sampling frequency must be double
the desired signal bandwidth. In order to successfully record spikes without
losing detail, modern recording systems acquire at a rate of 20KS/s or higher
[27], with 30KS/s being the norm.

The growing interest in higher channel counts translates into an increasing need
for data bandwidth. At 16 bit resolution, typical for modern electrophysiology
ADCs, a 32 channel signal sampled at 30KS/s requires near 2 MB/s. With
newer system potentially reaching thousands of channels, fast communication
links, such as Universal Serial Bus (USB) 3.0, as well as fast storage systems
are needed.

1.3 Rodents in electrophysiology research

While the �rst action potentials were recorded in squid axons, thanks to their
big size facilitating direct membrane readings [55], advances in extracellular
electrophysiology have allowed to observe neural activity in a wide variety of
living animals.

Cats [10], [56] and monkeys [11] were among the �rst animals used for in vivo
brain electrophysiology experiments. Nowadays, thanks to the miniaturization
of electrodes, experimentation is possible with not only mammals but birds
[57], [58], �sh [59], [60] or insects [61].

Of all the animal models for research rodents, speci�cally rats and mice, re-
main among the most used for electrophysiology research. Both species fea-
ture short gestation cycles, which facilitates breeding the animals in laboratory
conditions. Over the years and with the advent of genetic techniques, this has
resulted on a number of genetically-controlled strains [62], [63].

Both species o�ers di�erent advantages for research. For example, genetic
techniques are more available for mice, allowing faster breeding of speci�c
models. On the other hand, rat brains have some similarities with human
brains that mice lack [64]. While the larger size of rats makes surgery and
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long-term recordings easier, the smaller size of mice facilitates the handling of
large colonies.

Given the strong social and exploratory behaviors of rats and mice, it is usual
for experiments to explore this tendencies by featuring animals freely moving in
enclosed spaces [65]�[67] or small maze structures [68]�[71], providing insights
in topics such as location encoding or information retrieval. Wiring can be a
challenge on these kind of experiments, as cables can become tangled or twisted
due to animal movement. To alleviate these issues, experiments with freely
moving animals often feature a rotary commutator between the headstage and
the recording system. These devices separate cables in two sections able to
rotate independently while maintaining electrical connection in the wires.

A di�erent approach to this issue has been the development of Virtual Reality
(VR) environments with head-�xed animals [72]. While this allows to simulate
some conditions normally impossible with tethered systems, VR environments
are not a complete substitute for real spaces. They lack vestibular inputs [73]
and small delays in visual stimuli can led to experimental errors. Motion-wise,
while 3D location and navigation [74] is an integral part of natural animal be-
havior, VR spaces are limited to 2D movements. In addition, VR environments
are isolated by nature, making any kind of social interaction impossible. Thus,
truly free movement and big, complex arenas are still highly desirable.

1.4 Closed-loop feedback experiments

Traditional electrophysiology experiments consist on presenting a series of stim-
uli or tasks to an animal and passively record brain activity in response. While
this approach has yielded many valuable results, it does not take into account
the inherent recursive nature of the brain. Not only neural networks can loop
over themselves, but the brain of an animal is embedded in a feedback loop
with the environment: Any action of the animal results in a change of sensory
inputs that enter the brain and, in turn, a�ect posterior actions [75].

Closed-loop feedback is a term stemming in engineering referring to any system
whose output is directly tied to the input, usually feeding back an error signal
between the expected and real outputs so the system can stabilize to a desired
state. In neuroscience research, this concept can be applied by stimulating the
brain in response to its own activity, thus allowing a greater level of control over
the neuronal network and the isolation of events to prove causality [76], [77].
This method has lead to insights on neural plasticity [78], neuronal response
latency [79], spatial learning [80] or neural circuit adaptation [81].
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Multiple stimulation methods can be used. Sensory feedback, by itself, trans-
lates into brain inputs, so visual [82] or auditory [83] stimulation can be mod-
ulated by brain readings to achieve closed-loop feedback. Cells near an im-
planted electrode can also be activated by electrical stimulation [79], [84], by
controlling an externally supplied current �ow. Optogenetic stimulation [62],
[85], a technique in which neurons are genetically modi�ed to react to speci�c
light wavelengths, is gaining popularity nowadays. Neurons can be modi�ed to
express photosensitive receptors that either activate or inhibit membrane ion
channels, thus allowing not only to externally trigger an action potential but to
completely block the ability of a neuron to naturally �re one while illuminated
by a speci�c wavelength. By the use of �ne-tuned lasers, this control can be
targeted to individual neurons, allowing for precise feedback to speci�c neural
circuits.

One crucial parameter for closed-loop systems is feedback latency. Since the
objective is to create a correlation between the output and the feedback in-
put, if latency between the source event and stimulation were too high they
would become decoupled, losing correlation and behaving as simply two inde-
pendent events. Timescales depend on the underlying biological system that is
being manipulated. For example action potentials have timescales under 1ms,
stimulation-induced neural plasticity requires scales under 10ms[78], [86] while
auditory stimuli can be e�ective with latencies in the hundreds of ms [83].
Closed-loop latency, the total delay between source event and stimulation, is
a sum of the time required to perform acquisition, data transmission, digital
processing and stimulus generation. Thus, faster systems imply reduced la-
tency, which in turn allows for its use in experiments requiring a wider variety
of timescales.

1.5 Field-Programmable Gate Array (FPGA) devices

With the rising interest in higher channel counts at high sampling speeds and
lower closed-loop latencies [87], hardware requirements on acquisition system
also increase. While modern personal computers have powerful processors and
Graphical Processing Units (GPUs) able to process big volumes of data, an
acquisition system must be able to provide such data by driving all the ADCs
and sensors, packing the data and sending it over a transmission link to the
computer, all with strict timing constraints.

Classical, sequential MicroController Units (MCUs) are limited in the num-
ber of operations per second they can run. Since they can only execute one
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command at a time, performing multiple, synchronized actions can only be
done by running the steps sequentially at high speeds. However, processor
speed is limited by power and thermal considerations [88]. Parallel computing,
performing multiple actions simultaneously, is the solution to this problem, as
being able to perform acquisition for each sensor, packing and transmission in
an independent, parallel but synchronized way alleviates the need to perform
these steps at higher speeds. There are di�erent devices able to perform such
parallel operations. Multicore processors lack enough parallelism, as they can
only perform one simultaneous action per core. GPUs can run hundreds of
parallel operations, but while they are widely used for processing [89] they
lack the hardware resources needed for driving sensors. Application-Speci�c
Integrated Circuits (ASICs) are custom hardware devices created for a speci�c
task, so they can achieve the desired parallelism with very high performance.
However, they lack �exibility, once made any change requires a new fabrication
batch. Field-Programmable Gate Arrays (FPGAs) o�er the parallel capabili-
ties of an ASIC, albeit with slightly reduced performance, but with the ability
of being recon�gured at no cost.

FPGAs are ICs featuring con�gurable digital electronics. A FPGA, on its
basic form, is comprised of a number of logical gates and memory elements
whose inputs and outputs can be freely rearranged through an interconnection
matrix. This makes it possible to con�gure a FPGA to act as any digital circuit,
as long as there are su�cient logic elements available. Unlike programmable
devices, such as microprocessors, which run a single program step by step, the
circuits con�gured into a FPGA can run in parallel and independently. The
speci�c organization of the logic elements is vendor-dependent, which makes
it challenging to compare devices from di�erent manufacturers.

The drawbacks of a FPGA over a specialized circuit or programmable device
are size and speed. Due to the con�gurable nature of the logic, the internal
components that comprise it use more silicon area in the IC than those of
a �xed circuit. Due to this complexity and the limits of the interconnection
matrix, clock speeds used to drive the logic is limited in comparison with spe-
cialized circuitry. To work around these limitations, many FPGA integrate
what are called hard blocks: circuitry specialized on a single task that can be
routed to the con�gurable logic of the device. Some common examples are
Random Access Memory (RAM) blocks to allow for increased storage capacity
or Digital Signal Processor (DSP) units, combinations of multipliers and ac-
cumulators. Newer devices include a microprocessor connected to the FPGA
fabric to combine the advantages of both programmable and con�gurable de-
vices. Commercial FPGAs range from big devices with thousands of elements
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and plenty of integrated hard blocks to small, compact ICs with fewer re-
sources and little to no hard blocks but designed for small size and reduced
power consumption.

FPGA functionality is usually designed using a Hardware Description Lan-
guage (HDL), the most common being VHDL and Verilog. These kind of
languages allow for a functional description of the hardware, which is then
compiled into the required logic circuitry by a synthesizer software and mapped
into the FPGA hardware by a router program. Both synthesizer and router are
usually part of an Integrated Development Environment (IDE) provided by the
device manufacturer. The resulting product is a �le, called bit�le, which con-
tains the FPGA con�guration. Most FPGAs require an external �ash memory
chip to store the bit�le. However, some devices designed for embedded appli-
cation can feature internal �ash storage for this purpose. Bit�les are usually
loaded by the device at power-on from a the �ash memory, but can also be
used to manually con�gure a powered FPGA through debug interfaces, such
as JTAG.
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Motivation and Objectives

2.1 Motivation

The contributions of electrophysiology experimentation in small spaces or mazes
are undeniable, and can still provide new insights [90]. However, research into
areas such as complex behavior or social interactions are hindered by the arti�-
cial nature of those environments. More natural experimental conditions, with
bigger areas and physically unburdened animals are required to create mean-
ingful environments [91]. The growing interest on combining electrophysiology
records with behavior [92] requires technological improvements on acquisition
systems. These advances must not be limited to improving speci�cations of
existing hardware but to develop new architectures able to go beyond the lim-
its that prevent current electrophysiology devices to be viable in truly natural
and complex environments.

One of the main limitations on natural movement is the burden the electro-
physiology equipment itself causes on the animals. Headstages add unnatural
weight to their heads, while tethers provide tension when applying torque to
turn a commutator, or extra weight and drag when the cable is hanging from
the head itself. Figure 2.1 shows a graph of how the combined forces of tether
torque and headstage weight can hinder movement in mice. Although rats,
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due to their bigger size, can withstand these conditions better, it is still an
added burden on the animals.
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Figure 2.1: Mice mobility based on headstage weight and tether torque. Other animals
follow similar distributions with altered scales.

Movement capacity is not the only parameter hindered by the hardware. Be-
havior experimentation can require up to several days [92]. However, cables
can easily break or burden in the animals can accumulate until their behavior
becomes unnatural. Figure 2.2 shows an example of typical study duration and
common failure events on electrophysiology systems. Even wireless approaches
[93] are limited by their battery capacity.
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Figure 2.2: Common failure events that limit experiment duration.

Thus, to enable true behavior experiments combined with electrophysiology
recordings to unveil knowledge on how brain activity relates to natural and
social behavior, the issues concerning headstage weight and tether torque must
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be minimized, if not removed, while operational time of the equipment must
extend to days.

As discussed on section 1.4, closed-loop feedback systems are an important
research tool, o�ering more experimental possibilities. This is still true in
behavioral studies [94]. For this reason, an ideal electrophysiology system for
ethology experiments should also have the ability to provide real time data for
feedback based on neural signals.

2.2 Objectives

The objective of this thesis is the development of novel electrophysiology
recording systems that could expand the range of possible experiments with
freely moving rodents. Five speci�c objectives for system improvement are
targeted:

■ Headstage reduction: Headstage weight and size must be reduced
while maintaining or improving acquisition capabilities

■ Tether impact reduction: Issues caused by tethers must be mini-
mized or even removed by improving wiring management, reducing tether
weight, eliminating torque issues or eliminating their need through wire-
less alternatives.

■ Experiment time extension: Running time of experiments must be
improved by minimizing or removing limitations caused by the hardware.

■ Closed-loop improvement: Closed-loop capabilities must be improved.
This can include experiment design or technical improvements. The for-
mer can me achieved by standardizing interfaces with di�erent equipment
and increasing the researchers �exibility to de�ne triggers and responses.
Technical characteristics can be improved by minimizing latency to allow
closed-loop capabilities for events in the sub-millisecond range, such as
spikes.

■ Tool �exibility: New tools must allowing researchers to build di�erent
experiments suited to their needs, including complex arenas or speci�c
closed-loop algorithms, avoiding hard limitations.

Any development can not compromise the ability to perform multichannel ac-
quisition in the LFP and spike ranges. Optional improvement areas include
increasing channel count or introducing other measurement devices useful for
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behavior research, such as animal tracking, without compromising the funda-
mental objectives of this work.

2.3 Thesis outline

This thesis is presented in 6 chapters, following a development progression
through di�erent electrophysiology acquisition systems, each o�ering distinct
improvements. While each chapter can be read independently, chapter order
shows a natural evolution from a more classical approach to electrophysiology
system to high-performance acquisition and �nally wireless devices.

Chapter 1 presents an introduction to the neuroscience �eld and electrophysi-
ology hardware.

Chapter 2 exposes the motivations behind this work and its objectives.

Chapter 3 describes the Open Ephys system, an open source electrophysiology
acquisition hardware and software. This is the �rst development related to this
work and the project that provided a starting point for the next developments.
This system features a digital headstage and was designed with closed-loop
�exibility in mind, allowing researchers to de�ne their own triggers and o�ering
communication capabilities with external hardware.

Chapter 4 is dedicated to the Open Neuro Interface (ONI) speci�cation and
its implementation, the ONIX acquisition system, a high-performance electro-
physiology recording device with zero-torque headstages. The ONI speci�ca-
tion de�nes a standard set of interfaces and protocols for high-speed trans-
mission of data from multiple heterogeneous acquisition devices, able to mix
sources such as neural data, positional tracking and imaging in a seamless way.
ONIX is an implementation of this standard, an electrophysiology acquisition
system with support for thousands of channels and a closed-loop latency below
the millisecond mark. ONIX headstages communicate through single, ultra-
thin coaxial cables, greatly minimizing wiring issues. Additionally, an active
commutator was developed, which e�ectively makes it a zero-torque system.

In Chapter 5 wiring limitations are removed by developing a completely wire-
less system. In this chapter a device-agnostic, low-footprint and low-power
compression algorithm is presented, able to greatly reduce the bandwidth needs
of wireless electrophysiology data transmission with a negligible overhead. A
hardware prototype using this algorithm was created, performing wireless elec-
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trophysiology acquisition and demonstrating reduced power needs thanks to
bandwidth reduction.

Finally, in Chapter 6 an overall conclusion and future prospects are provided.
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Chapter 3

Open Ephys: Open source,
closed-loop electrophysiology

Open Ephys is a community-based, open-source project for closed-loop
electrophysiology. It was born from the need to share closed-loop algorithms
and techniques, which are required to enable experiment replication. The
project includes a multichannel electrophysiology acquisition hardware sys-
tem and a Graphical User Interface (GUI) software. The hardware fea-
tures state-of-the art characteristics and digital headstages, making them
noise-resistant. The software follows a modular approach, allowing easy
construction of signal chains.

The open source nature of the system allows researchers and developers
to create new processing modules for the software, adding support for mul-
tiple acquisition and stimulation systems or adding support for the Open
Ephys hardware to third-party software. Being able to share modules and
algorithms with the community allows researchers to easily reuse technical
work and share their methods with the community.
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3.1 Introduction

Closed-loop electrophysiology introduces a series of challenges to acquisition
system development not traditionally considered. Traditional, or open-loop,
acquisition needs to be concerned only with maintaining signal �delity and
recording the data, which is stored and analyzed o�ine. Stimulation or other
events are regarded as external systems working independently. In this case,
only consideration synchronizing methods to show event timing in the record-
ings is considered with respect to the interaction between stimulation and
recording.

With closed-loop, however, the need for online analysis arises [76]. To generate
the appropriate feedback stimuli, data must be actively monitored and ana-
lyzed by an algorithm to detect when and how to stimulate. These algorithms
and its parameters are heavily experiment-dependent and must be able to be
adjusted to �t the research.

Most commercial systems feature closed-source software, which can not be
modi�ed beyond the vendor intentions. This becomes an issue when the pos-
sibilities allowed by the manufacturer limit or disallow the creation of speci�c
algorithms required by the nature of an experiment. In these cases, researchers
are faced with the options of modifying their experiment around the capabilities
of the tool or purchase a di�erent system that allows their speci�c experiment.
Moreover, often vendors tie their hardware to their software and vice versa,
o�ering little compatibility with external systems.

Closed-source software pose another issue for closed-loop scienti�c research.
In open-loop electrophysiology only the experimental conditions and the data
itself is shared, while the actual hardware and recording process can be omitted
and substituted for a di�erent system with similar characteristics. Closed-loop
feedback, on the other hand, includes an algorithm that is an integral part
of the scienti�c process (Figure 3.1). Sharing this algorithm is required for
externally reproducing the experiments [95]. However, algorithms or analysis
processes created in closed-source tools can be di�cult to share, might include
details hidden by their source tool and are often tied to the speci�c system
and not reproducible with di�erent hardware or software.

Open-source projects are those allow code or any equivalent to be freely shared,
inspected and modi�ed [97]. There exists a wide variety of open-source licenses,
ranging from those that allow creation of derived closed-source products to
those that force any derivative work to share the open license of the original
work [98].
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Figure 3.1: Algorithms governing closed loop feedback are integral part of the methodology
and need to be shared for reproducing the experiments. From [96].

Both issues regarding algorithm creation and sharing can be solved by an open
source tool for electrophysiology research. Having the code accessible would
allow researchers to modify it in case the system would not met their experi-
mental needs, adapting the tool to the experiment instead of the opposite. An
open source philosophy eases closed-loop algorithm sharing [99]. Being able to
share not only the theory behind the algorithm but the code itself allows exter-
nal reviewers to easily replicate the experiment or even adapt the algorithm to
their own tools. Moreover, an open-source software would not be limited to a
single hardware, but could be extended to support multiple devices as long as
their interfaces are public. In the same way, an open-source acquisition hard-
ware would allow modi�cations and its compatibility with di�erent software
suites.

For such a project to be successful, some conditions must be met [95]. The
system has to be well maintained and easy to use. For an open-source project
to grow, the community must be active, with users contributing their own
upgrades and sharing technical discussions.

This chapter presents an open-source electrophysiology acquisition system ful-
�lling these characteristics. It is composed of hardware allowing multichannel
acquisition, with I/Os for external device synchronization, as well as a soft-
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ware with recording, visualization and online processing capabilities, designed
for its use in closed-loop systems.

3.2 Materials and Methods

3.2.1 Intan RHD2000 integrated circuits

Intan Technologies (Los Angeles, CA, USA) RHD2000 series are ICs featuring
both analog and digital stages specially designed for brain electrophysiology
[100]. While traditional acquisition hardware has separate stages for ampli�-
cation and digitalization this chip series, released in 2012, allows building very
compact headstages. Since the ADC is close to the brain, data can travel to
other parts of the acquisition hardware digitally encoded, thus being resilient
to electrical noise.

The chip family is comprised of three devices, varying by their inputs:

■ RHD2216: 16-channel device with di�erential inputs for each channel.

■ RHD2132: 32-channel device with unipolar inputs, with a single com-
mon reference.

■ RHD2164: 64-channel device with unipolar inputs and a single common
reference.

All ICs of the family feature 3 auxiliary inputs, a digitally-con�gurable analog
input bandpass �lter and an optional digital high-pass �lter for o�set removal.
They also feature internal voltage and temperature sensors that can be sampled
in a manner similar to the input channels. A complete set of characteristics
for the RHD2000 devices is listed in Table 3.1.

Communication with RHD2000 chips is done through a standard 16-bit, 4-wire
Serial Peripheral Interface (SPI) bus, with both single-ended or LVDS electrical
interfaces. Commands exist to trigger acquisition for each channel as well as
con�guring all their internal options. Acquisition frequency is determined by
SPI command rate. Both 32 and 64 channel versions share the same command
set, i.e., both have sampling commands for 32 channels. For each command,
the 32-channel headstage just samples the selected channel and returns the
corresponding bits on the rising edge of the SPI clock. The 64-channel variant,
however, samples channels both n and 32 + n simultaneously. It then returns
the bits for both values in each SPI clock using a Double Data Rate (DDR)
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Characteristic

Max. acquisition rate
(for all channels)

30KS/s

Data output width 16 bit

Input range ±5mV

Gain 192 V/V

Bit resolution 0.195µV

Input-referred noise 2.4µV

Analog bandpass �lter
low cuto� frequency

0.2Hz-1KHz

Analog bandpass �lter
high cuto� frequency

10KHz-20KHz

Digital high-pass �lter
cuto� frequency

4.8µHz-0.1Hz

Required power supply 3.3V

Table 3.1: Characteristics of Intan RHD2000 integrated circuits

scheme. This entails a data signal able to switch at twice the speed of the
clock, including two bits per clock cycle. Bits in this signaling are captured at
both rising end falling edges, as opposed to standard digital signaling where
only one edge is used to sample data bits. In the case of RHD devices, the
32-channel variants use standard signaling with only one bit per clock cycle,
captured on the rising edge. The 64-bit variant, using DDR and sending two
bits per clock cycle, synchronizes the �rst 32 channels to be captured on the
rising edge, and channels 33-64 on the falling edge.

Intan Headstages

Intan o�ers already-assembled headstages featuring their ICs in 16, 32 and 64
channel con�gurations. The devices optionally include a 3-axis accelerometer
connected to the auxiliary inputs of the RHD chips, with the biggest head-
stage measuring 24mm x 15.5mm. They also provide thin cables for digital
interfacing.
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Figure 3.2: 32-channel headstage with cable. From Intan Technologies (http://
intantech.com/products_RHD2000.html).

3.2.2 Xilinx FPGA

At the Open Ephys hardware core lies a FPGA driving acquisition and pack-
ing the data for transmission to the computer. The speci�c device was the
XC6SLX45-2C chip, a FPGA pertaining to the Spartan-6 series [101], from
Xilinx (San José, CA, USA). It features 43661 Xilinx Logic Cells, 2088 Kbit
of RAM and 38 DSP units.

A commercially available module featuring this device was used. It was a
XEM6310 module [102] from Opal Kelly (Portland, OR, USA). In addition to
the FPGA it features 512MB of DDR RAM memory and a USB port. It can
be plugged to a Printed circuit board (PCB) using a connector exposing most
of the FPGA pins. Although the XEM6310 required power supply is 5V, the
FPGA itself is powered by 3.3V lines. As a consequence, logic connected to
any pin of the device must be limited to this voltage.

A set of HDL modules are available to facilitate communication through the
USB interface. These are easily accessible from software using an Application
Programming Interface (API) provided by Opal Kelly called FrontPanel. This
API provides functions to set or read individual signals inside the FPGA as
well as methods for high-speed transfer through USB.

3.2.3 Connectors

Omnetics (Minneapolis, MN, USA) connectors were used for connecting the
acquisition chips with both the electrodes and the FPGA. The company spe-
cializes in miniature connectors, some of them widely used for neuroscience. 18
and 36-pin Nano Strip connectors were used for 16 and 32 channel electrodes
respectively. These connectors are a de facto standard, used by a variety of
probe manufacturers. For the digital interface, 12-pin Polarized Nano connec-
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tors were used. These ensure that cables can not be connected in an incorrect
orientation, as well as allow daisy-chaining multiple cables for longer lengths.
An example of these connectors can be seen in Figure 3.3.

A B

Figure 3.3: Omnetics connectors. A: Omnetics 36-pin Nano Strip. From Omnetics
(https://www.omnetics.com/products/neuro-connectors/nano-strip-connectors). B:

Omnetics 12-pin Polarized nano.

Additionally, Hirose Electric (Yokohama, Japan) DF40 connectors were used
for PCB-to-PCB connection due their low pro�le.

3.2.4 JUCE Library

The Open Ephys software is coded in C++, a Object-Oriented Programming
(OOP) language. This kind of programming languages are characterized for the
existence of structures called classes which encapsulate a speci�c functionality
and exposes interfaces to it through methods. Classes can be expanded by a
process called inheritance in which a child class inherits all the parent class
functionality and can add new methods as well as modify some behavior of
the parent ones. This way, a class can expose a generic, common functionality
that can be easily expanded and customized in child classes. In this paradigm,
an object is a particular instantiation of a class. Di�erent objects expose the
same class functionality with di�erences on the data they hold.

The backbone of the Open Ephys software a C++ library called JUCE, origi-
nally designed for audio processing software. As such, it provides a powerful set
of classes and methods to manage signal graphs. Those are comprised of nodes
which can be created to perform some processing to an input and present the
result as an output. Such nodes, or processors, can be connected in di�erent
ways, allowing a �exible method to create multiple signal processing chains.

25

https://www.omnetics.com/products/neuro-connectors/nano-strip-connectors


Chapter 3. Open Ephys

The JUCE framework also provides utility classes and methods to handle the
creation of a Graphical User Interface (GUI), data collections, �le handling
or network communication, making it possible to construct a rich application
using its functionality.

3.3 Results

3.3.1 Headstages

The �rst headstages developed within the Open Ephys project were similar
to those directly manufactured by Intan, targeted to silicon probes. They
consisted in a simple PCB with the chip, an Omnetics Nano Strip connector
for the electrodes and an Omnetics Polarized Nano connector for the digital
interface. Since their design proved e�ective, with very few areas to improve
upon, e�orts were shifted into microwire electrodes, with special interest in
tetrode recordings.

To that avail, a chronic drive implant was developed, the ShuttleDrive [103].
This is a device designed to easily guide microwire electrodes to the desired
areas of the brain while protecting them. Electrodes are connected to the
acquisition headstage through a Electrode Interface Board (EIB) which sits
on top of the drive, fully enclosing the assembly. A 64-channel drive is 15mm
tall, with a weight of 2 grams, making it possible to be used with both rats
and mice. The EIB has gold plated holes already grouped to facilitate the
construction of tetrodes.

The �rst EIB version featured two Omnetics connector for interfacing with
either a 64-channel or two 32-channel Intan-style headstages. While weight
was kept small, the height of the assembly proved detrimental to the ability
for mice to freely move their heads. To improve into this aspect, a di�erent,
low-pro�le headstage was developed. This headstage lies �at over the EIB
interfacing through a low-pro�le Hirose connector. Figure 3.5 shows a detailed
comparison of both pro�les while pictures of the di�erent headstages can be
seen in Figure 3.4. The lower torque point reduces mechanical stress on the
animals, allowing for more natural movement.
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A B

C D

Figure 3.4: Open Ephys headstages. A: Flat headstage (top). B: Flat headstage (bottom).
C: 64 channel EIB. D: ShuttleDrive.
From Open Ephys (https://open-ephys.org/).

Figure 3.5: Comparison of sizes and torque point between Intan headstage and low-pro�le
headstage when interfaced with a ShuttleDrive. From Open Ephys (https://open-ephys.
org/).

27

https://open-ephys.org/
https://open-ephys.org/
https://open-ephys.org/


Chapter 3. Open Ephys

3.3.2 Open Ephys acquisition board

The Intan RHD chips in the headstages need to be driven by a SPI controller.
To that avail, an acquisition board was created. It does not only control the
headstages but includes analog and digital I/Os, all hardware synchronized
with the neural acquisition.

3.3.2.1 Hardware

Figure 3.6 shows the Open Ephys acquisition board. Controlling the system
is the Opal Kelly XEM6310 FPGA board, with the main PCB acting as an
interface for the external devices. It features 4 ports able to drive 2 64-channel
headstages each. Independent power supplies are provided for each port to
ensure minimal losses through the cabling.

Figure 3.6: Open Ephys acquisition board and its components
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The acquisition board also features ports to connect I/O boards, shown in
Figure 3.7, for digital or analog auxiliary signaling. Digital lines, 8 input and
8 output lines, are connected to the FPGA through level-shifters to adapt
the 3.3V FPGA requirement to 5V , which corresponds to widely-used TTL
signaling levels. Analog output is provided through 8 Digital-Analog converters
(DACs) driven by the FPGA, followed by level conversion circuitry to provide
a ±5V output. Likewise, 8 ADCs connected to the FPGA allow for analog
inputs. The input levels are con�gurable through individual jumpers to be
±5V or 0 − 5V . The acquisition board also features a BNC connector which
outputs the sampling clock.

Finally, to make it easier for users to expand the hardware in custom ways, a
breadboard section was included, with lines connected directly to the FPGA.

Figure 3.7: Open Ephys I/O board

3.3.2.2 Firmware

The �rmware con�gured into the acquisition FPGA, codenamed Rhythm, is
responsible for driving the headstages, reading the state of the digital and
analog inputs, generating the outputs and synchronizing all the data. The
core of the �rmware is a Finite State Machine (FSM) driving the SPI bus for
the Intan RHD chips in the headstages. It is comprised of 4 states per bit,
two for the high clock state and two for the low state, for 20 bits, 16 with
data and 4 extra bits required by RHD timings. The FSM loops then for a
total of (16data_bits + 4wait_bits) × 4states_per_bit = 80 states. Each 80-state
loop corresponds to a single SPI command, which is sent to all headstages
simultaneously, sampling their data in the same manner.
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Having a FPGA clock 4 times faster than the SPI clock driving the acquisi-
tion chip allows to compensate for cable propagation delays. Digital systems
capture bit values on clock edges. However, since the clock is generated in the
FPGA, signals originating in the remote RHD device can su�er a delay due to
electrical propagation over long wires and arrive o�-phase with the clock. By
having extra granularity of 4 cycles per bit makes it possible to �nely select
the instant in which incoming data is captured, thus being able to compensate
for this delay.

To sample all channels, another loop of 35 cycles is done on top of the 80-state
loop. Of these, the �rst 32 correspond to the sampling commands for the Intan
RHD chips. The following three are used for auxiliary commands, such as con-
�guration, reading the internal sensors or sampling the auxiliary signals. Each
of these commands have a memory associated in which a variable-length list of
commands can be �lled. For each cycle of the 35-channel loop the next com-
mand for each of the three lists will be send in the appropriate slot, increasing
the counter. All connected RHD chips are commanded simultaneously, so a
sample for every headstage is collected for each of the 35 cycles. An overview
of the command structure can be seen in Figure 3.8.B. External lines, such
as TTL or ADC inputs, are sampled during the 35th cycle, along the last
neural channel. This makes all signals, neural and external, synchronized by
hardware, with a single timestamp.

Since the FSM has a total of 35 × 80 = 2800 unique states, the acquisition
clock is set appropriately for the desired sampling rate. For example, for
the maximum of 30KS/s a clock of 3 × 104Hz × 2800 = 84MHz is needed.
Sampling of the digital and analog inputs as well as setting the outputs is done
at speci�c states, all following the main acquisition clock. For each complete
35 ∗ 80 cycle a single sample of data, containing the value of all 32 channels as
well as the 8 digital and 8 analog inputs is timestamped with an unique sample
counter and sent to a FIFO using the external RAM of the XEM6310 module.
Data from the FIFO is then read by the software through the FrontPanel API
and transmitted via USB. The FrontPanel interface is also used to con�gure
acquisition parameters as well as signaling start and stop commands to the
FSM. Additionally, for each complete sample, a pulse is sent to the external
clock output. This output can be con�gured to pulse once every n samples
instead. A block diagram of the �rmware can be seen in Figure 3.8.A.
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Figure 3.8: Rhythm �rmware diagram. A: Block diagram of the �rmware. B: Command
loop structure.

3.3.3 Open Ephys Software

The Open Ephys GUI is capable of acquiring data from multiple sources, in-
cluding the Open Ephys hardware, perform signal processing in real time and
record data to disk. It is based around the concept of a con�gurable signal
chain. This is comprised of a set of nodes, called Processors, connected between
them to perform a speci�c set of operations depending on their con�guration
and the order they are connected. Di�erent processors are able to acquire
data (sources), process it (�lters) or visualize or store it to disk (sinks). The
software allows the creation of any possible chain by means of simple drag-and-
drop procedure, instantiating nodes from a processor list into the signal chain,
where node-dependent parameters can be set. Processors, specially visualizers,
can display data in a visualization area. Figure 3.9 shows the application and
its areas.

A key aspect of the software is the plugin architecture. Processors are not
built into the main program, but are developed and compiled separately. This
allows for any developer to expand the functionality of the application. While
the software is distributed with a set of basic plugins, community developed
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A

B C

Figure 3.9: Di�erent views in the Open Ephys GUI software. A: LFP continuous display.
B: Signal chain overview window. C: Neural spike viewer, displaying both single units and
tetrodes

processors can be installed. There are four di�erent kind of plugins that expand
the functionality of the GUI:

■ DataThread: Implement acquiring data from hardware, such as the
Open Ephys acquisition board.

■ FileSource: Make it possible to play back recorded data from disk in a
particular format provided by the plugin.

■ Processor: The most common plugin, these can implement any kind of
processing to perform with the data.

■ RecordEngine: Provide a �le format to record the data to disk.
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Since the software is based on audio processing libraries, plugins can easily
perform any kind of digital signal processing, allowing online analysis. Some
examples of commonly used plugins, included in the base distribution of the
software, are digital �lters, phase detectors or spike processing. Spikes, due to
their particular importance, are featured as a special data event in the GUI
data structures. As such, the software features an online spike sorter able to
use windows [29] and PCA [50], [104], [105] methods. Spikes can be visualized
and saved independently, alongside the continuous data.

Aside from spikes, the software can handle other types of non-continuous
events, such as changes on digital lines, also called TTL events. These can
be inputted into the signal chain, for example through the digital input of the
acquisition board or a network plugin, or generated inside the signal chain
through a plugin, such a phase or threshold detector. Input events can be used
to trigger speci�c functions within the processors. An example is the record
control module, able to start and stop disk recording through an external trig-
ger. Both input and generated events can be outputted through a number
device sinks. These can be used to trigger external stimulation hardware for
closed-loop control [70].

Figure 3.10: Class structure of the Open Ephys software. From [96].

Data can be recorded to disk in multiple formats, which can be expanded
with plugins. Some examples included with the base distribution are a plain
binary �les with a separate JSON including metadata information or Neuro-
data Without Borders [106], an open format for scienti�c data. Thanks to the
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modular nature of the software, data can be recorded at multiple points of the
signal chain, allowing to simultaneously record, for example, raw electrophys-
iology data along with the �ltered and processed signals used for closed-loop
feedback.

The application was developed in C++ using the JUCE library. Following
the OOP paradigm, it consists of a hierarchy of objects, most of them derived
from classes provided by the JUCE API. Figure 3.10 shows the dependency
structure of this class hierarchy. Under this structure, plugins are created as
classes that inherit from one of the four base classes provided by the plugin
API that the software implements. Creating a basic plugin requires �lling a
simple function, available from a template, while more complex plugins can be
created by using more advanced interfaces. An example of a simple recti�er
plugin can be seen in Figure 3.11

recti�er.h

#inc lude <ProcessorHeaders . h>
c l a s s R e c t i f i e r : pub l i c Gener icProcessor
{

pub l i c :
R e c t i f i e r ( ) {}
~R e c t i f i e r ( ) {}
void proce s s ( AudioSampleBuffer &bu f f e r ) ove r r i d e ;

}

recti�er.cpp

#inc lude " R e c t i f i e r . h"
R e c t i f i e r : : p roce s s ( AudioSampleBuffer &bu f f e r )
{

f o r ( i n t ch = 0 ; ch < nChannels ; ++ch )
{

const i n t nSamples = getNumSamples ( ch ) ;
f l o a t * bufPtr = bu f f e r . getWritePointer ( ch ) ;
f o r ( i n t n = 0 ; n < nSamples ; ++n)
{

*( bufPtr + n) = f ab s f (* ( bufPtr + n ) ) ;
}

}
}

Figure 3.11: Example code for a simple processor

The software is heavily parallelized, with di�erent threads for acquisition, vi-
sualization, recording to disk and signal chain processing. This last thread in
particular is triggered in regular intervals by a high-precision timer. Data is
processed in bu�ers whose size is dependent of the processing interval and the
sampling rate. This kind of block processing introduces a variable latency with
a maximum value of the bu�er length.
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3.3.4 Performance

Using all the neural inputs, the Open Ephys acquisition board is able to acquire
from 512 channels at 30KS/s. Thanks to LVDS communication and the delay
compensation features of the �rmware, tethers can be as long as 10m without
any signal distortion.

The amount of channels supported by the software is only limited by the
characteristics of the computer running it as well as the complexity of the
signal chain. With fast Solid-State Drives (SSDs) counts of over 8192 channels.
from high-density probes [41], have been successfully recorded to disk.

Acquisition latency is introduced by two factors: USB transmission and soft-
ware block processing. The former creates a maximum of 10ms delay, while
the second is con�gurable, with 20ms default but able to be as low as 5ms.
Total mean latency with default settings is measured as 20 ms.

3.4 Discussion

Closed-loop electrophysiology introduces an active feedback component to the
classical acquisition and analysis approach. This element, the algorithms to
trigger and create stimuli, are tied to the acquisition setup, which often makes
them di�cult to share and analyze by the community, one of the pillars of
scienti�c knowledge. An open source approach solved this, as algorithms and
procedures can be closely inspected and reproduced, not only for the original
system, but can be adapted to alternative devices or software if needed.

The Open Ephys system facilitates this process with its modular architecture,
by making it easy to create and share plugins independently of the rest of the
software. Its growing adoption, with citations in more than 200 papers, has
resulted in many laboratories developing plugins for various online analysis and
event detection tasks, of which over a dozen are now featured in the o�cial
plugin repositories of the Open Ephys organization. Thanks to its open-source
nature, third party projects, such as Bonsai [107], now support the Open Ephys
hardware, while the software has been used to support other hardware as well,
such as Neuropixels [41] or the Neuralink interface [108].

Developed amongst the �rst generation of digital-headstage devices, the Open
Ephys acquisition system has three main paths for improvement: latency, asyn-
chronous signal management and wiring.
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Due to the bu�ering architecture used in the software, coupled with the bulk
transfer characteristics of USB the minimal achievable latency is 5ms, with the
mean being 20ms. While this allows for closed loop experiments based on slow
events, such as LFP rhythms [70] it is not enough to respond to faster signals,
such as action potentials. A maximum latency of 1ms would be required for
spike-based closed-loop feedback.

Neuroscience research is steadily moving from head-�xed electrophysiology ex-
periments to more complex environments, integrating multiple elements such
as animal tracking or video feeds alongside the neural data. All these di-
verse data sources, of di�erent nature and sampling rates, need to be perfectly
aligned and synchronized for analysis and their use in closed-loop feedback
algorithms. The Open Ephys system, however, has been developed following
traditional signal processing methods which are designed for synchronous sig-
nals. While it can handle thousands of channels from the same source, mixing
independent sources can lead to alignment problems. A completely di�erent
architecture is needed to properly process asynchronous sources.

Lastly, while wiring has been greatly improved from analog systems, with teth-
ers being as thin as 1.8mm with a mass of 4.1g/m, they still entail di�culties for
animal movement range. Moreover, a SPI cable for driving an Intan RHD2000
chip in LVDS mode requires 10 wires. As such, even with the number of
wires reduced from analog systems, multi-wire rotative commutators are still
complex to manufacture and prone to mechanical failure.

All these concerns are addressed in posterior hardware iterations, as presented
in following chapters.

3.5 Conclusions

The Open Ephys project is a complete open-source electrophysiology acquisi-
tion system developed with the ideas of �exibility and community sharing.

Its hardware is able to acquire up to 512 channels ar 30KS/s with a 16bit
resolution and multiple I/O lines, both digital and analog, for interfacing with
external devices. Neural data is digitized at the headstage level, allowing long
cables without inducing noise into the signal.

On the software side, the Open Ephys GUI is a plugin-based application able
to handle thousands of channels, both for recording and signal processing,
including online spike sorting. Its modular nature makes it possible for re-
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searchers to develop their own algorithms, integrate them into an experiment
and share not only the results but the process with the community. Designed
with closed-loop experimentation in mind, the GUI is able to process events
and trigger stimulation devices through output interfaces.

The open source nature of the project allows for researchers to fully share
their entire work�ow, including the algorithms, triggers and stimuli used for
closed-loop experimentation. This information can be used to replicate an
experiment with the Open Ephys system, or studied and adapted for other
existent systems.
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Chapter 4

Open Neuro Interface (ONI):
High performance acquisition

This chapter presents the Open Neuro Interface (ONI) standard and a
high-performance hardware implementation, ONIX. ONI is a speci�cation
designed for communication between a computer and an acquisition system
able to acquire data from multiple, heterogeneous sources while ensuring
synchronization. ONIX is an electrophysiology acquisition system following
the ONI speci�cation. It features high-bandwidth and low latency, able to
acquire from hundreds of channels and perform closed-loop feedback in the
sub-millisecond range. It includes lightweight headstages with 3D-tracking
and stimulation capabilities. Headstage tracking allow the use of an active
torque-free commutator. Thanks to the reduced strain on the animal and the
advanced capabilities, the ONIX system can be used in complex, long-term
experiments.
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4.1 Introduction

4.1.1 High-bandwidth heterogeneous systems

Modern neuroscience is trending towards integration of multiple data and stim-
ulation sources of diverse nature. Animal tracking and computer vision, widely
used in behavioral experiments [109], [110] are being combined with electro-
physiology acquisition [92]. Many systems also include stimulation both envi-
ronmental [111] and neuronal [76]. In parallel, technological advances in con-
sumer electronics has brought a plethora of o�-the-shelf sensor devices of inter-
est for neurophysiology and behavioral studies, such as Inertial Measurement
Units (IMUs), VR tracking, small high-power LEDs or miniaturized cameras
and microphones. Both developments have opened the door to complex exper-
iments [112] featuring composite devices [113], [114] and multiple, independent
sources of data.

However, no standardized way to access the variety of available sensors exists.
This becomes a roadblock for the development of new acquisition hardware.
While it is inevitable to deal with low-level IC communication when creating
new hardware, developers need to also create high-level interfaces for data
transfer to the computers. Due to time constraints, these can end being simple
ad-hoc data links, only useful for a particular project and not reusable. Some
devices have developed complex and mature APIs to access their data [41], but
they are geared toward those speci�c devices and feature little to no way to
extend their capabilities.

On the other hand, advances in electrophysiology technology have increased
the number of channels able to �t in a single probe exponentially, with devices
featuring hundreds of channels per shank being available [36], [115]. Bandwidth
requirements for current data sources can range from a few KB/s of tracking
data to dozens of MB/s from high channel count electrophysiology or real-time
video stream devices, such as head-mounted microscopes [114].

A standardized interface able to bidirectionally access a variety of devices,
independently of their nature, would be of great interest. Such an interface
would free developers from the need to create data transfer interfaces and
focus on the speci�cs of their device only. Such an interface should support a
wide range of data rates and hide all speci�city behind a set of common and
accessible API.

40



4.1 Introduction

4.1.2 Tether issues

There is a growing interest on neuroscience experiments featuring bigger, more
natural and meaningful spaces [91], [92]. Wiring, however, becomes a burden
to animal movement.

While the move to digital headstages has reduced the number of wires per cable,
multi-wire tethers are still the norm. For example, a SPI bus for full-duplex
communication such as the used in RHD2000 acquisition chips [100] require 4
lines. LVDS communication, required for high speeds over long cables, double
the amount to 8, which then totals to 10 when including power wires. Thus,
cables of ranging from 10 to 14 wires, for multi-headstage support, are common.
More wires in a cable results in an increase to the total weight to the tether.

Weight and thickness are not the only issues caused by multi-wire cables. For
an animal to be able to move freely in the experimental space, the tether must
be able to rotate to avoid becoming twisted, which could lead to a broken cable
or reduce the range of movement of the animal. This is achieved through the
use of rotary commutators, devices that divide a cable in two segments able to
rotate independently.

Figure 4.1: Diagram of the internals of a rotary commutator

For non-coaxial cables, a rotary commutator uses a slip-ring structure (Fig-
ure 4.1). Wires from one cable are connected to rings in a cylindric structure.
Connectivity to wires on the second cable is performed through brushes, lami-
nar metal pads held against the rings by a spring mechanism ensuring contin-
uous contact even when rotating. This structure is complex to manufacture
and prone to failure, these di�culties increasing with the number of wires.
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4.1.3 Latency in closed-loop experiments

Feedback stimulation in a closed-loop experiment must be performed within the
timescale of the biological event of origin. Temporal association in behavioral
tasks can take seconds, while neural plasticity occurs in a few ms [86], to cite
some examples. Action potentials, on their part, have a duration of 1-2ms
[13], so being able to act in that timeframe would open new experimental
possibilities.

The main sources of closed loop latency are data transmission from the acquisi-
tion system and processing times. This gets aggravated by newer high-density
probes with hundreds or even thousands of channels [87]. While algorithms
using the computation capabilities of newer Central Processing Units (CPUs)
and GPUs are being developed [89] to reduce processing time, latency due
to data transmission from the acquisition system to the computer is still a
limitation.

4.1.4 Overview

This chapter presents the Open Neuro Interface (ONI) speci�cation and API
as well as an ONI-compliant acquisition hardware, ONIX.

ONI is a standard for heterogeneous neuroscience experimentation. It is de-
signed to abstract data from multiple asynchronous, independent devices into
streams that can be accessed by any software by the use of a simple API. Data
framing with timestamping ensures that synchronization between devices is
possible. ONI is device-agnostic, so as long as any hardware complies with the
speci�cation it can communicate with software using the API.

ONIX is a speci�c implementation of the ONI standard. It is an acquisition
device featuring sub-millisecond latencies and bandwidths of up to 500MB/s.
Various headstages for electrophysiology, featuring 3D tracking capabilities,
were created. Headstages or other devices communicate with the host system
through ultra-thin, coaxial cables.
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4.2 Materials and Methods

The two main hardware components of the ONIX system, which will be pre-
sented in detail in section 4.3, are the host card and the headstages. The former
includes all devices required for intercommunication with both the computer
and the headstages, while the latter include multiple sensor and stimulation
components. This section includes the description of some elements that con-
form those parts.

4.2.1 Bus standards

Two main interconnection standards were used to connect hardware to the
computer and between di�erent circuit boards: PCIe and FMC.

PCIe is a bus standard designed for high-speed data transfers between com-
puter peripherals. It is based on point-to-point communication, connecting
devices directly to a root complex, usually located in the CPU. Data is trans-
mitted serially through di�erential pairs, or lanes, which can be aggregated
into single links, multiplying bandwidth. Thus links referred as x1, x4, x8 or
x16 refer to one, four, eight or sixteen di�erential lanes dedicated for a single
peripheral. Line speed is determined by the version, or generation (abbrevi-
ated Gen.), of the protocol. Table 4.1 shows the bandwidth for each current
standard, with Gen. 3 and Gen. 4 being, at the time of this writing, the most
common in commercial computers.

Gen. Year x1 Bandwidth x4 Bandwidth
1 2003 250 MB/s 1 GB/s
2 2007 500 MB/s 2 GB/s
3 2010 958 MB/s 3.938 GB/s
4 2017 1.969 GB/s 7.877 GB/s
5 2019 3.938 GB/s 15.754 GB/s

Table 4.1: Year of introduction and speed of the di�erent current PCIe versions

FMC Mezzanine Card (FMC), or ANSI/VITA 57.1, is a standard de�ning
daughter boards connected to a PCB featuring a FPGA or similar device.
It allows a �xed main board to change its I/O capabilities by replacing the
mezzanine modules. The standard de�nes a speci�c form factor as well as two
types of connection density. LPC (Low Pin Count) connections provide user
68 lines. The HPC (High Pin Count) standard provide 160 user lines as well as
10 dedicated di�erential pairs for serial transceivers and additional clocks. The
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standard allows for the user lines to work as single-ended lines or coupled in
di�erential pairs, 34 for LPC and 80 for HPC. Both densities share the same
physical, 400-pin connector, the di�erence referring only to the connectivity
between it and the FPGA present in the main board.

4.2.2 FPD-Link III devices

FPD-Link III [116] is a protocol designed by Texas Instruments (Dallas, TX,
USA) to transmit high-speed digital data over a single di�erential pair or coax-
ial cable. A FPD-Link system is comprised of two elements: a serializer, which
packs and transmits a data bus and a digital clock, and the deserializer, able
to receive and reconstruct them. The FPD-Link protocol is designed for trans-
mission of video data, transmitting pixel color values, vertical and horizontal
synchronization signaling (V-SYNC and H-SYNC) and the pixel clock (PCLK).
As such, the data bus is comprised of 12 or 24 bits, which are common pixel
color widths, as well as the two synchronization bits.

In addition to the high-speed data channel FPD-Link III devices also feature
a bidirectional con�guration channel, also called backchannel. Through it,
communication using an Inter-Integrated Circuit (I2C) bus is possible between
devices at both ends of the link. General Purpose Input/Output (GPIO) lines
are also provided and transparently connected between the deserializer and the
serializer through this backchannel.

The devices selected for its use in the ONIX system were the ds90ub933 seri-
alizer and ds90ub934 deserializer, used to transmit data from the headstages
to the host. They are able to transmit 12-bit data, plus sync signals, up to
100MHz, feature a 400KHz I2C bus and include 4 GPIO lines. They were se-
lected over 24-bit variants due to power and PCB layout considerations as well
as compatibility with existing devices such as Miniscope [114]. The devices
were con�gured to transmit the data over a coaxial cable.

4.2.3 FPGA devices

To drive the di�erent acquisition devices, coordinate communication through
the FPD-Link interface and transfer data to the host computer two di�erent
kind of FPGAs were used. Designs for both of them were developed in VHDL.
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4.2.3.1 Kintex-7 FPGA

A Xilinx FPGA from the Kintex-7 series, the model xc7k160t, was used in the
ONIX host for gathering data from the deserializers and transmitting it to the
computer. This is a mid-end device featuring 162240 Xilinx Logic Cells, 11700
Kbit of RAM and 600 DSP units.

Additionally, FPGAs of the Kintex-7 family include integrated transceivers for
PCIe bus communication. The devices are able of a Gen2 x8 interface, allowing
a maximum bandwidth of 4GByte/s.

Numato Nereid board

A commercially available PCB was used, the Nereid board from Numato Lab
(Bangalore, India), which features the FPGA as well as a 128Mbit SPI �ash
memory to store the bit�le. It has a form factor able to �t into a normal
computer PCIe slot with a x4 interface and includes a SO-DIMM slot popu-
lated with 4GB of DDR RAM. Custom hardware is implemented in a daughter
boards that are plugged into the Nereid through a standard HPC FMC inter-
face. The location of this connector is such that, when the main board is
connected into a computer, the custom daughter board can expose connection
ports through the back of the computer. Figure 4.2 shows a detailed descrip-
tion of this board.

Figure 4.2: Overview of the Numato Nereid board. From Numato (https://numato.com/
product/nereid-kintex-7-pci-express-fpga-development-board/).
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PCIe interface module

To take advantage of the PCIe interface on the Kintex-7 FPGA an existing
communication module was used. RIFFA (Reusable Integration Framework
for FPGA Accelerators) [117] is a framework for communicating a computer
with a FPGA board. It can be con�gured to create a number of transmission
channels, able to receive or send data. Each channel is completely independent
and can be accessed in parallel with all others. RIFFA makes use of Direct
Memory Acess (DMA) and interruptions to achieve high bandwidth over the
PCIe link.

RIFFA does not implement the low-level interface with the PCIe bus. For that,
a module o�ered by Xilinx to use with its FPGA was used.

4.2.3.2 MAX-10 FPGA

Since size and weight are important priorities for a headstage a di�erent,
smaller device was used in them. The MAX-10 FPGA series from Intel (Moun-
tain View, CA, USA) are designed for small, embedded applications. As such,
they feature a small footprint and reduced power requirements, in compari-
son with bigger devices such as the Kintex-7. Following this specialization on
small size, MAX-10 FPGAs do not require an external memory for storing the
con�guration bit�le. Instead, they embed �ash storage inside the same chip,
reducing the component count needed for a design featuring these chips.

In particular, the 10M08DF device was used. It contains 8000 Intel Logic
Elements, 378Kbit of RAM and 24 DSP units. Regarding its internal �ash
storage, it features 312KByte which can be distributed between one or two
bit�les and user memory. Two packages were selected, the V81 variant mea-
suring 4x4mm and housing 56 GPIO lines and the M153 with 8x8mm footprint
and 112 GPIOs.

4.2.4 3D Tracking

All ONIX headstages feature 3D tracking to accurately follow the animals.
This is accomplished using two complementary systems: SteamVR tracking
and a 9-axis Inertial Measurement Unit (IMU).
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4.2.4.1 SteamVR Tracking

SteamVR is a VR platform developed by Valve (Bellevue, WA, USA) featuring
highly accurate object positioning in 3D space. A SteamVR tracking system
is composed of two or more basestations, called lighthouses and a number of
trackable devices, such a headsets, controllers, etc. as showcased in Figure 4.3.

Figure 4.3: SteamVR overview

Two versions of the tracking system exist, sharing the basic working princi-
ple: Base stations, positioned in �xed and known positions in space, emit
either an horizontal or vertical laser plane that sweeps vertically or horizon-
tally, respectively, as shown in Figure 4.4. Trackable devices contain infrared
photodiodes able to precisely detect when the light from the base stations
touch them. Knowing the precise angle in which light from the vertical and
horizontal sweeps are detected by a photodiode makes it possible to trace a
straight line from a base station to it. Multiple base stations create di�erent
lines whose intersection point can then be calculated, determining the spatial
position of the photodiode. By having more than one sensor in an object and
knowing their relative position, orientation can be calculated as well.

The di�erence between versions 1 and 2 of SteamVR lies in detection of the
precise sweep angles by the trackable objects.

α

ꞵ

Figure 4.4: Lighthouse plane sweeps
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SteamVR version 1

Version 1 of the tracking protocol requires precise synchronization between base
stations. As a consequence, it is limited to only two lighthouses. In addition to
the laser plane sweeps version 1 stations also make use of light pulses covering
the entire space to synchronize. These �ashes are detected by both the base
stations themselves and the trackable objects, allowing all involved devices to
be in synchrony.

At system setup, base stations are assigned as lighthouse A or B. Each cycle
starts with lighthouse A emitting a pulse, followed by a pulse produced by
lighthouse B. The duration of these two pulses indicate which of the stations
will proceed to sweep and whether it will be a vertical or horizontal sweep.
These pulses are followed by the sweep and a known length end of cycle period.
Timing information can be seen in Table 4.2. Full tracking requires of four
cycles, a total of 39.6ms, to cover both sweeps of both base stations.

Pulse start, µs Pulse length µs Source station Meaning

0 65 - 135 A Sync pulse
400 65 - 135 B Sync pulse

1222 - 6777 ∼10 A or B Laser plane sweep
8333 1556 End of cycle

Table 4.2: Lighthouse v1 activation Timings

With this schema, incidence angles are calculated by precise timing synchro-
nization, as the device is able to count, for each individual photodiode, the
time di�erence between the synchronization pulses and the sweep detection.

SteamVR version 2

Version 2 of SteamVR tracking addresses the limit of two base stations and im-
proves accuracy by encoding the sweep angle into the laser itself, thus removing
the need to synchronize elements.

Data is sent through amplitude modulation of the laser beam. A series of bits
at 6MHz is transmitted using di�erential manchester encoding (Figure 4.5).
This method allows accurate clock reconstructions by ensuring that there is
always a transition between bits, while the bit value is encoded by the presence
or absence of an additional transition mid-bit.
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0 1 1 0 1 0 0 1Decoded data

Encoded signal

Reconstructed clock

Figure 4.5: Di�erential manchester encoding

The data stream is created by the output of a 17 bit Linear Feedback Shift
Register (LFSR). This is a special kind of binary shift register in which the
input is created by summing the values of speci�c bits in the register, as shown
in Figure 4.6. The selected bits can be expressed in polynomic form. For
example, a LFSR in which the input is comprised of the sum of the 1st, 4th
and 8th bit would correspond to the polynomial x8 + x4 + x + 1. All LFSR
return to their initial value a set number of cycles. Those polynomials that
ensure a LFSR of width W have a period of 2W − 1 cycles are called maximal-
length polynomials [118]. 32 di�erent 17 bit polynomials are de�ned by the
SteamVR standard, all being maximal-length, thus having 217 − 1 = 131071
possible values.
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Figure 4.6: An example 8-bit LFSR with polynomial x8 + x6 + x5 + x3 + 1

In contrast with version 1 base stations, version 2 lighthouses are continuously
performing sweeps, controlled by a single mechanical rotor with slanted mir-
rors. A complete rotor revolution performs one full horizontal and one full
vertical sweep. This sequence is synchronized with the LFSR in a way that a
complete revolution coincides with a full period of the shift register. This way,
by receiving 17 consecutive bits the receiver is able to decode the state of the
LFSR. This informs of the precise rotor position and, with it, the horizontal or
vertical angle that corresponds. This requires knowing which base station, and
by extension which polynomial, corresponds to the signal being decoded. This
is achieved by placing two infrared receivers in close proximity for each sensing
point. These devices will detect light from the same lighthouse at a very small
o�set, resulting in two 17-bit sequences from the same polynomial. Since the
basestations polynomials are designed so their sequences are completely di�er-
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ent for each one, this can be used to locate the correct one and identify the base
station. Knowing base station and sweep angles, triangulation is performed
with the same process as with version 1.

Since base stations are not synchronized, there is a risk of beam collisions.
This is minimized by the devices having slightly di�erent revolution speeds,
so collisions are never in synchrony. Possible values for a full revolution are
21.85ms and 19.98ms. Operating in an individual manner, more than one base
station can be used with version 2, allowing for larger areas.

4.2.4.2 Inertial Measurement Unit (IMU)

Although SteamVR tracking is highly precise, the rate it produces full posi-
tional data is approximately 25Hz for version 1 and 50Hz for version 2. In
some cases, it might be necessary to detect fast movements between full track-
ing samples. This can be achieved by the use of a 9-axis IMU.

This device is a Micro-Electro-Mechanical System (MEMS) integrated into a
chip o�ering three di�erent types of measurement, each monitoring 3 spatial
axes: An accelerometer is able to detect linear movement as well as orientation
relative to the ground, by detecting the acceleration of gravity; a gyroscope is
able to measure rotations along any of the axes; and a magnetometer is able to
act as a compass, measuring the heading of the device. Of these measurements,
only data from the �rst two modes were used as a complement for tracking
data.

The particular device used was the BNO055 from Bosch (Gerlingen, Ludwigs-
burg, Germany). It can provide accelerometer and gyroscope data at 100Hz. It
can measure accelerations up to 16g and maximum rotation speeds of 2000◦/s.
Digital communication is performed through an I2C bus.

4.2.5 Acquisition devices

For neural data acquisition, Intan Technologies RHD2164 chips were used.
These devices have the ability to acquire 64 channels of neural data at 30KSam-
ples/s, with an input range of ±5mV and 2.4µVrms of input-referred noise.

Three kind of probes were used. Microwire probes, including stereotrodes
and tetrodes, were interfaced through the use of Open Ephys EIBs boards.
For silicon multichannel probes, adapters with multiple Omnetics 36-pin Nano
Strip connectors were used.
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The third type of probe used were Neuropixels probes [40], [41]. There are high-
density, low-noise probes manufactured using Integrated Circuit lithography
techniques. These devices provide an array of 960 electrodes located in a 10mm
long, 70x24µm cross-section shank. Of those, 384 channels can be selected to
record simultaneously. Filters to separate LFP and Spike bands are integrated
into the same silicon body of the probe, along the electrodes.

4.2.6 Stimulation devices

Electrical stimulation was provided in current-controlled form, generated by a
Howland current pump [119]. This circuit acts as a transconductance ampli�er
generating a �xed current, independent on the output impedance, de�ned by
the input voltage. This tension was controlled by an Analog Devices (Norwood,
MA, USA) AD5683 DAC.

For optical stimulation, a CAT4016 LED Driver from ON Semiconductor
(Phoenix, AZ, USA) was used. This device provides constant current, con-
trolled by an analog pin, to up to 16 output channels specially designed for
LED operation which can be enabled individually by a digital bus. To have
control over the stimulation current, a TPL0501 digitally-controlled poten-
tiometer from Texas Instruments (Dallas, TX, USA) was connected to the
current-sensing pin of the LED Driver. To allow for higher LED currents, the
16 output channels were tied together in two 8-channel groups, each connected
to a single output, thus enabling a LED current up to 8 times the one set by
the potentiometer.

4.2.7 Software

■ EAGLE (Autodesk, San Rafael, CA, USA) is a electronic design suite
including schematic and PCB design. It was used to develop the di�erent
pieces of custom ONIX hardware.

■ Vivado Design Suite (Xilinx, San José, CA, USA) andQuartus Prime
(Intel, Santa Clara, CA, USA) are the design softwares for Xilinx and In-
tel FPGAs, respectively. They are required to create the bit�les for their
respective devices from HDL code such as VHDL or Verilog, each tak-
ing into account the speci�c basic hardware elements for each vendor.
The suites include simulation tools to test the designs before transferring
them to the actual hardware, programmers to upload the bit�les to the
FPGAs as well as capabilities able to debug the physical devices through
a JTAG interface. Vivado was used to create bit�les for the host PCIe
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board, while Quartus was used for the headstages. Most of the designs
were created with VHDL, with a few modules made in Verilog.

■ Bonsai [107] is an open source visual programming language capable of
handling asynchronous data streams of di�erent natures, with an ample
library of prede�ned functions for vision and data processing. These
capabilities have made it popular as a control framework for complex
experiments, specially those including behavior study. Input nodes for the
ONIX hardware were made for the Bonsai language and used to construct
basic modules providing neural and tracking data.

■ Visual Studio (Microsoft, Redmond, WA, USA) is a IDE for C/C++
and .NET applications, including coding assistant tools and a powerful
debugger. It was used to build the low-level ONI library in C, as well as
the Bonsai ONIX nodes using C#.

4.3 Results and Discussion

4.3.1 ONI speci�cation

Open Neuro Interface (ONI) is an open standard describing a high-speed inter-
face between a computer and a collection of devices, which can be of di�erent
nature. Its goal is to provide a single, uni�ed protocol to communicate with the
variety of instruments widely used in neuroscience such as electrophysiology
acquisition devices, tracking systems, cameras or stimulators. It de�nes both
a logical structure for the di�erent elements as well as the format in which the
data is transferred to the computer. It, however, does not de�ne a speci�c
hardware transport layer, leaving that open to di�erent implementations, but
only how the data should be organized.

Figure 4.7 shows a diagram of the ONI standard. The most basic elements of
the structure are streams, registers and devices.

A stream represents a unidirectional �ow of data. Direction is named from
the computer perspective, input streams being data going into the computer
and output streams data originating from it. Stream data can be continuous
with a �xed rate, e.g., data from an ADC or a camera, or sporadic, e.g., the
interaction of a button or a multichannel digital trigger.
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Figure 4.7: ONI speci�cation diagram

Registers are a map of values referenced by an index, or address. Those are
always passive, accessed only by request of the computer. A single register can
be either read-only, write-only or accept both write and read operations.

Devices are producers or consumers of data. The term usually refers to a
physical device, such as an ADC or a stimulation circuit, with access to the
physical world. However, a device can also be a virtual element, e.g., a timer
or a control interface. All ONI-compliant devices provide three interfaces: a
mandatory register map, an optional input stream and an optional output
stream. The collection of all available devices is called the register map.

Some extra structural elements are de�ned in the standard: A hub represent
a physical or logical group of devices. For example, a headstage with neural
acquisition, tracking and stimulation devices. A host is the element that acts
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as an interface with the computer, aggregating data from the devices and
transmitting it. A host contains a number of ports that connect to one hub
each through a link, which can be physical, i.e., a cable, or virtual, for example
to a logical hub comprised of devices physically existing in the same hardware
as the host.

Regarding the computer interface and data format, the ONI standard de�nes
four channels that must be implemented.

A register interface must be present with, at least, the registers shown in
Table 4.3. They are divided into two groups: Those pertaining to the register
access interface allow interfacing with the register channel of any particular
device. Global registers o�er control and information over the acquisition
process. The standard allow speci�c implementations to add their own registers
to the map.

Register Type Description
Device ID

Device register
interface

Target device unique identi�er
Register Address Register address to access

Register Value Value to write in register or read value
from register

Read/Write Set register operation to read or write
Trigger Start register access operation
Running

Global

Start and stop acquisition
Reset Reset the system

System Clock Frequency in Hz of the main system
clock

Acquisition
Clock

Frequency in Hz of the clock driving
acquisition and generating host times-
tamps

Reset acquisition
counter Reset the host timestamps to 0

Table 4.3: Required registers in the ONI speci�cation

A low speed, unidirectional signal stream is used to notify the computer of
the completion and result of asynchronous events, particularly device register
access and system reset. It is also responsible of transferring the whole device
map, containing details about every connected device. Speci�cally, each entry
of the map contains:
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■ A unique identi�er, created by the hub index and the device index within
the hub.

■ An identi�er indicating the device type.
■ A number indicating the version of the device, or its driver �rmware
■ Device input sample size in bytes
■ Device output data size in bytes

High speed data transmission between the computer and the devices is done
through the input and output streams. Data is transferred in frames, each
consisting of

■ A 64-bit timestamp, created by the host hardware, representing the mo-
ment the data arrived to it. For output frames this value is not used.

■ A 32-bit value with the identi�er of the origin or destination device
■ A 32-bit value with the size of the payload
■ The data payload

Output payloads are completely device dependent. Data originating from the
devices is organized in samples, each frame containing a single sample in its
payload. A sample contains a 64-bit timestamp created by the hub containing
the device and the sample data. Having two timestamps, one from the hub
and another from the host, allows hubs to run independently with di�erent
clocks and still be able to synchronize the data.

ONI Library

LibONI, a library written in the C programming language was created to pro-
vide easy access to any ONI-compliant system. It manages data to and from
the di�erent streams and provides simple C functions to perform operations
such as frame reading and writing, system con�guration and register access. To
support multiple implementations, a simple modular driver system was devel-
oped. Di�erent implementations must only provide small low-level functions
to write and read raw data to an from the four streams.

Bindings in di�erent programming languages, such as Python and C#, are
provided to allow for easy interoperability.
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Structure of ONI-based systems

A typical ONI system is comprised of four main layers, as described in Fig-
ure 4.8, where the top elements are the extremes of the system, individual
devices and user data, and bottom ones the interconnection between the sys-
tem and the host computer.

ONI System

Device-speci�c data

Aggregated data streams

Speci�c implementation (ONIX)

Hardware computer interface

←→

Computer

Application

ONI Speci�cation (libONI)

ONI-Driver

Operating System Driver

Figure 4.8: OSI-Style relation of layers in an ONI system

Device data, at the top layer, is produced by a data source. It is sent transpar-
ently to the application through the ONI speci�cation and API, so the software
only needs to know which type of data it is and act accordingly. For example
image data would be displayed as a video feed while electrophysiology data
would be shown as a waveform and used for spike sorting.

The next layer is the core of the ONI speci�cation. On the hardware side,
it de�nes how device data must be packed and send through a prede�ned
stream, with a clear frame structure. On the software side, the ONI API,
using the knowledge of this structure, is able to decode the streams and present
device data as independent packets to the application. The actual methods
to communicate with the devices are not speci�ed in the standard, as it is a
transparent process that gets packed through the ONI speci�cation.

The following two layers are tightly related and worth explaining in opposite
order. Bottom layer is the actual interconnection between the ONI-based sys-
tem and the host computer. This might be any interface such as PCIe, USB
or even network. On the hardware side, this is the device that performs actual
communication. While one the software side is the low-level operating system
driver for said device. This might be an o�-the-shelf part, and no control over
it is speci�ed in the standard.
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The second to bottom layer represents the actual acquisition system. On the
hardware side, it represents the system communicating with the di�erent de-
vices, framing it following the ONI standard and sending it through the data
link. Since the actual link might not feature the virtual streams required by
the speci�cation, for example a USB chip featuring a single bidirectional data
stream, it is the responsibility of the hardware implementation to pack the
ONI streams in a way �tting its physical data link. On the software side, a
lightweight module for the API, provided by the system developer, translates
the hardware-based link into ONI streams, for the API to interpret.

4.3.2 ONIX hardware

ONIX is a hardware neural electrophysiology acquisition system implementing
the ONI speci�cation. Figure 4.9 shows all its components. It is comprised
of a PCIe board acting as an ONI host and di�erent types of headstages,
taking the role of hubs in ONI terminology. Communication between the host
and each headstage is done using the FPD-Link III protocol, thus allowing
for bidirectional communication and power transmission over a single coaxial
cable.

SteamVR

Lighthouses

Active

commutator

Breakout

board

Neuropixels

headstage

Tetrode 

headstage Host 

Board

Figure 4.9: Overview of all the components developed for the ONIX system
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4.3.2.1 Host board

Following the ONI speci�cation, the ONIX host board was designed to ag-
gregate data from di�erent hubs and devices and interface with the computer
through a high-speed PCIe bus. The Numato Nereid board with a Kintex-7
FPGA at its core was used as the base of the host system. A FMC daughter
card was made containing all custom electronics for interfacing with external
devices. Figure 4.10 shows the complete board as well as the PCB layout of
the FMC card, which is comprised of a 6-layer stack-up.

A

4-lane PCIe Gen3

Xilinx Kintex 7

4GB DDR3 Data 

Buffer

Multi-board trigger

sharing

Gen. Purpose

Analog and Digital
IO

GHz Output 

Clock Headstages

GHz Input

Clocks

B

Figure 4.10: ONIX host board. A: Overview of the full host board, with the FMC card
assembled over the Numato Nereid. B: PCB layout of the FMC card.

The main components of the FMC board are two ds90ub934 deserializers in
charge to communicate through a coaxial link with di�erent hubs. External
connection to the deserializers is made via MMCX connectors. These devices
require two di�erent power inputs require, 3.3V for I/O lines to the FPGA
and 1.8V for the core. Those are provided through 3.3V pins in the FMC
connector, originating in the Nereid board, and a DC-DC Buck converter to
e�ciently derive the 1.8V lines. Power for the external devices, transmitted
through coaxial cables, is derived from a 12V source also provided through the
FMC connector. Instead of being converted to a �xed voltage, a combination
of con�gurable step-down converters and digitally-controlled potentiometers
was used to digitally control the link voltage for each port. This allow to
compensate for larger cables or adjust for di�erent devices.

The host board also contains interfaces for general purpose analog and digital
signals. It features 12 analog lines that can be, through digitally controlled
analog switches, independently routed to either a multichannel ADC or DAC.
The board does not feature direct digital lines, however, but 5 high-speed
di�erential pairs, 2 output and 3 input, which can be used to interface with a
variety of digital systems.
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For extra synchronization capabilities, the host board contains 2 bu�ered high-
speed clock inputs and 1 clock output, accessible through coaxial MMCX con-
nectors. It also features an internal connector with 4 di�erential pairs of con�g-
urable direction, designed to connect multiple boards to work in a synchronized
manner.

4.3.2.2 Headstages

The main source of data on the ONIX system are the headstages, that ful�ll
the role of hub on the ONI speci�cation. While the speci�cation allows for any
kind of data, ONIX headstages are specially designed for brain electrophysiol-
ogy acquisition, neural stimulation and animal tracking. Two di�erent types of
headstages were developed: those for microwire and silicon probes using Intan
RHD2164 chips, in both 64 and 256 channel variants, and a headstage designed
to drive neuropixel probes. All headstages communicate with the ONIX host
board through a coaxial cable, carrying bidirectional communication originat-
ing from a ds90ub933 FPD-Link III serializer as well as power and feature a
MAX10 FPGA at their core. There are complex devices with a high density of
components requiring PCBs with tight tolerances, featuring a trace separation
of 0.05mm and buried and blind vias in a 8-layer stack-up.

Figure 4.11: RHD-based headstages mounted in drives for tetrode recording, 64 and 256
channel variants. Size comparison with a quarter US$ coin (24mm diameter)

Figure 4.11 shows the microwire and silicon headstages, mounted on drives for
tetrode acquisition, which make use of the smaller V81 FPGA packaging. The
whole assembly weights 3.65g in the case of the 64 channel variant, while the
256 version totals 12,5g. The bare PCBs for the headstages weights are 1.5g
and 4,7g respectively.

Functionality-wise, both variants include full 3D tracking capabilities using
a combination of SteamVR sensors and IMU devices as well as optical and
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electrical stimulation circuits. The main di�erence being the channel count
and more stimulation channels in the bigger device. Figure 4.12 shows a de-
tailed component description of the devices. The 256-channel headstage has
some circuitry that would allow it a certain degree of autonomy without the
need of a host for low-bandwidth operations, but actual development on those
capabilities is still pending.

A

B

Figure 4.12: Detailed component description of RHD-based headstages. A: 64-channel
version. B: 256-channel version.

The Neuropixels headstage allows the connection of two probes. Due to the
higher I/O needs of Neuropixels hardware, the bigger M153 package was used
for its FPGA. Contrary to the previously described headstages, it does not
contain stimulation circuitry. However, the headstage still retains 3D tracking
capabilities, trough both SteamVR and IMU devices.

Although not an ONIX headstage, Miniscope devices, integrated lightweight
head-mounted microscopes [114] are supported by the system and can be

60



4.3 Results and Discussion

Figure 4.13: Neuropixels headstage with one probe attached. Includes programming ex-
tensions that can be broken after production.

plugged using the same coaxial interfaces than the headstage, with pixel data
being enclosed into standard ONI data frames.

4.3.2.3 Breakout board

The ONIX host board (Figure 4.14) includes a port for analog and digital
I/O. To facilitate their use, a breakout, or connection board was designed. It
features direct access to all 12 analog channels through BNC and SMA coaxial
connectors. 16 digital lines are provided, 8 input and 8 output, their values
communicated to the host board through a high-speed di�erential interface.
This communication channel is also used to provide user signaling through the
use of user-con�gurable buttons on the breakout board. Finally, to facilitate
cable management, it can connect to the coaxial ports on the ONIX host so
headstages and external clocks can be connected to the breakout board instead,
featuring radio frequency switches to safely isolate the coaxial ports if needed.

Figure 4.14: PCB layout of the breakout board
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4.3.3 Tethers and torque-free commutator

The use of a single coaxial cable between headstage and host system o�ers
numerous advantages over classical multi-wire tethers. Since a coaxial requires
a single �lament and its shielding, it can be made much more thinner and
lighter, helping to reduce strain on the animal. Connectors can also be smaller,
which reduces the center of mass and torque point on headstages, as shown in
Figure 4.15. Cable width is only limited by the electrical resistance it provides
to power transmission. In the case of the ONIX headstages, a coaxial cable
of 0.4mm in diameter has been successfully tested for up to 2m, while 0.8mm
work for lengths exceeding 10m, resulting in thing and lightweight tethers.
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Figure 4.15: Comparison between di�erent Open Ephys classic and ONIX headstages.
Red circle represents the center of mass. Blue arrow the approximate point at which tethers
become �exible.

Another advantage of coaxial wiring is the availability and reliability of rotary
commutators. While those designed for multi-wire cables are complex mech-
anisms, the radial nature of coaxial cables allows more robust construction,
by replacing spring-loaded brushes by ball bearing or liquid metal contacts.
Commercial commutators for coaxial, designed for high frequency operations,
are widely available.

The ONIX system includes such a commutator with an added advantage.
Thanks to the 3D tracking capabilities of the headstages, their position and
orientation are always known. This allows to motorize the commutator, mak-
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ing it pro-actively follow the animal movements, as depicted in Figure 4.16,
instead of turning mechanically by the tether torque as is the case with regular
commutators, thus reducing strain on the animal head. An active commutator
also facilitates wiring management. Since no mechanical force stemming from
the animal is needed, long cables can be kept out of their reach by tying them
up with elastic strings, allowing the tether to be kept high when the animal
is near the commutator and extend when it moves outward. This also negates
the e�ect of wiring weight on the animal, reducing strain even further.

Figure 4.16: Commutator actively following headstage orientation.

This torque-canceling e�ect, coupled with the low-weight headstages described
in section 4.3.2.2 makes the system suitable for long-running experiments fea-
turing freely-moving animals, as it does not hinder movement or supposes a
signi�cant hurdle even to mice (Figure 4.17).
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Figure 4.17: The combination of lightweight headstage and force-canceling active commu-
tator allows for little to no strain in mice, allowing for free range of movement.

A experiment was performed to demonstrate the e�ect of headstage weight and
tether torque on animal behavior, shown in Figure 4.18. A 3D environment was
constructed and a mouse with no previous experience with this space was left
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to explore. The paths traversed by the animal during its exploratory behavior
were precisely followed using a computer vision tracking system. Four di�er-
ent trials of 2 hours were recorded, alternating torque-free ONIX headstages
and standard Intan headstages using a passive commutator, to avoid any bias
caused by exhaustion or familiarity. A separate, 4-hour trial was performed by
a non-implanted animal, acting as a control path for naturalistic behavior.

This experiment shows clearly distinct behavior patterns. Exploratory paths
with a standard headstage are shorter, with the animal favoring being immobile
in speci�c areas and avoiding those requiring high jumps. Behavior with the
ONIX system, however, is more regular across all the available space, closely
resembling the path distribution followed by the control trial with no implant.

Figure 4.18: Di�erence in exploratory behavior in mice using standard and ONIX head-
stages during 2-hour trials. A: Experimental setup and calibration. B: Video-tracked mouse
with a standard, Intan headstage. C: Video-tracked mouse with a torque-free ONIX head-
stage. D: Exploratory paths during four 2-hour trials alternating standard headstages, in
pink and yellow, and torque-free ONIX headstages, in blue and orange. E: Control ex-
ploratory path during a 4-hour trial with no implant.
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4.3.4 ONIX �rmware

The ONIX �rmware, coded mostly in VHDL, can be divided in two big blocks.
The Hub, or remote side, implemented in the MAX10 FPGAs present in the
headstages, and the host side, running in the Kintex-7 device present in the
host board, directly plugged to the PC. Data is transferred between both parts
through a logic interface using the FPD-Link III serializer/deserializer devices.
Figure 4.19 shows an overview of the �rmware for one example link.
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Figure 4.19: Block overview of the ONIX �rmware. Green boxes represent physical hard-
ware, gray blocks handling data from devices to the computer and blue both bidirectional
data or data from the computer to the devices.

4.3.4.1 Hub �rmware

The hub �rmware, running in ONIX headstages, has four functions:

1. Control and acquire data from sensor devices

2. Control and drive stimulation and actuator devices

3. Multiplex sensor data for serializer transmission

4. Receive and route command and con�guration data to the devices
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The �rmware is designed to be modular, so di�erent device combinations can
be easily achieved. All the �rmware functions run concurrently, while devices
might be running asynchronously, potentially even with di�erent clocks. The
�rmware synchronizes and multiplexes all the data for transmission over the
ONI streams.

To achieve this, each device has an interface module in the �rmware in charge
of controlling the device, which can be in its own clock domain. The interface is
comprised of two main parts: one dedicated to streaming data from the device
and other for control registers. Devices on an external ONIX hub do not feature
a high-speed output stream, one of the optional features on the ONI standard.
This is due to a limitation the FPD-Link III transceivers used in the ONIX
system, which have only one high-speed channel, used for the acquisition data
stream, and a low-speed bidirectional channel, for control signals. All device
interface modules export a compound signal with the required values for its
entry on the global device table:

■ Hardware identi�er

■ Implementation version

■ Sample size, including timestamp

■ Write data size. As mentioned before, this value is 0 for hub devices
connected through a FPD-Link III interface.

The data stream path starts with a driver module inside the device interface
reading and decoding data from the sensor. Although device data can be of
varied size, for consistency it is packed in multiples of 16-bit words in what are
called samples. A sample is always comprised of:

■ A 64-bit timestamp generated by the local clock

■ The sample data

The next step in the data path is a FIFO bu�er. This serves a triple function:
First, it allows data to be stored while waiting to be transmitted. Second, if the
device interface uses a di�erent clock from the core section, a dual-port FIFO
helps crossing the data between domains safely. And third, since the serializer
chip has a 12-bit interface, the FIFO has asymmetrical ports, performing 16
to 12 bit conversion. Due to this conversion, every three 16-bit written words
require 4 read cycles to be fully read.
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Data from all device FIFOs is gathered in a communication multiplexer, in
charge of data transmission over the high-speed channel of the serializer. This
includes both device data and the device map. After a reset, the module
proceeds to send the number of devices on the hub followed by the map entry
for each one. After the device map is completed, the multiplexer enters monitor
mode, waiting until there is at least one sample worth of data on any of the
FIFOs and then sending their contents following the protocol described in
section 4.3.4.3. The module sends data blocks from di�erent devices in a
round-robin schedule.

Control data is provided by a bidirectional register interface accessed through
a simpli�ed version of the Wishbone bus. It is a master-slave bus topology
whose chronogram can be seen in Figure 4.20. Its signals are:

■ Master signals:

� cyc: (1 bit) Signals start of a transaction.

� idx: (32 bits) Indicates the target device. The higher 16 bits are
reserved, the following 8 bits represent the hub, and the lower 8 bits
the device index within the hub.

� addr: (32 bits) Indicates the target register address. Only the lower
16 bits are used.

� we: (1 bit) 0 indicates a read operation. 1 indicates a write opera-
tion.

� val: (32 bits) Data for writing operations.

■ Slave signals:

� val: (32 bits) Data returned in read operations.

� ack: (1 bit) Signals the end of a transaction.

� err: (1 bit) Asserted at the same time as ack, indicates an error on
the transaction.

Devices act as slaves, with their bus ports connected into a demultiplexer
that routes its input to the appropriate device based on the idx �eld. Bus
commands from the host to the hubs are encapsulated using a bus over I2C
protocol described in detail in section 4.3.4.3. A module connected to the I2C
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Figure 4.20: Chronographs of the bus protocol for successful operations. For unsuccessful
operations, err will assert at the same time as ack. A: Read operation. B: Write operation

port of the serializer decodes the commands and drives the bus demultiplexer
input as the local bus master.

GPIOs are also used as control signals. Speci�cally, one of the lines available
in the serializer is used to transmit a reset signal from the host, while other
lines can be used for stimulation triggers, as they are faster to issue than I2C
commands.

4.3.4.2 Host �rmware

Similarly to the hubs, the host contains a main data path for high speed
data and a bus-based control path. It acts as a bridge between the protocols
transmitting data through the coaxial link and the protocols and data formats
described on the ONI speci�cation for communication with a computer.

The host data path stems from the deserializer interface, which receives raw
data from the hub through the FPD-Link III connection. A communication
demultiplexer receives the data, decodes it and �lls a FIFO bu�er for each
device. These FIFOs serve as means to transfer data from the deserializer
clock domain to the host clock domain, as well as to store data waiting to be
sent to the computer. This is similar to the case of the hub and, in fact, from
the host point of view, the communication demultiplexer acts as a local copy
of the remote hub. This demultiplexer also receives, after reset, the complete
device map and exposes it to the host through the signal channel, as described
on the ONI speci�cation. Multiple demultiplexers allow for multiple ports, each
creating its own virtual hub in the host, re�ecting the connected headstages.

A high speed input controller monitors the FIFOs until any of them has a full
sample worth of data. Once this happens, it reads the full contents, packs it
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into a ONI frame and sends it through the input channel to the computer. If
multiple devices have data at the same time, the input controller sends one
frame from each device in a round-robin manner. As explained in section 4.3.1,
a frame has the following structure:

■ A 64-bit timestamp, created by the host hardware, representing the mo-
ment the data arrived to it.

■ A 32-bit value with the identi�er of the origin or destination device
■ A 32-bit value with the size of the payload
■ The sample data

The host timestamp is created by the input controlled based on the host clock.
This allows all samples from di�erent devices to be timestamped by a local
counter, simplifying synchronization procedures.

The ONI register map is interpreted by a module connected to the con�gu-
ration channel. It manages all global states, such as acquisition start/stop or
reset requests from the computer software. Device register interface commands
are translated into bus transaction, with the con�guration block acting as the
main master of the bus structure. The module is connected to a demultiplexer
that routes transactions to the appropriate hub, based on the provided de-
vice identi�cator. Each hub port, with its communication demultiplexer, also
features a bus over i2c controller that translates the bus requests and sends
them through the coaxial link so they can reach the appropriate device on the
remote hub.

Following the ONI speci�cation, the result of device register access is noti�ed
to the computer through the signal channel. A signal controller reads the
status from the con�guration block and generates the appropriate responses.
This signal block is also responsible for gathering the device maps from all
hubs and sending a consolidated full map after a reset procedure.

Finally, the host �rmware also contains a local hub. This is, following the
de�nition, a collection of devices located on the host board, or virtual ones
implemented within the �rmware. Some of such devices are:

■ A heartbeat device implemented in �rmware which produces a simple
timestamp every �xed period of time.

■ The device in charge of communicating with the breakout board and
accessing the digital I/Os.

■ A device able to drive the host board ADCs and DACs to make use of
the analog I/Os.
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■ Devices connected to the communication demultiplexer to report the
physical status of the links as well as any communication errors.

As with the virtual hubs, the local hub is connected to the input controller
with a series of FIFO bu�ers, one per device. Similarly, the control logic os the
devices is connected to the bus network with the same demultiplexer structure.
The only di�erence, from an architectural point of view, between the local hub
and the remote ones is that the former has access to the high speed output
channel driven by the computer. This is used in the I/O devices.

Communication with the computer is done through the PCIe bus using the
RIFFA framework. Four di�erent endpoints were created, one per ONI stream.
A wrapper module translates the RIFFA-speci�c protocol into ONI signaling,
which is performed through the use of FIFOs, except for the con�guration
channel, for which a register interface was developed.

4.3.4.3 Link protocols

Since the FPD-Link III devices are designed for their use with video sensors,
which produce a constant rate of pixels, they do not o�er ways to delimit valid
data. A framing protocol was devised to ensure data transmission, shown in
Figure 4.21. The H- and V-Sync signals are used to delimit the start and end
of a valid transmission. Block of data sent from a device FIFOs starts with
a header containing the device index in the hub, is followed by sample data
and ends with a checksum to detect possible communication errors. The device
map that is sent after reset follows a similar structure but with no device index,
sending the number of devices, the map entry for each one and a checksum
of the whole map. An invalid checksum on device map will disable the entire
hub. The serializer pixel clock is driven by the hub communication multiplexer,
usually at the same rate as the hub clock.

pclk

hsync

vsync

data ID data CRC

Figure 4.21: Communication protocol between serializer and deserializer.

While the ONIX devices operate under a complex bus structure, able to access
any register from any device on all hubs, the serializer/deserializer link only
o�ers a I2C bus as bidirectional communication. Moreover, due to how the
link devices work, the number of accessible addresses is low, not enough for
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the amount of devices present in some hubs. To work around these restrictions,
a bus over I2C protocol was developed.

With this encapsulation protocol, all I2C requests are directed towards a single
device address, which corresponds to the I2C transceiver programmed into the
hub �rmware. Instead of performing traditional I2C transactions, the master
device in the host and the slave in the hub make alternative use of the regis-
ter address and data parts of a transaction to send a series of commands to
perform bus writes or reads, as shown in Figure 4.22. Using those �elds, full
information such as target device id and register address can be sent to initiate
a transaction. Since bus transactions are not atomic, but can include waiting
cycles until they are completed, a status polling mechanism is integrated into
the encapsulation protocol. While �exible and able to address all the device
map, the downside of this method is speed, since it adds a considerable over-
head over the already slow I2C protocol.

A r/w write read

addr WriteRQ AddrH Data Data Status Status Status

m_data DevIDX AddrL Data Data

s_data Busy Busy Done

B r/w write read write read

addr ReadRQ AddrH Status Status Status Read0 Read1 Read2 Read3 Read4 Status

m_data DevIDX AddrL DevIDX

s_data Busy Busy Done Data Data Data Data Done

Figure 4.22: Simpli�ed chronograms of the bus over I2C. A: Write operation. B: Read
operation.

4.3.5 Acquisition performance

Performance of any acquisition system is measured in bandwidth, indicating
the amount of data it can acquire per second, and latency, which measures the
time between an actual event and the ability to act on it.

The maximum bandwidth allowed by the x4 PCIe Gen2 interface is 2GB/s.
However, the ONIX system operates under a 250MHz clock, with 16-bit for
device data and 32-bit for the main, aggregated bus. This yields a maximum
theoretical bandwidth of 500MHz per device, or 1GHz total.

Data transfer is not realized continuously, but in blocks, with each individual
transfer operation featuring a small overhead. As such, bigger block size in-
creases actual bandwidth by reducing overheads, at the cost of increased data
latency. Figure 4.23 shows measured bandwidth using a load-testing device
integrated in the host �rmware. With a 8KB block size the measurements are
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close to saturate the 500MHz limit of a single device. With a block size of
16KB, the 1GB/s limit of the host system is achieved.
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Figure 4.23: Measured bandwidth from data generated in a test device in relation with
transfer block size.

While latency, measured in time, is related to block size, its actual impact
is dependent on the data origin. This e�ect is more detrimental for devices
generating small loads at high frequencies, which are rarely the case in neu-
roscience, as opposed to big sample sizes at the KHz range. For example, a
8192-byte block size would introduce a latency of 1024 samples on a simple,
8-byte timestamping device. However, for the case of 4 neuropixel probes,
which a sample size of 480bytes each, a 8192-byte block transfer would imply
a latency of less than 5 samples.

Although total latency is dependent on block size, there is a �xed, minimum
latency associated to the processes of transfer initiation. For the ONIX system,
transmission latency was measured with the smallest block size and a simple
C program responding to a digital event. Under these conditions, 150µs of
maximum transmission latency were measured.

4.3.6 3D Tracking

The headstages were able to track animals with millimetric precision. A 3D
experimental environment, shown in Figure 4.24 was made, in which a mouse
could move freely. The mouse was implanted with the 64-channel headstage
connected through the active commutator. A 8-hour experiment was con-
ducted, in which position ans electrophysiology data was continuously ac-
quired. Figure 4.25 shows accumulated occupancy heat maps at di�erent points
in time.
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A B

Figure 4.24: 3D environment created for experimentation. A: Full structure. B: mouse
inside the environment.

Figure 4.25: Occupancy heat map over 8 hours.

4.4 Conclusions

The ONI speci�cation was designed to facilitate access to a diverse range of
acquisition devices working asynchronously, independently of the data nature
and the sampling speed. By de�ning a series of streams with a standardized
frame structure, any ONI-Compliant hardware can communicate with ONI-
based software no matter the kind of devices it exposes. Thanks to the libONI
library, created to take care of the low-level communication interfaces, an ap-
plication only has to de�ne functions treating the speci�c device data it needs
to handle.

An electrophysiology acquisition hardware based on the ONI speci�cation, the
ONIX system, was created. It was designed to improve upon the limitations
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traditional electrophysiology hardware su�er in regards of animal movement
and closed-loop experiments.

The system is composed of a host board and di�erent headstages. The host is
connected to the acquisition computer via the PCIe bus, allowing high band-
width transfer with low latencies. The maximum bandwidth of the system is
1GB/s while minimal closed-loop latency has been measured as 150µs. This
allows its use for closed-loop experiments requiring sub-ms reaction, such as
those based on �ring spikes.

Headstages are connected through a single, thin coaxial cable, of less than
0.8mm in diameter, resulting in lightweight tethers. This interface has been
designed to work with di�erent device con�gurations. Two headstages were
built, one featuring 64 channel neural acquisition and optical and electrical
stimulation capabilities and another for Neuropixels probes, supporting up to
two of them. Both headstages feature full 3D tracking using VR technology
with sub-mm precision.

Thanks to the tracking capabilities of the headstage, an active commutator
was developed, able to follow the movements of the experimental animals,
completely removing torque, thus easing free movement in the animals.
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Wireless electrophysiology
compression

Wireless systems are limited by energy requirements. Data bandwidth
is directly related with transmission power, one of the biggest contribu-
tors to total energy consumption. This chapter presents a lossless digital
compression algorithm for electrophysiological signals. It requires negligi-
ble extra power, reducing energy needs on wireless systems. The algorithm
is designed to be device-agnostic and require little hardware resources, en-
abling its use in a wide variety of acquisition devices, with a specialized
transmission protocol enabling data integrity in wireless systems suscepti-
ble to packet loses. A hardware prototype was created using this algorithm
to demonstrate its e�ect on power consumption.
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5.1 Introduction

Studies combining electrophysiology and behavior have provided insights on
topics such as spatial navigation [65], [120], [121], memory formation [70],
[122] and decision making [68], to cite some examples.

However, electrophysiological studies in behaving animals have been tradi-
tionally performed in well-controlled but severely constrained laboratory con-
ditions, in relatively reduced size arenas or task apparatus and involving a
limited, and often arti�cial (i.e. pressing a lever bar), repertoire of behaviors.
Therefore, more natural and elaborated experimental conditions in ecologically
meaningful contexts are required [91].

The need for open and meaningful spaces con�icts with the tethered nature
of most electrophysiology systems, as the physical connection between the
implanted electrodes and the recording equipment introduces mobility and
distance restrictions. While this does not pose an issue for small spaces and
simple maze topologies [31], [67], [69], [70], [121], [123] it entails di�culties for
large arenas with enriched environments and social experiments with complex
interactions [112].

While some approaches, like reducing cable weights or remove torque (see
Chapter 4) can alleviate some issues, obstacles still remain. Wiring limits the
maximum distance the experimental subjects are able to travel, make them
unable to access enclosed areas such as burrows, can become tangled with en-
vironmental objects or be damaged by animal action. To solve these shortcom-
ings, developments have been made towards wireless electrophysiology systems
[93], [124].

5.1.1 Wireless electrophysiology devices

There exist two main approaches to wireless acquisition system: dataloggers
and radio transmission. Both incorporate the same elements as a digital elec-
trophysiology headstage, from the analog ampli�ers to the ADCs, but di�er in
the treatment of the digital data.

Dataloggers are autonomous devices featuring a local, non-volatile storage
medium, such as �ash memory. Data is acquired and immediately stored.
Data retrieval is done after the intended experiment has ended, by physically
accessing the device and downloading the storage contents into a computer for
its posterior analysis. Due to their full autonomous nature, they are specially
suited for areas in which other approaches are not feasible, such as birds in
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�ight [125] or, by being possible to fully isolate the electronics, freely-moving
�sh [126].

The major disadvantage of dataloggers is its retrospective nature. Data can
only be accessed after the experiment has run its course and cannot be moni-
tored online. Any possible issue is only apparent after data retrieval, prevent-
ing any possible �x during the experiment itself. Moreover, the lack of online
data makes it possible to perform any closed-loop experiment based on data
acquired by the device.

Devices using radiofrequency links are able to transmit data to a remote re-
ceiver in real-time. Multiple methods exist for encoding and sending data
through a radio stream. Analog neural data can be modulated, with multiple
channels merged via time multiplexing, and sent over a carrier frequency [127],
[128]. While an analog transmitter requires less energy [127], analog signals
are more susceptible than digital signaling and the absence of an arbitration
protocol prevents multiple devices sharing the same frequencies.

Digital transmission can be as simple as their analog counterpart, just modu-
lating the ADC output instead of the raw analog signals [93], which alone adds
noise resistance to the transmission. However, more complex protocols can be
used that add synchronization and arbitration features, as well a bidirectional
control [129]. Some examples of widespread digital protocols are Bluetooth
[130], a low power protocol designed for data rates up to 2Mbit/s, Bluetooth
Low-Energy [131], a slightly slower (up to 1.37Mbit/s) version with reduced
power needs or WiFi 802.11b/g [132], a high-speed protocol with data rates of
up to 54Mbit/s and advanced arbitration capabilities, but with higher power
requirements. Some projects have developed a custom protocol, being able to
�ne-tune the power-performance trade-o� [133].

Power is the main bottleneck of wireless devices, limiting data rates and de-
vice operating life. Batteries are the most common power source, followed by
radiofrequency power transmission [134], [135]. Other alternative sources have
been researched [136], although the energy they can provide is far lower. Some
examples are deriving power from light [137], [138], using kinetic energy from
the animal movement [139], body heat [140], or even chemically from the blood
[141].

Lowering power consumption allows for longer operational time, increased data
rates and reduced battery weights. As such, minimizing power requirements
is a goal for every wireless device. In the case of radiofrequency systems, the
power bottleneck is derived by the power needs of high-bandwidth data trans-
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mission [130]. Di�erent approaches exist to reduce energy consumption in these
devices. For example, developing the core hardware as a custom-made ASIC
can help by developing electronics highly optimized for the task [93], [127] at
the expense of increased development and production costs. Another line of
improvement, since the bulk of power requirements stem from radiofrequency
transmission, is the development of specialized protocols which can yield im-
provements over generalist, commercial ones [142]. Research is also being made
in �elds like antenna optimization [143], [144], to further reduce power needs
of radiofrequency signals, as well as optimize wireless power transmission.

A di�erent approach, compatible with the previous ones, and applicable to
both data loggers and radiofrequency transmission, is to reduce the bandwidth
needs of the data. A neural recording including fast activity transients, like
spikes, require a sampling rate of at least 20KS/s [27], [145]. This combined
with multichannel acquisition, typical on modern high-density electrophysi-
ology recordings, results in bandwidths of tens of megabits per second [144].
Compression techniques can be used to reduce bandwidth needs which, in turn,
decreases the power consumption of the wireless transmitter.

5.1.2 Data compression methods

Data compression algorithms decrease the size of a dataset by �nding redun-
dant components of the signals in a particular domain and removing them. All
compression method fall into one of two categories: lossless or lossy algorithms
[146]. The former produce, once decompressed, a signal identical to the one
being compressed. Lossy methods eliminates not only pure redundant data
but other components as well. As such, compression rate is higher than their
lossless counterparts but introduce distortions in the signal. As long as the
errors introduced by a particular method are below the margin desired by the
application, lossy methods are a powerful alternative.

Basic compression methods, which then an algorithm can mix, are based on
the following principles [146]:

■ Domain transformation: By transposing the signal from the time do-
main to a transformed domain through operations such as the Discrete
Cosine Transform (DCT) or Fast Fourier Transform (FFT), components
in this domain might be sparser, with zero elements that can be removed,
thus decreasing signal size. If only zero components are eliminated, then
the compression is lossless. However, small components can also be re-
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moved, introducing small errors in the signal, for a lossy method with
better compression ratio. [147], [148].

■ Run-length encoding: This is a lossless method that works by replac-
ing repetitions of a symbol, or a sequence of them, by a single occurrence
followed by the number of repetitions. Its performance is dependent on
the sequence redundancy of the dataset [149].

■ Entropy coding: Another lossless method that uses variable bit coding
to encode di�erent symbols. These methods require sets in which some
symbols appear more frequently than others. In this case, symbols with
higher probability can be coded with less bits than the less frequent ones,
resulting in reduced overall data size. [150]

■ Compressed sensing: Although sharing similarities to domain transfor-
mations, compressed sensing is a recent lossy method based on sampling
a signal below the Nyquist frequency, thus reducing the data size [151].
To do so, the signal must be sparse in some transformed domain and be
sampled at an irregular interval, incoherent with the signal itself. Data
reconstruction involves a complex mathematical operation. [152], [153].

Compressed sensing has gained popularity in recent years thanks to its asym-
metric nature with the computational bulk moved to the decompression stage,
resulting in a negligible amount of complexity and power consumption on com-
pression. This makes compressed sensing a very good candidate for wireless
acquisition devices [154]�[156]. However, its lossy nature limits the range of
experiments in which it might be applicable. Moreover, both its compression
e�ciency and signal distortion is a�ected by acquisition noise [157].

Domain transform algorithms, such as wavelet compression [113] can yield ex-
cellent compression ratios, but require circuitry capable of handling advanced
mathematical operations. This translates in higher power needs, thus defeat-
ing the usefulness of compression as a power-saving technique. On the other
hand, algorithms with lesser computational requirements are often used on
only a particular part of the signal spectrum. For example, lower-frequency
LFPs tend to have high inter-channel redundancy, making high compression
ratios with simple techniques possible [158]. High-frequency spikes, in contrast,
are sparse events, so it is possible to use spike-detection algorithms and only
perform compression for the discrete, individual events [154]. Both techniques
can be combined, compressing and sending both LFPs and spikes separately
by the same device [156]. These approaches, however, are not able to provide
a complete, continuous view of the entire acquired signal.
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5.1.3 Objectives

This chapter describes a compression algorithm for brain electrophysiology ,
able to reduce bandwidth and, by extension, transmission power requirements,
along with a novel hardware implementation.

Its main requirements are:

■ Has to be functionally lossless. Noise is permitted as long as it is below
the natural noise margin of the acquisition device.

■ Must not require specialized circuitry. Hardware requirements and power
usage must be kept at a minimum.

■ Must be device-agnostic. It must not be tied to a speci�c device or
technology.

■ Its compression ratio on electrophysiology data must be enough to cause
a noticeable decrease in transmission-related power consumption in the
case of wireless transmission.

■ Has to be �exible, adaptable to multiple sample rates and channel counts.

In addition to the algorithm, a hardware prototype implementing it was de-
veloped and built to test compression and power performance.

5.2 Materials

This section describes materials used in both the research and design of the
compression algorithm as well as in the development and construction of the
hardware prototype. Figures 5.8 and 5.11 of the Results section can be used
as reference of the usage of each item described in this section.

5.2.1 Hu�man Coding

Hu�man coding is an entropy-based method to encode information devised
in 1952 by David Hu�man [159]. The basic precept behind Hu�man coding
is that, in any set of symbols, the appearance frequency of every di�erent
symbol might not be the same. Under that case, a usual �xed-length coding
is highly redundant, as de�ned by Shannon's theorems [160] and, thus, not
optimal. Hu�man coding, instead, codes each symbol with a di�erent bit
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length, depending on their appearance frequency. This way, symbols that
appear more frequently are coded with fewer bits than less frequent symbols,
reducing the overall bit size of the set. A natural consequence of this encoding
is that compression rates are higher when symbols follow a steep distribution,
i.e., a few subset symbols conform the majority of the set, while �at symbol
distributions result in low compression rates.

The unique relationship between each symbol in a dataset and its variable-
length code is referred as a dictionary. For any given set of symbol, an optimal
dictionary exists that minimizes the size of the coded set. Hu�man coding
proposes an algorithm to create such a dictionary in the form of a binary tree,
with each symbol in its end points, or leafs, and each left or right branch
representing a binary 0 or 1. The algorithm constructs each node to create the
full tree in the following way:

1. Create a list containing one node for each symbol, including its appear-
ance probability.

2. Sort the list based on the nodes probability �eld of each node.

3. Retrieve and remove from the list the two nodes with lower probability.

4. Create an intermediate node with. Connect the two retrieved nodes as
children, left branch being the node with lower probability.

5. Update the probability of the intermediate node to be the sum of the
probabilities of its two children nodes.

6. Insert the new node into the list.

7. As long as there are two or more nodes, repeat from step 2.

Figure 5.1 shows an example of a dictionary created from a simple dataset with
2-bit symbols, including the binary tree representation. For this example, a
dataset of size Ldset would take 2Ldset bits of memory space, while the Hu�man-
coded version, with each symbol having a probability Psymbol and a coded width
of Wsymbol would take Ldset

∑
PsymbolWsymbol = 1.7Ldset.

The binary tree format makes it trivial for decoding Hu�man-coded data into
their original symbols, as it is only a matter of traversing the tree depending
on each received bit until reaching a leaf node. Coding data, which involves
backwards-traversing the tree adds a level of di�culty, involving either search-
ing the full tree or creating a parallel index. The latest option being the fastest.
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Figure 5.1: Dictionary creation example. A: �xed 2-bit symbols to compress, their prob-
abilities and the resulting variable-length code. B: Binary tree representation. Top value in
each node represents a target symbol, or dash for intermediate node. Bottom value repre-
sents node probability. Bit values on arrows represent code creation.

Creating an optimal dictionary requires previous knowledge of the full dataset
in order to compute the appearance probabilities of each symbol. This is
not possible for streaming data that must be encoded in real time. In this
case, a dictionary can be created with a sample data set approximating the
symbol distribution expected in the online data, with better results the closer
this approximation is to the actual symbol appearance rate. In this case the
optimal size ratio provided by the dictionary represents an average result.

Due to the variable nature of Hu�man coding, dictionary size for encoding,
including a quick search index, can vary depending on the datasets and the
resulting codes, with a maximum possible size of 22n bits, for a collection of
n bits symbols [161]. Di�erent algorithms exist to reduce this size. Some
force a maximum code length [162] which reduces the algorithm e�ciency.
Others work by rearranging the dictionary after it has been created [161],
which requires it to be known in advance to measure the memory needed.

The algorithm designed on this work is based on [163], which minimizes dic-
tionary size while ensuring only the word width of the dataset has e�ect on
said size, and without limiting code length. Using this algorithm, a collection
of n bit symbols requires 2n+1 bits of memory, as shown in Figure 5.2
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Figure 5.2: Dictionary size needed by the selected variation of the Hu�man algorithm [163]
for datasets of word lengths of 1 to 16 bit

5.2.2 Delta compression

Delta compression, or delta encoding, is a very simple method in which each
symbol is represented with the di�erence with the preceding one, i.e, yi =
xi−xi−1. Decoding can be done by cumulative addition of the received values
xi = xi−1 + yi =

∑i
n=0 yn.

This coding is specially suitable for signals that follow a smooth progression,
with high-frequency components having low amplitude, such as those of biolog-
ical origin [164]. For signals with these characteristics, the resulting di�erence
vector y = ∆x is composed of a majority of low values which can be encoded
with fewer bits, as opposed to the more even symbol distribution that the raw
signals have.

5.2.3 Low-power FPGA

An ultra-low-power FPGA with a small footprint was used. The selected device
is the AGLN250 IGLOO nano FPGA (Microsemi, Alto Viejo, CA, USA) [165].

The IGLOO family of FPGAs di�er from other devices in the way their con�g-
uration is loaded. The bit�le is stored in an internal FLASH memory, similar
to other devices such as the MAX10. The di�erence lies in that these devices
have storage �ash memory as a single block. As any regular FPGA, they need
to load the bit�le from it into its internal registers and use power to keep its
con�guration. IGLOO devices, however, feature their �ash distributed through
the chip, being an integral part of its logic elements. As such, there is no need
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to initialize the FPGA or maintain a loaded con�guration, as the bit�le storage
itself is integral part of the con�guration logic.

IGLOO devices are designed for low power in mind, with the nano subfam-
ily being the ones with lower power and smallest footprints. The trade-o� is
reduced availability of hardware resources, far inferior than other commercial
FPGAs. IGLOO nano devices lack advanced hardware resources, such a di�er-
ential I/Os, DSP or multiplier units. Logic resources are also reduced, with the
selected AGLN250 device featuring 3000 IGLOO Logic Elements and 36Kbit
of RAM.

Two di�erent packagings were considered for this project. The AGLN250
VQG100 with a 14x14mm footprint with a 0.5mm-pitch Quad Flat Pack for-
mat, i.e.: external pins in all four sides of the die, and 68 I/O pins was used
on the prototype. A smaller package, AGLN250 CSG81 of 5x5mm is avail-
able, with 60 I/O pins and a 0.5mm-pitch Ball Grid Array connection format.
This package requires high-density PCBs with small trace separations and
blind microvias, which make it unsuitable for prototyping. Another di�erence
considered is that the VQG100 variant features a very low power, optimized
internal con�gurable clock generation circuit, while the CSG81 would either be
locked to the main clock or require an external con�gurable generator which
adds another IC to the footprint.

5.2.4 Wireless processor

Wireless communication in the hardware prototype was performed through the
WiFi IEEE 802.11g protocol. Although several studies have demonstrated how
custom protocols can o�er very e�cient wireless transmission [133], [142] the
use of a standard, widely available protocol allows for an easy way of testing the
e�ciency of the compression algorithm without adding any external bandwidth
constraints. Moreover, the wide availability of commercial devices for both
transmission and reception as well as the interference protection features of
the protocol make it a perfect candidate for prototype building.

The major downside of the protocol in the context of this work is that it is
not natively designed for low power applications. However, commercial devices
exist that reduce the power requirements to a minimum and are able to operate
on batteries. While the 802.11g protocol has little provision for reducing its
power levels in relation to the required bandwidth, these devices can send data
in bursts at full speed and power down the transmitter circuitry when not in
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use. This means that a reduced data rate, as achieved by compression, still
translates as lower power usage even with a non-optimal protocol.

A transceiver device with integrated network processor was used, speci�cally
the CC3320SF IC (Texas Instruments, Dallas, TX, USA) [166]. This device is
a System-on-Chip (SoC) embedding:

■ A wireless transceiver, with all the required analog circuitry.

■ An ARM-based network processor independently driving WiFi operation
and in charge of data transmission.

■ An ARM Cortex-M4 MCU for custom application programming, featur-
ing 256KB of RAM and up to 27 GPIO pins, some of which can act as
dedicated transceivers for buses such as I2C or SPI.

■ 1MB of �ash memory for the application program

The Cortex-M4 MCU can be programmed in C using Texas Instruments Code
Composer Studio. Access to the network processor is done trough an API
denominated SimpleLink, which o�ers functions for all required network op-
erations. The MCU features multiple DMA modules that are able to transfer
data quickly from and to the di�erent data buses and the network processor.

The wireless circuitry required an external antenna tuned to the speci�c pa-
rameters of IEEE 802.11g transmission. Texas Instruments provides, how-
ever, a assembled module with a built-in PCB planar antenna, denominated
CC3320MODASF, which is the �nal device used in the project.

5.2.5 Sample signals and acquisition hardware

The compression algorithm implementation was designed to be optimized,
both in performance and resource e�ciency, for brain electrophysiology sig-
nals. Since di�erent devices have unique properties that can a�ect the resulting
Hu�man dictionary, it is important that the same device is used for dictionary
creation and compression.

The device used during development is the Intan Technologies RHD2132 ac-
quisition chip, which o�ers a maximum rate of 30KS/s for 32 channels, with
a 16-bit output of 0.195µV resolution, 2.4µVrms input noise and a ±5mV in-
put range. These parameters a�ect algorithm tuning and Hu�man dictionary
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but not the algorithm design itself, so it can be tuned for other devices with
di�erent characteristics.

Sample data sets, acquired with the RHD IC, were used for di�erent devel-
opment and design stages. In particular, 10 minute recordings from the hip-
pocampus of two di�erent rats and a 5 minute recording from the visual cortex
of a third rat were provided by the Alicante Neuroscience Institute (San Jose
de Alicante, Alicante, Spain) and the Open Ephys project (Cambridge, MA,
USA), respectively. These sample datasets were used for the initial measure-
ments and design testing. A base dictionary was created from these signals as
well, after being processed by the modi�ed algorithm presented in this work.
(section 5.4.1 and 5.4.2).

To test algorithm performance on signals not related to dictionary creation,
data from two sets of animals was used. Five minute recordings from the re-
strosplenial cortex of �ve di�erent mice were provided by Jakob Voigts, from
Harnett lab, at Massachusetts Institute of Technology (Cambridge, MA, USA).
Canals lab, at Alicante Neuroscience Institute, provided data from an indepen-
dent experiment involving three long-evans rats implanted in the hippocampal
region. From these animals, 30 minutes of data was recorded daily for 4 con-
secutive days. Both these datasets were processed o�ine by the algorithm to
measure compression ratios.

5.2.6 Development hardware and software

5.2.6.1 Hardware

Development boards for both the wireless module and the FPGA were used.
These boards feature a version of the target device built with all the electronic
components needed for them to work. These boards also contain a variety of
switches or jumpers to select di�erent operation modes, monitor power con-
sumption or control optional features as well as connection pins to expose the
GPIO ports present in the device. Power is provided through USB connectors
and a programmer is embedded on the boards for ease of development. In
particular the CC32200SF-LAUNCHXL development kit (Figure 5.3.A) was
used for the network processor while a AGLN-NANO-KIT (Figure 5.3.B)) was
used for the FPGA.

For early development and testing stages, the designs were implemented on the
Open Ephys acquisition hardware. This device features a mid-range Spartan-6
FPGA (Xilinx, San Jose, CA, USA) and the RHD2132 acquisition chip. The

86



5.2 Materials

A B

Figure 5.3: Development boards. A: CC3220SF-LAUNCHXL. From Texas Instruments
(https://www.ti.com/tool/CC3220SF-LAUNCHXL). B: AGLN-NANO-KIT. From Microsemi
(https://www.microsemi.com/existing-parts/parts/144014).

con�guration �le normally running on the FPGA was replaced by a custom
version including the compression algorithm, running in the same manner it
would run in an IGLOO device, thus taking advantage of the existing acquisi-
tion and communication hardware present on the Open Ephys board.

5.2.6.2 Software

■ MATLAB (The MathWorks Inc. Massachusetts, USA) is a mathemat-
ical software featuring its own programming language. In addition of
o�ering the possibility of writing custom functions, it features built-in for
common processing and �ltering operations, o�ering good performance
in treatment of big data matrices. This software was used for researching
the mathematical aspects of the algorithm prior to its implementation,
as well as all the result analysis.

■ Visual Studio (Microsoft, Redmond, WA, USA) is a IDE for C/C++
and .NET applications. It was used for the creation of a software model.

■ Libero SoC (Microsemi, Alto Viejo, CA, USA) is the design suite for
IGLOO FPGAs, required to create the bit�les for the devices from HDL
code such as VHDL or Verilog and upload it into the IGLOO embedded
�ash memory. Was used to develop the HDL modules and to program
the prototype.

■ ModelSim (Siemens EDA, Plano, TX, USA) is a HDL simulation soft-
ware able to inspect designs in detail. It was used to test the developed
modules, debug them and compare the results to the software model.
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■ Xilinx ISE (Xilinx, San José, CA, USA) is the design suite for Spartan-
6 FPGAs, required to create the bit�les to con�gure these devices. Was
used to build the HDL design in a way compatible with the Open Ephys
System.

■ EAGLE (Autodesk, San Rafael, CA, USA) is a electronic design suite
including schematic and PCB design. It was used to develop the hardware
prototype.

■ Open Ephys GUI is the graphical interface of the Open Ephys acquisi-
tion system. It was used in the in vivo experiments to acquire data, show
it on screen and record it to disk. Two plugins were created for it able to
receive compressed data streams and uncompress them in real time: one
that drove the Open Ephys board modi�ed to perform acquisition and
compression and another able to receive compressed neural data through
a network interface, for use with the wireless prototype.

5.3 Methods

5.3.1 Software model

The �rst design step was done in MATLAB, in which a mathematical model of
the algorithm was tested to verify its viability, using standard functions built
in into the software.

Once the algorithm was deemed viable, a software model in C++ was devel-
oped using Visual Studio. This model was created programming the exact
same algorithm that would be later implemented in hardware and was used as
a reference for the latter. A collection of software utilities were created:

■ A program to read a collection of data and create a modi�ed Hu�man
dictionary from it, following the requirements of the compression algo-
rithm.

■ A compression program, able to read a multichannel dataset and compress
it. The compressed �le it creates has a identical format as a compressed
data stream generated by the hardware.

■ A decompression program, able to read a compressed data �le and recon-
struct the original multichannel �le.
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■ A decompression program, similar to the previous one, but handling
framed data blocks (as described on section 5.4.5) instead of a raw com-
pressed stream

■ Created during the hardware development phase: A utility to convert the
Hu�man dictionary into a format �t for the FPGA design.

Using this model, the base dictionary using the sample datasets was created.
The model allowed for quickly adjustment of some parameters in the compres-
sion algorithm to optimize performance. Since the compressed data created
by the hardware algorithm is identical as the one produced by the software
model, it was used to perform performance measurements on o�ine data.

5.3.2 Hardware design and validation

A full hardware design, able to acquire from the RHD IC, compress the data
and send it to the wireless processor was created in Verilog Hardware De-
scription Language (HDL). Using simulation software, signals from the sample
datasets were processed by this implementation, the resulting compressed data
saved to a �le and compared with the software model output, the design being
valid when both results matched.

A signal generator was also developed to be able to test the design on actual
hardware. Due to the limited resources available on the target FPGA, gener-
ated signals could only follow very simple patterns. The signal is a repeating
combination of two arithmetic series (Figure 5.4)

ai+1 = ai + i, a0 = 0

bi+1 = bi − i, b0 = a28−1

i ∈ [0, 28 − 1]

(5.1)

with an o�set in both value and time that could be di�erent per channel.
While the �at distribution of post-delta values on this signal is suboptimal
for Hu�man compression performance (see section 5.4.1), it allows to test the
algorithm with a rich range of values.

Results with this signal were generated with the software model, the simulated
implementation and in the �nal hardware prototype, which allowed to verify
the di�erent implementations.
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Figure 5.4: Generated synthetic signal for testing

5.3.3 In Vivo testing

Online compression with the HDL implementation of the algorithm was tested
in vivo with animals provided by the Alicante Institute of Neurosciences, where
the experiments were performed. The Open Ephys hardware was used for this,
which allowed for a full test of the algorithm in similar hardware before building
the �nal prototype. The device usual FPGA �rmware was completely replaced
by one created from the HDL modules developed for this project in their �nal
low-resource, low-power implementation, including acquiring from the RHD
chip and compressing the signal.

20-minute recordings were obtained from three di�erent animals using this
method, with the software doing online decompression of the signal. Both the
compressed and the decompressed signals were stored to disk for comparison.

5.4 Results

5.4.1 Compression algorithm

Neural compression is achieved in this work by the combination of both delta
and Hu�man encoding. Hu�man compression e�ciency depends on the dataset
featuring few symbols with much higher appearance probability than others.
While neural signals are not optimal for Hu�man compression in raw form, this
can be improved by the derivative transformation caused by delta encoding.

Figure 5.5 shows how delta compression can optimize a electrophysiological
recordings for its use with Hu�man encoding. It can be seen how, after per-
forming delta compression, the distribution becomes steep, with low value
symbols being orders of magnitude more frequent than higher value ones. By
using delta encoding on a neural signal it becomes optimal for further compres-
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sion using the Hu�man method. The Hu�man dictionary is thus elaborated
from delta-compressed values.
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Figure 5.5: Comparison between a 20 minute neural signal in raw form (A.1, B.1) and
after delta-encoding (A.2, B.2). A: 1 second time-domain sample of the raw signal (A.1)
and the delta-encoded signal (A.2). B: Symbol probability of the full recording in raw form
(B.1) and after delta-encoding (B.2).

While methods exist that take advantage of the usual spatial proximity of
recording sites [145], this work treats each channel of the multichannel record-
ing separately to achieve the maximum possible compression while being tol-
erant to as many electrode con�gurations as possible.

5.4.2 Low-memory, Low-resource compression

While neither delta compression or Hu�man coding requires specialized DSP
or multiplier circuitry, which would limit the range of low-power devices they
could be implemented on, Hu�man coding requires Read-Only Memory (ROM)
memory storing the symbol dictionary. The algorithm version used in this
work is already designed to minimize memory needs [163]. However, as seen
in Figure 5.2, for 16-bit words, which are typical in neural acquisition [27],
this results in 2Mbit of memory, limiting the available devices able to run
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this algorithm. A number of ways were devised to reduce the word width and
thus the dictionary size, while minimizing the impact on compression ratio and
signal integrity.

Delta encoding, performing a binary subtraction, already trims one bit, leaving
15-bit words to be compressed. To further reduce the amount of memory
needed by the Hu�man dictionaries, which are determined by bit number, not
all bits are coded using that process. Hu�man algorithm e�ciency relies on
the appearance probability of a small subset of symbols being higher than the
rest. However, as evidenced by Table 5.1, not all bits of a delta-compressed
signal follow the same distribution, with only higher bits contributing to the
steepness of the distribution, as shown in Figure 5.6.

Bit 0 1
0 50% 50%
1 50.72% 49.28%
2 52.19% 47.81%
3 55.15% 44.85%
4 61.36% 38.64%
5 77.18% 22.82%
6 95.51% 3.49%
7 99.81% 0.19%
8 99.99% 0.01%
9 ∼100% <0.01%

Sign 49.76% 50.24%

Table 5.1: Frequency of each bit of a delta-coded sample signal having a value of '0' or '1',
when taken as an absolute value. Bits 9 to 14 are not shown as the probability of they being
'1' is exponentially reduced each step. For the Signal bit only nonzero values were counted,
with '0' meaning a positive signal and '1' negative.

It is possible then to only use Hu�man encoding on the higher bits, while
appending the lower bits of the delta-compressed signal without further pro-
cessing. Figure 5.7 shows how compression e�ciency is a�ected by this ap-
proach. Moreover, the probability distribution is symmetrical, which allows to
create a Hu�man dictionary for only absolute values and appending the sign
bit unprocessed as well.

Two extra steps are incorporated into the algorithm to improve the compression
ratio even further. Since the sign bit has only relevance for nonzero values, it is
not transmitted when the decoded value is zero. Additionally, although ADC
circuits usually have 16bit outputs, the conversion process produces a lower
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Figure 5.6: Symbol distribution of a delta-coded sample signal, in absolute value, for
di�erent amount of masked bits. The lower nBits are kept and the other discarded before
plotting the probability distributions. The X-axis of each plot are the di�erent symbols,
from 0 to 2nBits.
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Figure 5.7: Degradation, in percentual points, of the compression e�ciency when di�erent
amount of bits are transmitted without being coded by the Hu�man algorithm

number of relevant bits, with the less signi�cant bits being electrical noise.
Those can safely be omitted, as they contain no useful data by design. In the
case of the RHD chip used in this work, with 0.195µV resolution and 2.4µVrms,
it is possible to calculate that the output contains log2(2.4/0.195) = 3.6 bits of
noise. Thus, the 3 lower bits can be completely discarded instead of being sent
uncompressed. For other acquisition devices, the number of discarded bits can
be adjusted so they are always below the input noise level, resulting in small
di�erences on compression ratio.

A complete block diagram of the algorithm can be seen in Figure 5.8. The
Hu�man dictionary needed for the algorithm is, thus, made from the sample
dataset after it has been treated by this process, considering only the bits that
are to be compressed by the Hu�man method.
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Figure 5.8: Block diagram of the complete in-system algorithm, detailing the compression
algorithm. H stands for the variable bit count of a Hu�man-coded word, while S can be 1
bit for sign coding, or 0 bits for 0-value words.

5.4.3 Compression performance

5.4.3.1 Compression ratios

AHu�man dictionary provides the optimal compression ratios for the data used
to create it. However, actual experimental situations require the algorithm
compressing a stream of animal electrophysiology data not known in advance
with a dictionary made with a sample dataset. Thus, to test for algorithm
performance, two sets of unrelated data were used. A sample dictionary was
created from 25 minutes of data, originating from three di�erent animals. A
second dataset of 385 minutes of available o�ine data, from eight animals
unrelated to the ones used for dictionary creation, was processed through the
software model, with a resulting average ratio of 47.94% of the original signal
size.

In vivo real-time compression, using the hardware implementation of the al-
gorithm, yielded a mean ratio of 65.58%. It is worth noting that one of the
three experimental animals, which will be called Rat 3 from now on, had a un-
commonly high amount of acquisition artifacts. As a result, the performance
of the algorithm was slightly a�ected. Removing the data from this animal
results in a mean compression ratio of 62.64%.

Table 5.2 shows the detailed ratios for each of the animals and setups.
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Data Compression ratio recording time
O�ine compression

Mouse 1 33.86% 5 min.
Mouse 2 33.72% 5 min.
Mouse 3 33.37% 5 min.
Mouse 4 33.25% 5 min.
Mouse 5 38.44% 5 min.
Rat 1 51.37% 30 min. x 4 days
Rat 2 44.60% 30 min. x 4 days
Rat 3 59.31% 30 min. x 4 days
Mean 47.94% Weighted Average

In vivo online compression
Rat 1 62.99% 20 min.
Rat 2 62.29% 20 min.
Rat 3 71.45% 20 min.
Mean 65.58% Average

Table 5.2: Compression ratios, in percentage of the original signal size, for the di�erent
datasets not related to dictionary creation.

5.4.3.2 Signal integrity

The combination of delta compression and Hu�man coding in their original
forms is completely lossless, introducing no alteration to the input signal in
the process of compression and decompression. However, the implementation
described in this work (section 5.4.2) alters the input signal by removing the
trailing bits of the input signals, corresponding to the input noise of the ac-
quisition circuit.

The only e�ect this procedure has on signal integrity is a distortion below the
noise �oor of the acquisition chip itself, thus not a�ecting the actual acquired
data. Figure 5.9 show a comparison between an original and a processed signal.
The measured error is 0.21µVrms, while the maximum possible error introduced
by the current implementation of the compression algorithm is 1.56µVrms, all
below the 2.4µVrms noise of the neural acquisition chip itself.
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Figure 5.9: E�ect of compression on signal integrity. A: Compressed and original signals.
The error is indistinguishable without magni�cation. B: Error introduced by the algorithm
compared with the acquisition chip noise �oor.

5.4.4 E�ect of dictionary on compression

Since the Hu�man dictionary was created with a sample set of signals, it was of
interest to ascertain whether creating dictionaries using some datasets from the
same animals in the experiment provided any performance variation. This was
tested using the 4-day dataset. Dictionaries were made from the data acquired
during the �rst day. The whole set was then compressed o�ine using the base
dictionary, the dictionary made from each of the rats and combinations of these
dictionaries with the original.

Table 5.3 shows the obtained compression ratio for di�erent combinations. A
slight improvement from the base results can be observed when using dictio-
naries including data from the experimental dataset. As expected, removing
the data from the noisy Rat 3 improves the results.

5.4.5 Transmission protocol

When using the algorithm in a hardware system, the device running neural
data compression might be di�erent from the one performing wireless trans-
mission. In addition, many low-power wireless protocols lack mechanisms to
ensure reception, thus being susceptible to packet loss [132]. This is especially
problematic for delta coding, since each lost incremental value introduces a
permanent error in the signal which increases with each consecutive missed

96



5.4 Results

Animal data Animal + base

Base w. Rat3 51.87% N/A
w/o Rat3 48.15% N/A

All w. Rat3 50.76% 50.59%
w/o Rat3 47.42% 47.96%

Self w. Rat3 48.8% 49.42%
w/o Rat3 46.42% 47.44%

Others w. Rat3 49.37% 51.16%
w/o Rat3 47.67% 46.39%

Table 5.3: Mean sizes of the compressed signals relative to the original data for in vivo

tests. Columns for dictionaries using experimental data alone or added to the base dictionary.
Rows for base dictionary, dictionary from data from all the animals (All), dictionaries from
data from each individual rat (Self) or dictionaries from data from all animals except the
one being tested (Others). Data shown including and excluding the anomalous rat labeled
"Rat3"

value. A protocol was designed to transmit data between devices, including
information enabling the wireless processor to pack the data in a way able to re-
cover from packet losses. This protocol utilizes few hardware resources, has no
RAM requirements and adds a low overhead to the transmission, maintaining
the reduced bitrate achieved by the compression.

To recover from the errors introduced by packet losses on delta coding, data
is packed in blocks of N samples, with the �rst sample for each channel being
the raw, uncompressed values followed by the compressed remaining samples.
Since this results in a variable number of bits, due to the compression method,
the last word is zero-�lled after the last sample data to ensure an integer num-
ber of 16-bit words per block. If network packet aligns with block boundaries,
in the case of a packet loss the receiver could recover at the start of the next
block. Hu�man coding introduces an additional challenge due to the resulting
samples having a variable bit length. The network processor must be able to
track of block boundaries, independently of their actual byte size.

Data from the compressing device to the wireless processor is packed in �xed-
length frames of M words, with the current implementation using 16-bit words.
The �rst M-1 words are comprised of block data. The last word is a block
boundary indicator. If the frame contains the start of a new block, the indi-
cator is an index pointing to the speci�c word of the frame in which the new
block starts. If the whole frame contains data from the same block, the indi-
cator is a value greater than M. This transmission protocol allows the wireless
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processor to be fully aware of delta-coded block boundaries without requiring
the compressor device to store them in memory. With this information, the
wireless protocol can add simple indexed markers to the data packets, allowing
the receiver to detect a packet loss and to wait for the next delta-coded block
to start.
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Figure 5.10: Data transmission structure. A: Compressed sample. B: Compressed block
of N samples for C channels. Total size of B word can vary depending on compression. C:
A block spans several frames, while a single frame can include the boundary between two
blocks, D: Frame of M words sent to the transmitter, with index to detect block boundaries.

Figure 5.10 shows the complete structure of compressed data packed for trans-
mission, including the composition of a compressed sample (section 5.4.2).

5.4.6 Wireless prototype

A prototype was created, as described in Figure 5.11, integrating acquisition,
compression and wireless transmission. While a smaller version, using compact
packages of the ICs was designed, the produced unit featured bigger versions,
for ease of prototyping, manufacture and testing, as well as several headers for
programming and debugging.
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Figure 5.11: A: Functional diagram of the developed prototype. B: Sketch of a complete
device. C: Picture of the built prototype. For development purposes, the layout di�ers from
what would be a �nished unit, including the addition of debug headers and the use of bigger
versions of the integrated circuits.

Beyond the storage required for its con�guration, the IGLOO FPGA only
features a few bits of �ash memory, not enough for Hu�man dictionary data.
Since the CC3220 wireless processor features 1MB of persistent memory it
can be used to store this data, along with the MCU program. The software
then uploads this data to the FPGA at startup, along with the command list
required to con�gure the RHD2132 acquisition IC.

Communication between the IGLOO FPGA and the wireless MCU is done
through a full-duplex SPI bus, transferring the data in blocks for best perfor-
mance. Since compressed data is not produced at a constant rate, due to the
variable bit width of the samples, the FPGA acts as the bus master, able to
momentarily pause transmission between samples until a full word has been
produced. Using the MCU as a master device would be possible only by hav-
ing the FPGA store a bu�er of an entire transfer block, which would require a
big amount of memory, defeating the purpose of the low-resource, low-memory
approach of the compression system.
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The SPI transceiver in the MCU, however, can not be continuously active.
It has to be con�gured to perform a �xed-size receive transaction, notifying
the program running in the processor at the end, after it will con�gure the
transceiver for the next block. Due to the sequential nature of a CPU, however,
this recon�guration time could cause a missing transaction if the bus master is
not aware. To solve this, a protocol was devised with an extra READY line,
set my the MCU, which allows the SPI master in the FPGA when the slave is
ready to receive data. This solution has the downside of requiring a bu�er on
the master side to account for data arriving while the slave is not ready. By
ensuring the time between SPI slave recon�gurations is short, however, this
bu�er can be only a few samples deep, instead of requiring to store a whole
block.

The protocol, shown in Figure 5.12.A, consists of 16-bit transfers. The bus
master listens for the READY line to be asserted, then initiates a single trans-
fer containing a command sent by the MCU through the Master-In Slave-Out
(MISO) line and a status word sent by the FPGA over the Master-Out Slave-In
(MOSI) line. The status word contains information about the last performed
command, bits reporting if it was successful and information about the con�g-
uration state of the device. After the command is issued another multi-word
transfer is initiated containing the data from either of the devices. The size of
this block is known to both the devices and dependent on the command.

A ready

sclk

miso COMMAND DATA0 DATA1 DATAn COMMAND

mosi STATUS DATA0 DATA1 DATAn STATUS

B ready

sclk

miso ACQUIRE ACQUIRE ACQUIRE ACQUIRE ACQUIRE ACQUIRE STOP

mosi STATUS B0_W0 B0_W1 B0_Wn B1_W1 B1_W1 B1_Wn

Figure 5.12: SPI communication scheme between the FPGA and the wireless processor.
A: General command structure. B: Acquisition command structure.

Possible commands are:

■ Program: to transfer data to FPGA memory, such as the Hu�man tree
of the acquisition chip con�guration data.

■ Con�gure: to start the con�guration process of the RHD2132 acqui-
sition chip. Sets a con�gured bit in the status word after a successful
operation.

100



5.4 Results

■ Acquire: to start the acquisition process. Requires the RHD2132 to be
properly con�gured.

■ Idle: does not perform any action, but reports the status word.

The Idle and Acquire commands have a slightly di�erent transfer structure.
The Idle command does not require any extra data, so only the command is
issued, with no follow up data transaction. The Acquire command, shown in
Figure 5.12.B performs a continuous operation, so the standard rule of known
data length can not apply. Instead, after an Acquire command has been issued,
a continuous series of transactions containing a single data frame, as described
in section 5.4.5 and Figure 5.10.D are performed. The value of the MISO line
is largely ignored, until a stop word is issued. Once the FPGA receives a stop
word, it will �nish transferring the current frame, to successfully complete a
full transaction, and stop acquiring after its completion, returning to the idle
state and awaiting for the next command.

5.4.6.1 Firmware

The �rmware for con�guring the IGLOO FPGA, whose block diagram can
be seen in Figure 5.13 was written in Verilog. A block-throttled SPI master
handles communication with the MCU, with signals originating on the bu�er
FIFO and the di�erent command state machines to regulate the output and
ensure that transmission is done following the protocol.

Main

Controller

Configure

CMD

Program

CMD

Acquire

CMD
Frame

Generator

Serial

Register
Compression

RHD2132

Controller

Sample

Counter

SPI

Master

Huffman Tree

Data

RHD Init

Data

To

Wireless

Controller

To

RHD

Chip

FIFO
Block-Throttled

SPI Master

Figure 5.13: Block diagram of the wireless acquisition prototype FPGA �rmware. Marked
in a gray square are the core components of the algorithm.

A main controller is in charge of reading the commands and passing control to
the appropriate block, except for Idle, of which the main controller takes care
of, generating the status word. The di�erent command controllers generate
the appropriate data streams, with the Con�gure block sending a signal to
the RHD controller to start con�guration and the Program block �lling the
Hu�man and RHD con�guration memories.
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The acquire block starts acquisition and manages data sent to the wireless
processor. A controller block for the RHD2132 is in charge of sending the
appropriate commands through a SPI master and retrieving raw neural data.
The compression and framing process is comprised of three main blocks: A
compressor block performing delta coding and Hu�man compression through
the methods described in section 5.4.1 and 5.4.2. A serial register with zero-
�lling capabilities packs the variable bit output of the compression block into
16-bit words, while a frame generator block packs the data into the protocol
described in section 5.4.5. A sample counter keeps track of block boundaries.

5.4.6.2 Software

Software for the CC3220 network processor was developed in the C program-
ming language. Texas instruments o�ers a framework to simplify network
operation and peripheral access through the networking API SimpleLink and
a low-footprint Real-Time Operating System (RTOS) called TI-RTOS, spe-
cialized for embedded devices and o�ering threading capabilities as well as
functions to access the MCU peripherals, such as SPI transceivers.

Although the compression algorithm and transmission protocol are designed to
be able to stream data to any wireless link without the need of extra memory,
the CC3220 network processor requires data blocks to be loaded in its memory
prior to transmission. Thus, a combination of double-bu�ering, threading and
DMA transactions were used to allow the software to receive data from the
FPGA and transmit over the wireless link simultaneously. Since the MCU
sends data in full packets, it was decided that every transmitted packet would
consist of a single block of compressed samples. This way, a missing packet
would be easily recoverable by the receiving software. Thus, the algorithm for
frame-decoding was integrated into the wireless processor software.

The threads created in the software were:

■ A thread required by the background functions of the SimpleLink API.

■ The main thread, handling SPI operations, decoding the frame structure
and signaling the network thread when a whole block is present.

■ The networking thread, that sleeps until noti�ed by the main thread and
sends the block over the network.
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■ Although not a software thread, SPI transactions are performed au-
tonomously by the hardware and stored through DMA, only notifying
the main thread when the transaction is �nished.
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Figure 5.14: Wireless processor software block diagram. A: Main thread. B: Network
thread

The main thread initializes the SPI bus, prepares the FPGA by uploading
Hu�man tree data and con�guring the RHD chip and waits until there the
network thread detects a data connection. Once connected, starts acquiring
compressed neural data, notifying the network thread when a block is available.
The main thread starts a new SPI DMA transaction the moment the previous
one is �nished and a block is received, so data transfer can occur in parallel
through the hardware transceivers. Two bu�ers are used so SPI data can be
acquired into one while the network thread sends the contents of the other.
Once the wireless link is disconnected, the stop sequence is sent to the FPGA,
the contents of the received block discarded, and the complete system returns to
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the idle state. The network thread has a simpler loop, waiting for connections,
informing the main thread of the network state and sending data. A complete
�owchart of the two primary threads is shown in Figure 5.14.

5.4.7 Power usage

Bandwidth reduction, which compression achieves, can reduce power in two
main ways: by allowing the usage of low-power protocols which often have
a lower bandwidth associated or by enabling a higher bandwidth protocol in
small bursts, increasing the time the device is not transmitting. In the case of
the CC3220 network device used, it can be con�gured so the wireless circuitry
enters a lower-power state between operations. This way less data to transmit
translates to smaller bursts and longer sleep times for the wireless circuitry,
thus reducing transmission power accordingly.

To measure power usage on the prototype, test points were added to inde-
pendently measure current consumption of the FPGA, wireless processor and
acquisition device. Accurately measuring the speci�c e�ect of compression
required a known and noise-free signal to be transmitted both raw and com-
pressed and transmission power be measured in both. To this avail, the syn-
thetic signal described in section 5.3.2, generated inside the FPGA was used,
by simply creating an alternative �rmware replacing the compression scheme
for a simple bypass.

Figure 5.15 shows the power usage of the wireless prototype. It can be seen
how the amount of extra power used by the compression algorithm, measured
at 2.7mW, is negligible. Since the Wi-Fi protocol is not designed speci�cally
for low power, it features a high, static consumption dedicated to maintaining
the link, even when it is not transmitting. However, even in this non-optimal
case, the measurements demonstrate a clear reduction on transmission power,
directly related to the decrement of required bandwidth.

0 50 100 150 200 250 300 350 400

Power usage(mW)

Raw signal

Compressed 
signal

Base FPGA Compression algorithm Acquisition circuit

Wireless processor, static Wireless processor, transmission

Figure 5.15: Power usage of the sample hardware implementation transmitting the com-
pressed signal and the raw, uncompressed signal.
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5.4.8 Resource usage

Minimizing hardware resources was an important objective, as this allows the
algorithm to be used in a higher variety of existing devices, or makes it more
e�cient to be integrated into an ASIC. This includes both memory and logical
requirements. In the case of the former, data size of the Hu�man dictionary
was reduced. Instead of the 2Mbit a 16-bit dataset would need, only 9Kbit
were required, resulting on lesser memory blocks. Logic resource usage in the
FPGA was kept minimal as well, with no need of DSP or any other specialized
hardware block. Table 5.4 shows the FPGA cell usage of the di�erent modules
for both Xilinx and IGLOO nano FPGAs, as well as the percentage of the
device used in the prototype.

Xilinx Cells IGLOO cells Prototype usage
Compression 60 585 9.20%

Transmission protocol 22 210 3.42%
Data acquisition 54 495 8.08%

Table 5.4: Prototype usage percentage measured for the Microsemi AGLN250 device

5.5 Discussion

Studying complex and ecologically meaningful behaviors in animals is neces-
sary to move experimental cognitive neuroscience forward [167], but requires
experimental spaces closer to the natural conditions or even experiments in
the real world. This often implies large spaces �lled with elements like uneven
terrain, obstacles, hiding places or even burrows, and environments shared by
multiple animals. These elements render tethered devices impractical as the
wiring, no matter its length or weight, would limit mobility and animal to
animal interactions.

Wireless implants able to record brain activity during extended periods of
time allow free movement of animals in complex environments, opening the
possibility to a new generation of neurophysiological investigations in behaving
animals.

For a wireless device, autonomy is crucial, with power usage being often the
most limiting factor. Wireless data transmission has large power requirements,
which are closely tied to bandwidth, with higher data rates requiring more
power.
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Compression is an e�cient technique to reduce data rate, but only if the
power needed for compression is lower than the power saved by rate reduction.
This is the case for the algorithm presented in this chapter. Power reduction
was demonstrated on a regular Wi-Fi IEEE 802.11g chip, designed for high-
bandwidth and not optimized for low power, with a sizable percentage of its
energy needs originating in static link usage. Using custom wireless protocols
or newer low power devices, yet in development at the time of this writing, will
reduce transmission power needs, in particular static requirements, further re-
ducing total power. Specially interesting are the developments on IoT-related
wireless protocols and devices, such as IEEE 802.11AH [168]], designed for
low-power transmission while allowing a variety of di�erent data rates.

Although this compression scheme was originally designed for wireless trans-
mission, it can be of use to other electrophysiology technologies. For example,
data loggers can increase the amount of stored data without physically increas-
ing memory capacity while wired technologies could �t more channels into a
single link.

This �exibility of usages is reinforced by the low-resource nature of the devel-
opment. Minimal hardware needs results in an algorithm easy to �t in existing
designs, being able to be implemented in a variety of devices. This is also
important for power consumption as, unless highly optimized custom ASICs
are used, devices with more hardware resources tend to be bigger and with
more power requirements. This low-resource design makes it possible to be
implemented in simple, low-power, commercial chips. The developed trans-
mission protocol further reinforces this �exibility with the ability to maintain
long-term signal integrity in the cases where data losses are expected. This
might be the case for ultra-low-power wireless transmission protocols, as the
drawback of expending less energy on link maintenance is the possibility of
short interruptions on transmission, with their related packet losses. Being
able to recover from such events makes the complete design suitable for almost
any situation.

Data integrity and compression e�ciency are two elements that must always
be balanced. In this work the compression algorithm was developed with the
former in mind, being virtually lossless and with compression noise below the
noise �oor of the acquisition chip. There are methods in which the compression
ratio can be increased, while introducing noise into the signal. One such way is
in the delta coding step. As seen in Fig 5.5.B.2, large delta values are rare and
often the result of acquisition artifacts. Those uncommon, large values could
be removed by trimming the most signi�cant bits, further reducing word width
[150]. In this case, any time such a large jump occurred, either naturally or by
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an acquisition artifact, the DC o�set of signal would drift from its real value,
while maintaining most of its characteristics. In this case the signal would
be corrected at the start of the following block. Another way to increase
compression would be to trim even more bits before delta coding. This would
result in a loss of resolution, with an equivalent noise of VLSB ∗ 2nRemovedBits.
Conversely, if an acquisition chip with a lower noise �oor were used, the number
of discarded bits could be lowered, albeit with a slight impact on compression
ratios.

Compression e�ciency can also be improved without degrading signal quality
by the optimization of the Hu�man dictionary. section 5.4.4 shows how cre-
ating a customized dictionary with data previously recorded from the same
experimental animals can increase compression. Understanding the speci�c
factors that lead to these improvements could help further improve the perfor-
mance. Current suspicions point to them being related to the physical proper-
ties of the experiment, such as electrode impedance and acquisition rate, which
a�ect how the signal varies over time, and such the result of delta coding. More
research on this topic needs to be done to further understand procedures to
optimize the compression dictionary.

5.6 Conclusions

In order to reduce data bandwidth requirements for digitized brain electrophys-
iology signals, a low power compression algorithm was developed. It combines
delta compression and Hu�man code to compress neural data to nearly half
its original size in a lossless manner, without adding any distortion beyond the
acquisition circuit natural noise �oor. Compression e�ciency can be slightly
improved by customizing the dictionaries using data from the same experimen-
tal animals.

This algorithm uses minimal hardware resources, making it possible to be
implemented in low-power devices. A protocol for packing the compressed
signals with little overhead and the capability to recover from packet losses
was also developed for its use with wireless transmission. The compression
algorithm and the transmission protocol add negligible extra power usage to
the system, favoring the implementation of the algorithm in a variety of wireless
electrophysiology acquisition systems.

Reducing bandwidth naturally reduces the power needed for a wireless trans-
mission protocol. This was veri�ed in a prototype wireless acquisition system
created using commercially available, low resource and low-footprint devices.
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Although the transmission protocol utilized in this work was not designed for
low power, a sizable reduction in power consumption was achieved due to data
compression.
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Chapter 6

Conclusions and Outlook

Brain extracellular electrophysiology is a powerful tool for neuroscience re-
search. However, modern experiments are becoming more complex. They
require arenas involving bigger and more ecologically meaningful spaces as
well as multiple animal interactions. Closed-loop feedback, on the other hand,
is moving towards responses to fast biological events, such as neural spikes.
Under all these conditions, the technological limitations imposed by current
tools become evident.

This thesis addresses these limitations through the development of novel hard-
ware systems for data acquisition. All designs improve upon the characteristics
o�ered by state-of-the-art systems, which o�er multichannel acquisition of 16-
bit data at 30KS/s. Improvements include technical characteristics, such as
increased bandwidth allowing more than a thousand channels, and reduced
latency, below 200µs, but are not limited to those. New architectures and
communication standards were developed to allow simultaneous acquisition
from multiple, heterogeneous data sources such as video or animal tracking.
Flexibility was a fundamental design constraint, with all systems allowing the
creation of limitless experimental con�gurations and feedback algorithms.

Tether issues were also addressed through two di�erent means. One is the
design of ultra-light headstages coupled with torque-free, active commutators,
reducing animal strain to a minimum. This allows long-running experiments in
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large arenas with free 3-D movement. The second approach is the development
of a wireless solution, able to acquire even in complex environments or in the
presence or other animals. For this approach a custom compression algorithm
was designed, able to reduce data bandwidth below 65.5% of its original size
with no loss of signal integrity, allowing for extended battery life or reduced
weight.

Combined, these developments allow for complex experiments, integrating mul-
tiple data sources with natural behavior and low-latency stimulation. The pos-
sibility to combine all these elements open new experimental possibilities not
possible with current acquisition systems.

Three particular developments, improving on di�erent aspect, are presented in
this work:

Open Ephys is an open-source electrophysiology system designed with closed-
loop experimentation in mind, able to acquire up to 512 channels. While shar-
ing many similarities, and limitations, with traditional tools, its open source
nature and modular design facilitates the creation and sharing of diverse closed-
loop algorithms, with no hard limitations imposed by the tool. It features a
digital headstage for noise tolerance and plenty I/Os for external hardware
synchronization and communication.

The ONI speci�cation de�nes an interface between acquisition hardware and
a computer designed to enable the development of systems with multiple, het-
erogeneous and asynchronous sensor devices that can be e�ortlessly accessed
by any compliant software. An acquisition tool implementing this standard,
the ONIX system, was created. It features high-bandwidth multichannel ac-
quisition, able to acquire simultaneously from over a thousand electrophysi-
ological channels combined with other sources of data. The system features
sub-millisecond acquisition latencies, which can be as low as 150µs, allowing for
complex, spike-based, closed-loop feedback. Its headstages are lightweight, less
than 4g for a whole assembly, and connected through thin, coaxial cables using
an active, torque-free commutator. This, coupled with 3D tracking of milli-
metric precision, allows its use on long-term experiments with freely-moving
animals, including mice.

Lastly, a compression algorithm designed for wireless transmission of electro-
physiology signals was devised, able to compress data below 65.5% of its orig-
inal size with no distortion. This algorithm is designed to be device-agnostic
and low-resource, allowing its implementation on any small, low-power device.
Power required by the algorithm itself is negligible. Thanks to it, data rates of
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any system can be nearly doubled or transmission-related power consumption
considerably lowered. While developed for wireless applications, its device-
agnostic nature allows it to be used in wired or logger systems. A hardware
system performing neural acquisition, data compression and wireless transmis-
sion was created to demonstrate the algorithm e�ects.

6.1 Implications for neuroscience research

6.1.1 E�ect of tools in the experiments

An ideal research tool should be transparent and o�er faithful data without
disturbing the experimental subjects. While this is not fully achievable in
practice, developments have been made towards that goal.

Data accuracy needs to be high and not distorted by the acquisition process.
All presented systems achieve this by using state-of-the art probes and am-
pli�er chips. Brain electrophysiology data is acquired at 16bits and 30KS/s
independently of channel count. Electrical interference is kept as a minimum
by digitizing data near the brain, while transmission protocols do not intro-
duce any signal distortion. This includes the wireless compression algorithm
developed in chapter 5, which is lossless, beyond the noise �oor of the analog
ampli�er itself.

Channel count can become an important factor, as well, as with more chan-
nels available a higher number of neurons or brain regions can be monitored
simultaneously, which can help to understand complex brain networks. Chan-
nel count, however, is limited by available bandwidth. Thus, while developed
wired systems easily allow hundreds of channels wireless acquisition is still
limited. Increasing bandwidth, by improving either e�ciency of transmission
protocols or compression ratios of compression algorithms, will result in an
increase of available bandwidth and, by extension, channel count on wireless
systems.

Beyond data accuracy, experimental equipment must disturb animals as lit-
tle as possible. Neuroscience research is trending towards electrophysiology
recordings with freely moving animals in complex spaces with social inter-
action [91]. In these conditions, headstage weight and tension due to torque
hinder the movement range of the animals and cause fatigue which limit exper-
iment duration while wires limit maximum area and arena complexity, as wires
can become tangled with environmental object or be damaged by animals.
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Some of these issues are addressed by employing head-�xed animals immersed
in a VR environment [72]. This approach is specially useful with big, high-
density probes that require support structures [169]. These kind of experiments
are fully supported by both the Open Ephys GUI and the ONIX system, as
both have support for high-density probes such as Neuropixels and feature I/Os
that can be used to synchronize with animal movement in the VR space, such
as treadmill motors or sensors. However VR environments are limited in their
possibilities, as they do not fully and realistically represent a natural space.
Thus, the ability to perform experiments in big arenas with complex elements
and social interaction, with full freedom of movement, is highly desired. This
thesis presents two developments towards this.

The ONIX system features lightweight (3.65g) headstages with ultra-thin coax-
ial tethers that ease mechanical restrictions on the animals. Moreover, the
tethers can be connected through an actively driven commutator, which ro-
tates automatically following the movement of the experimental subjects, thus
completely negating the e�ect of torque. Thanks to this torque-free approach,
cables can be hung using light elastic bands so they are retracted, out of reach
for the animal, when it is near the commutator and fully extended when it is
in the arena borders. This facilitates the use of longer cables and by extension
larger arenas. Thanks to the combination of reduced animal strain and a tether
less prone to failure thanks to the active commutator eliminating torque stress
and animal-related damages, experiment time can be extended to even days.

Wireless transmission, on the other hand, removes any wiring limitation, en-
abling arenas of arbitrary size, multiple animals and any kind of environmen-
tal element, such as vegetation or burrows. The limitation of wireless solution
comes in the form of batteries which limit their operating time and add weight,
with bigger-capacity batteries being heavier. Compression helps with these is-
sues by reducing data bandwidth and, by extension, transmission-related power
consumptions, which translates to smaller batteries or longer operating times.

6.1.2 Closed-loop and brain timescales

The brain operates in multiple, di�erent timescales. Some events, like neuronal
action potentials, occur in the scale of one millisecond. Behavior-related pat-
terns, however, are measured in ranges for seconds to days. Some events can
produce di�erent e�ects at di�erent timescales. For example, external stimu-
lation of serotonin-producing neurons through optogenetic means has opposite
e�ects in the seconds scale when compared with weeks of experimentation [170].
Extrapolating results from short-term experiments into the long-term, then, is
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not trivial and can result in erroneous conclusions. Studying such long-term
e�ects require long-running experiments, with the associated hurdles due to
electrophysiology tools which the presented developments have alleviated.

In the shorter scale, issues arise when closed-loop feedback is involved. Closed-
loop experiments are a great tool for experimentation, allowing re�ned control
over the animal and its brain. Stimulation, which can be of multiple natures,
needs to be performed in the timescale of the event which the feedback loop
is intended to modulate. This becomes challenging for fast events, as there
is always a latency between the origin event and the stimuli due to the de-
lays required for acquisition, data transmission and event processing. With
the use of powerful computers with high-speed CPUs and computing GPUs
[89], processing time is becoming a minor component, with data transmission
representing the bulk of closed-loop latency.

The Open Ephys system, through its USB 3.0 interface, achieves mean latencies
between 10 and 20ms. This is enough for LFP-based event detection and
experiments involving synaptic plasticity [86] but limits research into faster
events.

Events in the millisecond and sub-millisecond range are one of the design ob-
jectives of the ONIX system, which achieves a transmission-based closed-loop
latency of 150µs. This allows to quickly react to events such as action po-
tentials, initiating stimulation even before the event has completed, as long as
there is enough information for detection.

Latency in wireless links is a complex issue [171]. It is highly dependent on the
wireless protocol and, in cases where the radioelectric spectrum is saturated
anti-interference features from the transmission protocol can cause big uncer-
tainties. In general, protocols with less arbitration mechanisms tend to have
lower latencies, but at the risk of packet losses [132], while more complex pro-
tocols can assure no-loss transmission at the cost of higher and more uncertain
latencies. If for this reason that the wireless algorithm designed in this work
is accompanied by a custom framing protocol developed to take into account
possible packet losses, assuring the possibility to recover from them.

113



Chapter 6. Conclusions and Outlook

6.1.3 Multi-source acquisition

Electrophysiology is not the only tool used in neuroscience research. Other
tools, such as microscopy [114] can be used to inspect brain activity, stimulation
can be achieved through a multitude of di�erent techniques such as position
or postural tracking [172].

While each tool provides di�erent insights, combining them can allow to re-
search relations that could not be studied independently. For example, while
there is little doubt that behavior and brain activity are linked, timescales are
di�erent, so a composite view of both could help understand their relations.
Even di�erent versions of the same measurement can be present in parallel,
such as high-resolution video or 3D tracking alongside radio-based location for
movement inside burrows [173], [174].

The Open Ephys system has partial support for multi-source acquisition, with
multiple I/Os in its hardware and the ability to create modules for di�erent
inputs in its software. However, due to being primarily designed for electro-
physiology signal processing, the Open Ephys system has limitations when
dealing with asynchronous, independent sources with heterogeneous clocks,
formats and sampling rates.

To solve the problem of heterogeneous multi-source acquisition, the Open
Neuro Interface (ONI) speci�cation was created. The standard speci�es a set
of protocols for communication between acquisition hardware and software,
independently of the nature of the data. It is designed to handle simultane-
ous streams from multiple devices with independent clock sources and data
rates as well as bidirectional communication. Thus, it is possible for a single
acquisition hardware to mix, for example, video, electrophysiology and opto-
genetics stimulation and transmit the data to a processing software with no
synchronization issues.

The ONIX acquisition implements the ONI standard, exemplifying its multiple-
source approach. It features headstages with high-density electrophysiology,
3D tracking and stimulation capabilities, both optical and electrical. The
system includes 12 analog and 16 digital high-speed multipurpose I/Os and is
compatible with miniaturized microscopy headstages. A library for the Bonsai
visual programming language [107], designed for asynchronous data processing,
was made.
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6.1.4 Modular approach

Traditional, monolithic tools are limited to a �xed set of capabilities, mak-
ing it di�cult, if not impossible, to perform any experiment outside of them.
Modular tools, on the other hand, can give more �exibility to researchers, able
to recon�gure them to adjust to their particular needs. This philosophy is
embraced by all projects described on this thesis.

The Open Ephys GUI features a fully-con�gurable signal chain based on a
drag-and-drop interface. Any modules can be linked in any order, enabling the
creation of a multitude of di�erent processing chains, each apt for a particular
analysis or closed-loop feedback stimuli generation scheme. Recording itself
can be done from multiple parts of the chain simultaneously and in a variety
of formats. Moreover, the plugin architecture of the software allows researchers
to create their own processing modules, as well as plugins to accessing di�erent
acquisition or stimulation hardware, giving full freedom to the researcher.

The ONIX system goes a step further by incorporating this �exibility into the
hardware itself thanks to the standardized nature of the ONI speci�cation.
Multiple, di�erent headstages can be swapped in a plug-and-play manner, in-
cluding switching from electrophysiology headstages to miniature microscopes.

In the case of the wireless system and compression algorithm, it has been de-
veloped as a module on itself. The device-agnostic and low-resource natures
of the algorithm mean that it can be easily implemented in any kind of acqui-
sition system. The presence of the transmission protocol helps with this, as
allows the algorithm to be safely used with any kind of data link, regardless of
its reliability.

6.2 Implications for the academic community

The tools described in this thesis have all been designed with modularity and
�exibility in mind, allowing researchers to con�gure the tools around their
intended experiments, instead of having to adapt their experiments to the tools
available to them. Di�erent approaches are able to ful�ll distinct needs. For
example, while wireless transmission gives the most environmental �exibility
and freedom of movements, it is limited in time. However, the lightweight,
torque-free headstages sacri�ces a small amount of movement freedom, while
still allowing more than traditional tools, in exchange for long-term experiment
duration and high channel counts.
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This �exibility is improved by the development of open interfaces and stan-
dards. In the case of most commercial tools the software and hardware are
tied together, incapable of working independently. This is not the case with
the presented tools. The Open Ephys hardware can be used with a variety
of software beyond the Open Ephys GUI, while the GUI itself can support
multiple acquisition and stimulation devices.

In the case of the ONIX system, the existence of a formal standard, in the form
of the ONI speci�cation, makes this compatibility granted as any hardware
following the speci�cation will be able to communicate with any compliant
software. Moreover, the serializer interface in the ONIX system allows any
manufacturer to create headstages that could be easily plugged into the system
and immediately used by the software. Data types for newly used devices could
easily be implemented in Bonsai.

The open-source nature of the software facilitates this �exibility by allowing
researchers to modify it to suit their needs. Although their modular nature of-
ten means that new algorithms can be implemented and used in an individual
manner, it is impossible to account for any circumstance. Being open-source
avoids the possibility of an oversight preventing a particular experiment, allow-
ing any researcher to alter the required parts. In the same ways, researchers
can discover issues, oversights or shortcomings and either make them known or
suggest a �x. Thanks to this, a tool can grow beyond the mindset of a single
development team, becoming more complete and useful for the diverse mem-
bers of the neuroscience community, as each one can contribute their speci�c
knowledge.

This collaborative nature helps sharing knowledge, one of the pillars of science.
Any developed algorithm can be shared and published along with the experi-
mental results. The open nature of the standards and software guarantees that
said algorithms do not depend on any undocumented piece, allowing their im-
plementation on not only the original system, but any alternative, facilitating
experimental replication.
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6.3 Future steps

Future steps move towards the improvement of the presented tools. Probe
density, channel count and overall data bandwidth of sensors will increase
over the years, so acquisition technology must follow the same path. On the
hardware level, for example, it is planned to eventually design a second version
of the ONIX system featuring higher-bandwidth coaxial links, allowing for
headstages with more channels or high-resolution video feeds.

Make the ecosystem grow is another path to follow. A USB-based ONIX
system is planned to allow its use on computers without available PCIe slots,
such as laptops. More hubs, with di�erent sensors and acquisition capabilities
could to be designed, even by di�erent companies or development teams.

Regarding the wireless system, the natural next step is the creation of a com-
plete, user friendly wireless headstage. It could use the ONI interface, being
immediately included into the growing ecosystem and ensuring compatibility
with all existing tools. This headstage would discard the WiFi protocol for a
lower-power transmission method.

The algorithm itself can still be improved. For example, neural signals present
high inter-channel redundancy, specially on lower frequencies. This could be
exploited to achieve even better compression ratios. While the algorithm was
originally designed to require little resources, a version using DSP modules,
widely available in many FPGAs could be developed, taking advantage of
�ltering and transform features to further increase compression ratio. This ap-
proach, however, would require careful study, since power used by compression
must always remain lower than power saved by bandwidth reduction. A big
focus on compression complexity can lead to diminished returns.

Ideally, e�orts should head towards a wireless headstage with the same capa-
bilities of a wired one, featuring acquisition of high channel counts, tracking
and stimulation while allowing free, unconstrained movement through a com-
plex, and naturalistic environment. This device would communicate through a
standardize interface such as ONI, allowing its use with any analysis software
and enabling its integration into complex setups with controlled arenas and
closed-loop feedback. Such as headstage would require e�orts in further reduc-
ing power consumption of the system, not only compression but acquisition
itself as well as stimulation.

As long as a battery is required, however, its weight and volume will have
to be added to the headstage, hindering animal movement. Research into
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headstages powered by wireless energy transfer methods [175], coupled with the
advances already presented or discussed in this thesis could lead to the creation
of such an ideal electrophysiology system: A lightweight, fully autonomous and
feedback-capable implantable wireless headstage for long term, high bandwidth
electrophysiological acquisition in complex environments.
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Chapter 7

Contributions

7.1 Collaborations in the scope of the Thesis

Some of the developments described in this thesis have been the result of collab-
orations with external projects. This section details the speci�c contributions
for each chapter.

While the Open Ephys project is a community-based e�ort, the bulk of the
development of the acquisition system and software lies within the core team of
the Open Ephys organization (Cambridge, MA, USA). This team if comprised
of an international group of people of which the author of this document is
part. In this context, the work performed in the scope of this thesis includes
major developments in the software and FPGA �rmware originally developed
by the Open Ephys founders, as well as minor revisions to the hardware.

The work on the ONI speci�cation and ONIX system presented on this thesis
represents a full collaboration from the design phases of the project. Developed
by a small team within the Open Ephys organization, including the author of
this thesis, the most notable contributions to the project lie in system design
and �rmware and software development. Speci�cally, approximately a 40% of
the ONI speci�cation, 40% of the FPGA �rmware and 30% of the interface
software can be attributed to the author of this document. Additionally, the
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participation has featured full involvement in design decisions of core structures
and communication protocols.

Finally, the developments described in chapter 5 have been fully and indepen-
dently performed within an academic scope at the Universitat Politècnica de
València by the author, with no external collaboration.

7.2 Publications

■ A. Cuevas-López, E. Pérez-Montoyo, V. J. López-Madrona, S. Canals,
and D. Moratal, �Low-power lossless data compression for wireless elec-
trophysiology acquisition�. Submitted.

■ J. H. Siegle, A. C. López, Y. A. Patel, K. Abramov, S. Ohayon, and J.
Voigts, �Open ephys: An open-source, plugin-based platform for multi-
channel electrophysiology,� Journal of Neural Engineering, vol. 14, no. 4,
p. 045 003, Jun. 2017. doi: 10.1088/1741-2552/aa5eea

■ D. R. Quiñones, A. Cuevas, J. Cambra, S. Canals, and D. Moratal,
�RATT: RFID assisted tracking tile. preliminary results,� 2017 39th An-
nual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), ISSN: 1558-4615, Jul. 2017, pp. 4114�4117. doi:
10.1109/EMBC.2017.8037761

7.3 Teaching

■ �The Cajal NeuroKit Course: Extracellular Electrophysiology Acquisi-
tion�, CAJAL Training Programme, Online Course, Feb.-March. 2021.
URL: http://cajal-training.org/neurokit/electrophysiology-0321/

■ �36th Microelectrode Techniques for Cell Physiology Workshop�, Marine
Biological Association, Plymouth, UK, Nov. 2019.

■ �Instituto de Neurociencias Bonsai Course�, Instituto de Neurociencias
de Alicante CSIC-UMH, San Juan de Alicante, Spain, Nov. 2017. URL:
https://neurogears.org/news/2017/10/12/inbc-2017.html
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7.4 Conference posters

■ A. Cuevas-Lopez, D. R. Quiñones, E. Pérez-Montoyo, V. J. López-Madrona,
J. Voigts, J. H. Siegle, S. Canals, and D. Moratal, �A low-power wireless
transmission system of neural data by hardware compression,� 49th SfN
Annual Meeting, Chicago, IL, USA, Oct. 22, 2019

■ P. Kulik, A. Doshi, A. Cuevas-Lopez, J. Voigts, and J. H. Siegle, �Real-
time processing and visualization of high-channel-count electrophysiology
data with the open ephys GUI,� 49th SfN Annual Meeting, Chicago, IL,
USA, Oct. 22, 2019

■ J. P. Newman, J. Zhang, J. Voigts, A. Cuevas-Lopez, and M. A. Wilson,
�An open-source PCIe based electrophysiology system for high data rate,
low-latency closed-loop experiments,� 47th SfN Annual Meeting, Wash-
ington, DC, USA, Nov. 14, 2017

■ A. Cuevas-Lopez, J. Voigts, and J. H. Siegle, �Open ephys: A �exible and
a�ordable data acquisition system for extracellular electrophysiology,�
10th FENS Forum of Neuroscience, Copenhagen, Denmark, Jun. 7, 2016

■ A. Cuevas-Lopez, Y. Patel, J. Voigts, and J. H. Siegle, �The open ephys
gui: Plugin-based software for high-channel count,� 45th SfN Annual
Meeting, Chicago, IL, USA, Oct. 21, 2015
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