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e Computational pathology is the automatic analysis of histological im-
ages.

e The present, challenges and future of computational pathology are an-
alyzed.

e Challenges: multi-gigapixel images, data heterogeneity and lack of la-
belled data.

e Future directions: explainable AI, data fusion and secure role-based
data sharing.

e Combining weak label strategies, active learning and crowdsourcing is
promising.
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Abstract

The field of digital histopathology has seen incredible growth in recent years.
Digital pathology is becoming a relevant tool in healthcare, industrial and
research sectors to reduce the saturation of pathology departments and im-
prove the productivity of pathologists by increasing diagnostic accuracy and
reducing turnaround times. Artificial Intelligence (AI) algorithms may be
used for the identification of relevant regions, extraction of features from a
histological image and overall classification of images into specific classes.
The combination of digital histopathology imaging and Al therefore presents
a significant opportunity for the support of the pathologists’ tasks and opens
up a whole new world of computational analysis. In this paper, we have
analysed the present, the challenges and the future of the computational
pathology discussing the different existing strategies to overcome its main
limitations and ensure the computational pathology acceptance. The lack
of labelled data, which is the possibly largest challenge for all medical Al
applications, is even more pronounced in computational pathology because
of the multi-gigapixel nature of the images and high data heterogeneity. We
consider the future of the computational pathology is the combination of
weak label strategies with active learning and crowdsourcing scenarios since
it would remove some of the workload from clinical experts and manual anno-
tation obtaining clinically satisfactory performance with minimal annotation
effort. In addition, we believe areas such as explainable Al, data fusion and
secure role-based data sharing will be receiving increasing research attention
in computational pathology in the close future.
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artificial intelligence

1. Introduction

Pathologists play a crucial role in cancer diagnostics. The traditional
work of a pathologist includes manual and visual study of tissue and bodily
fluids in a microscope to diagnose illness and guide treatment. This is a time-
and labour-intensive task, which relies on the expert eye of the pathologist,
hours of observation, research, and collaboration with other histopathological
experts. Even under optimal conditions, cancer diagnostics is a challenging
task that is often associated with a relatively disappointing reproducibility
among pathologists.

Unfortunately, the incidence of cancer in the western world has followed
a growing trend in the latest decades, resulting in a significant amount of
biopsies that need to be analysed in hospitals and clinics every year [1]. This
involves logistic and staff challenges, especially as Europe also faces an in-
creasing shortage of pathologists [2]. As a result, the high demand for cancer
diagnostic tests can lead to work overload in pathology departments and
important delays in diagnosis that have significant adverse impact on treat-
ments’ assignment and effectiveness. The ability to provide the patients, and
their clinicians, with a precise diagnosis, an accurate determination of prog-
nosis, and a predication of suitable therapeutic strategies may be improved
by the addition of supplementary immunohistochemical and genetic analy-
ses [3, 4] - however, this again relies on the use of scarce expert pathology
resources. Additionally, a significant number of early detection campaigns
are being launched at several European countries, with the objective of raise
awareness on the importance of prevention [5]. This is leading to an even
higher number of tests deriving to pathology departments throughout Europe
and in many other countries.

1.1. Increasing interest in Digital and Computational Pathology

Digital pathology is a sub-field of pathology that focuses on scanning,
interpretation, and management of digital tissue slides. Digital slides are cre-
ated when tissue slides are scanned with a microscopy slide scanner and it
provides high-resolution images called Whole Slide Images (WSIs) that can
be viewed on a computer screen. WSIs are also named gigapixel images
since their size is frequently of more than 10 pixels so that they require



large amounts of time and effort to be processed. Figure 1 shows the aspect
of a WSI at different magnification scales. Digital pathology has seen an
incredible growth in recent years as the quality of microscopy scanners has
increased and computational hardware has become more powerful.
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Figure 1: Example of WSI from a skin tissue sample at different magnification scales
depicted in red, yellow, blue, green and cyan regions. The maximum magnification scale
lets the visualization of an atypical mitosis located at the center of the cyan region.

Digital and Computational pathology are confusingly used apparently in-
terchangeably, yet mean somewhat different things. According to the Digital
Pathology Association (DPA), Digital Pathology is “a blanket term that en-
compasses tools and systems to digitize pathology slides and associated meta-
data, their storage, review, analysis, and enabling infrastructure” and Com-
putational Pathology is “a branch of pathology that involves computational
analysis of a broad array of methods to analyze patient specimens for the study
of disease focused on the extraction of information from digitized pathology
mmages in combination with their associated meta-data, typically using arti-
ficial intelligence methods such as deep learning” [6].

The increased attention on digital and computational pathology can be
recognized from activities of worldwide organizations. The US Food and
Drug Administration approved the first US digital pathology system for pri-
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mary diagnostic use in April 2017 [7]; the UK Life Sciences Industrial strategy
reinforced actions for the use of digital pathology [8]; the Royal College of
Pathologists stressed the need for investment to support digital pathology in-
frastructure [9]; the Innovative Medicines Initiative (IMI) launched a H2020
call focused on supporting the collaborative development of artificial intel-
ligence in pathology in 2019 [10]; the project funded by this call started in
February 2021 with the aim to create a repository of digital copies of around
3 million WSIs and a budget of 32 million euros [11]. There are also some
pioneer ongoing initiatives focusing on the digitization of the histopathology
departments of a few countries [12].

Digital and computational pathology are also becoming growing business
areas. The global digital pathology market is projected to reach USD 1,054
million by 2025 from USD 553 million in 2020, at a CAGR of 13.8% during
the forecast period [13]. The growth of digital and computational pathology
is not only reflected in social and economic terms but also in academia with
the recent increase in the number of publications in the field. 3.618 and 4.983
papers related to computational pathology and artificial intelligence terms
were published in PubMed in the last 5 and 10 years, respectively. This means
that the 72.6% of the publications are concentrated in the last 5 years. The
results follow a similar trend in Google Scholar where 66.830 out of 96.830,
i.e. a 69% of the papers, were published in the last 5 years. The statistics
of published papers according to their year are depicted in Figure 2. These
figures demonstrate significantly the interest of the scientific community in
the topic. In fact, there is a great effort in pushing forward the state of the
art in the computational pathology area. For an in-depth review of artificial
intelligence models for computational pathology and clinical perspectives, we
refer readers to [14, 15, 16].

1.2. Computational Pathology methods

The past years have seen an increase and improvement of artificial in-
telligence (AI) methods applied to histological imaging analysis. Al algo-
rithms may be used for WSI normalization, identification of regions of interest
(ROIs), extraction of features from a large WSI and overall classification of
images into specific classes. The combination of digital histopathology imag-
ing and Al represents as such a significant opportunity for the support of the
pathologists’ tasks. As seen in many computer vision and image processing
applications, early attempts in computational pathology integrated expert
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Figure 2: Statistics of published papers using as search query “computational pathology
and artificial intelligence”: (a) PubMed. (b) Google Scholar.

knowledge into feature extraction design, which is known as feature hand-
crafting. The features are generally produced by image processing methods
and thereafter feed into machine learning (ML) networks that can be trained
to perform different tasks. However, recent approaches are mainly based
on deep neural networks where feature extraction is an intrinsic part of the
model and features are automatically learned from data, known as data-
driven approaches or automatic learning. Image processing and ML-based
methods with good results can be found in the literature where statistical,
morphological, color, structural and/or textural features are extracted from
WSI and combined with well-known supervised classifiers (eg, support vector
machines, random forest classifiers, multi-layer perceptron, etc.) [17, 18, 19].
Some works also combine handcrafted features with deep-learning features
for accuracy improvement [20, 21]. Even when using deep neural networks
and data driven approaches, the system pipeline often includes preprocessing
steps based on more classical image processing [22, 23, 24]. Preprocessing
might especially be useful if there is a large diversity in the data or the
amount of training data is scarce. Overall, deep learning approaches usually
outperform traditional ML methods [25, 26, 27| and in this paper we will
focus on deep-learning approaches.

The earliest success of deep neural networks was in the task of image
classification, where an image was classified to be “cat”, “bird”, “bicycle”,
etc. This was done using supervised learning with an mage-based label,
for example using the ImageNet database [28]. When supervised learning is
applied to tasks like segmentation or detection of smaller structures, detailed
annotations and labelling of regions in the image are needed. Such labels are



called pizel-wise labels, or sometimes strong labels. For many computational
pathology tasks, we might only have access to the image-based labels that can
directly extracted from the patient’s medical records such as final diagnose,
grade and/or stage of disease, or follow-up information. However, learning
such a class is not as direct as in the ImageNet classification of images, since
the WSI are gigapixel images. A gigapixel image cannot fit into a neural
network “all in one go”, and has to be patched or tiled up somehow, see
Subsection 2.1 for more details. In addition, there are often large areas
in the image that are of no diagnostic relevance. If the regions of interest
are annotated and labelled with pixel-based labels, supervised learning is
straightforward. However, if only slide-based labels are available, learning
models are much more challenging. See Subsection 2.3 for an overview of
state-of-the-art deep learning models in computational pathology. Another
important challenge lies in dealing with histological imaging variability, see
Subsection 2.2 for more details.

The three aforementioned computational pathology challenges will be
widely discussed in the following section. Besides, in Section 3 we will dis-
cuss some other areas that we believe will be receiving increasing research
attention in computational pathology in the close future.

2. Challenges

Rising needs and challenges within the health service in general can also
be applied to the pathology specialty in particular. There is a continuous
increase in the demand of pathology services due to the increasing number
of biopsies and cancer cases as a consequence of the longer life expectancy
in Europe. Besides, novel screening processes with high sensitivity and low
specificity are now being implemented in general basis [2]. More efficient
prognosis in terms of time and personalization are key elements that need to
be in place to improve health services in our current society.

Within that context, computational pathology is fundamental to make
the pathologist’s work of gathering relevant diagnostic information far more
effective and accurate by combining the digitalization and the use of new Al
algorithms for automated analysis support of histological images. However,
the global establishment and full exploitation of this technology require se-
rious challenges to be tackled. We will here discuss some of the particular
challenges that we see within computational pathology.



2.1. Multi-gigapizel nature of images

One of the main limitations of the broad implementation of computational
pathology is that it heavily depends on optimized software and powerful
hardware to be able to deal with large gigapixel WSIs (around 2-3 GB per
digital slide). The large size of WSI also implies significant store requirements
at pathology departments and turns data transfer into a bottleneck.

Multi-gigapixel nature makes the processing of the complete WSI unfea-
sible. To work around this problem, the most common strategy is to follow
a patch-by-patch approach, breaking the image down into smaller patches
or tiles based on the annotation input or other preprocessing steps. Such
patches are stored and thereafter processed sequentially, and possibly inde-
pendently. Patching is used both in learning of models and prediction of
previously unseen slides. The patching is in itself a time-consuming process
and obviously require extra storage. An alternative workflow is to work with
list of coordinates pointing to regions of interest or patch corners. For further
processing and training of models such lists can be associated with several
tags and used as input. Such workflow can be flexible allowing different and
multiple resolution and sizes of tiles to be formed and processed on the fly.
However, this alternative can represent a high computational cost by itself
processing time since WSIs have to be loaded and preprocessed during train-
ing every time. The best patching option should be chosen depending on the
application and hardware characteristics. Patching has the inconvenience
of contextual information loss, and memory and computational constraints
can make it necessary to find a trade-off between resolution and patch size.
Multi-resolution analysis to integrate information from multiple scales has
also been explored in the literature [29, 30, 31, 32, 33]. A reasonable bal-
ance between the competing demands of speed and accuracy should exist
to be considered as the best strategy [34]. In recent years, attention-based
models are also gaining popularity as an alternative to the traditional patch-
based approaches mimicking the way the pathologist works to identify the
most relevant diagnostically indicative areas and try to learn only from them.
Their goal is to reduce the number of model parameters and make the model
complexity independent of the WSI’s size [35, 36, 37].

2.2. Standardization

WSI's quality is determined by the quality of the entire slide preparation
process which depends on the manual process of fixating tissue, cutting slices
using a microtome and staining of the histological slides. In addition, the
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scanning can be done with different types of scanners and settings. All
those steps may cause variations in WSIs and hinder automatic processing.
WSIs can many times include artefacts such as blurring, tissue folds, air
blobs and shadows, which degrade the quality of the image and reduce the
performance of systems which analyse them. In addition, for some cancer
types the tumors are removed by cauterization, leaving parts of the tissue
damaged and without diagnostic information.

Chromatic variability of WSI images can be significant between labs,
i.e. inter-hospital, due to stain, protocol and acquisition system differences.
Also the intra-hospital variability can be large due to lack of uniformity of
the stains used, difference in thickness of tissue slides, age of the slides prior
to scanning, etc. Dealing with color variation is imperative to facilitate an
analogous outcome in deep learning models. If it is not possible to provide
a large and diverse enough training set that all possible normal variations
are covered, different approaches can be followed to deal with slightly dif-
ferent colors of the WSIs: 1) color deconvolution and normalization and 2)
color augmentation. Normalization methods can be divided into histogram
matching, color transfer, and spectral matching [38]. Color deconvolution is
usually considered as a branch of color normalization aims at separating the
stains in a WSI [24, 39]. Color augmentation focuses on simulating realistic
stain color variations of the training data [40]. Color normalization has to be
done both during the training of models and during prediction while colour
augmentation only in the training stage.

Figure 3 and 4 shows some examples of the heterogeneity existing in
WSIs as for the presence of artefacts and color variability. Data hetero-
geneity joined with the common use of proprietary file formats in the dig-
ital pathology field makes image standardization of paramount. Although
the DICOM standard, widely used in radiology, now provides support for
Whole Slide Imaging (http://dicom.nema.org/Dicom/DICOMWSI/) and the
first standard-based commercial products are emerging on the market, inter-
operability in digital pathology is still more vision than reality.

2.3. To label or not to label?

Artificial intelligence algorithms are data-based and data-hungry, i.e. a
lot of data is needed to be able to make good AI models. Al models can be
learned by supervised, semi-supervised and unsupervised methods. The sim-
plest and most straightforward strategy is supervised learning, where training



Figure 3: Presence of artefacts in WSIs: (a) blurring, (b) fold, (c) burned/cauterized
tissue, (d) air bubble, (e) blood.

data has truth labels used in back-propagation algorithms to tune the pa-
rameters of the model. In order to ensure clinically relevant labels, expert
pathologists are needed to annotate/label the WSIs. Even semi-supervised
or unsupervised methods will usually need a validation/test set that is la-
belled according to the task, to be able to test the performance of prediction
models.

Due to its high clinical and scientific relevance, several Grand Challenges
or competitions on computational pathology have been launched in the re-
cent years with the aim of evaluating the performance of Al algorithms for
the automated detection and classification of cancer and/or some relevant
structures. The most important advantage of these events is to make WSI
annotated datasets publicly available and allow fair and objective compar-
isons between different methods [41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. Other
histological image databases can also be found on public data platforms such
as Kaggle, Cancer Imaging Archive or National Cancer Institute, among oth-
ers [51, 52, 53]. Despite the increase in the number of open-source histological
image datasets, the lack of detailed, pixel-based, labels is still a problem in



Figure 4: Chromatic variability in WSI in bladder tissue samples. First row: Images
acquired with a Leica SCN400 scanner by Stavanger University Hospital. Second row:
Images acquired with a Hamamatsu NanoZoomer 2.0HT scanner by Erasmus Medical
Centre Rotterdam. Even when the slides are scanned using the same hardware and at the
same hospital, there is noticeable color variation in the images.

many cancer types.

Then, we will briefly talk through some possible learning strategies seen
in computational pathology literature. A descriptive overview of the differ-
ent deep learning schemes used in computational pathology is illustrated in
Figure 5.

2.83.1. Fully-supervised learning

Many of the publications in computational pathology is targeting fully
supervised learning, where a training set is labelled consistently with the
relevant labels for the task. Deep neural networks (DNN) based on fully
supervised learning have very many parameters to learn and hence, require
a large training set to produce good models and avoid overfitting.

Regarding fully supervised learning, there are two main approaches: 1)
detect, locate or segment relevant objects in the image (such as mitosis,
nuclei, cells, glands, tumor) [54, 55, 56, 57, 58, 59] as a pre-requisite for
malignancy cancer assessment; and 2) direct image-level predictions (such as
disease diagnosis, prognosis or grading) [60, 61, 36, 37, 62].

Note that detailed annotations, i.e. pixel-based labeling, of WSIs is a
very time-consuming and complicated task because of the large size of the
images and the fact that often only parts of the slides contains diagnostically
relevant information. The annotation process is highly subjected to inter and
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Figure 5: An overview of deep learning schemes in computational pathology.

intra-expert variability and there currently exists no defined protocol for the
annotation of WSI for different tasks and diseases.

2.3.2. Weakly-supervised learning

Weakly supervised learning refers to learning a prediction model when the
associated truth labels of the training set are in some ways less accurate than
what the actual task requires. This occurs when we have training-sets that
are labelled, but the labels are not exactly what we need for the final task,
often referred to as weak labels. For example, a WSI has the label cancer -
high grade, but we want to localize the region. Or a label says that this patient
get recurrence of the cancer 6 months after the image was produced, but we
do not know if there is anything in that image that actually is correlated with
recurrence or not. In Section 1 the term image-based labels were introduced
as opposed to pixel-based labels. In computational pathology an image-based
label for a WSI will always be considered as a weak label, since the gigapixel
images always will have (large) regions of the image that are not very relevant
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for the task.

Weak labels is also a “weakly defined word” in that it covers different
situations, like where all of the training data is somewhat labelled, but not
very precise, or that some of the data have missing labels. It can for example
mean that the WSI only contains some metadata information like diagnosis or
follow-up, but no details in which region of the image that was diagnostically
important [63]. Another example of weak labels in WSI is if some areas in
an image is marked as belonging to a type of tissue, or a cancerous region,
whereas it might be other regions in the same image that are not labelled.
A third example is if regions are just roughly outlined.

One strategy in weakly labelled data is to combine clustering ideas by
measuring proximity in content as well as classification ideas measuring prox-
imity in output labels and features at different layers [64] [65]. Another
popular and successful strategy includes Multiple Instance Learning (MIL),
where multiple instances are put in a bag. The bag is considered positive
(to have a specific label) if at least one instance in the bag is positive [66]
[67]. Other strategies includes attention-based learning [35]. Other examples
of publications based on weakly supervised learning of WSI can be found in
(68, 69].

2.3.3. Semi-supervised learning

Semi-supervised learning usually refers to situations where parts of the
training data is fully and consistently labelled, and other parts of the data
is not labelled at all. A very relevant question is how properties of the data
can be used to improve decision boundaries and to allow for classification
that is more accurate than that based on classifiers constructed using the
labelled data alone [70]. Some semi-supervised approaches make additional
assumptions that link the input features to the decision function, for example
like cluster assumption, i.e. close in feature space should mean the same class
label [66]. Another way to utilize such semi-labelled data-sets is by using
autoencoders, where the unlabelled part of the data can be used to learn a
feature extractor. This can later be connected to a classifier, and the labelled
part of the data can be used to learn the classifier and potentially fine-
tune the feature extractor. Examples of autoencoders used in computational
pathology can be found in [71, 72]. Other strategies in insufficient labelled
data is to use models trained on small labelled training set to give initial
labels to a larger set and boost the learning by adding only the labels the
classifier is most confident of at each step and refine iterative in a self-learning

12



scheme [73].

2.3.4. Unsuperuvised learning

The goal of the unsupervised learning is to learn patterns from unlabeled
(or little labeled) data which made them desirable for the digital pathol-
ogy community. Unsupervised methods includes techniques like clustering,
autoencoders and generative adversarial networks (GAN), and there are ex-
amples seen in computational pathology [74, 75, 76, 77] and we will probably
see more unsupervised methods in years to come since unsupervised learning
is an active field of research. Most unsupervised approaches aim to maxi-
mize the probability distribution of the data, subject to some constraints,
to group data according to the target task. Current approaches usually re-
quire normal /healthy samples, that should be easier to obtain for training,
in order to detect any deviations from such normal data without the need
for labeled data. However, the overall performance still lags significantly
behind supervised approaches [78]. Unsupervised transfer learning solutions
such as unsupervised domain adaptation (UDA) or few-shot learning (FSL)
[79, 80] are also attaining increasing attention in the computational pathology
field. Another promising subclass of unsupervised learning is self-supervised
learning in which convolutional neural networks are explicitly trained with
automatically generated labels [81, 82, 83].

2.3.5. Transfer learning

Transfer learning refers to when a model trained for a task or type of
input-data is used for a new task or other types of input-data. The model can
be used without any further learning. More commonly, the feature extractor
part of the model is used as a backbone for a system. A new classifier part is
added to the feature extractor part, and a small labelled training-set is used
to learn the classifier in a supervised learning setup. Depending on the size
of the training-set, the transferred model can be frozen (unchanged weights)
or fine-tuned using the small labelled training-set.

Among the different deep learning schemes in computational pathol-
ogy, transfer learning is the most popular and widely adopted, usually us-
ing ImageNet pre-trained models such as Inception, ResNet, VGGNet, etc.
to transfer the features learned on such source task to weakly related or
unrelated target tasks as cancer classification/grading or disease prognosis
(84, 85, 86, 87, 88, 30, 89]. Domain adaptation is a particular case of of trans-
fer learning that utilizes labeled data in relevant source domains to execute
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new tasks in a target domain and this has been applied to computational
pathology [90, 91]. Stain transfer and normalization methods can also be
considered as a transfer-learning problem [92, 72]. Transfer learning is much
used in medical applications in general and its popularity lies in overcoming
the massive problem of getting enough labelled data. It is a new direction
with great potentials.

2.3.6. Other ways to label

Since the use of pathologists to label WSI in very large quantities is time-
consuming, very laborious, and quite costly, another trend in the computa-
tional pathology field is to combine different methods to annotate large sets
of WSIs: i) classic annotation by highly experienced pathologists, ii) multiple
annotation by less experienced pathologist following crowdsourcing methods
93, 94], and iii) a combination of human pathologist and automatic annota-
tion through active learning [95, 96]. The combination of different labeling
approaches is illustrated in Figure 6. This will not restrict the annotation to
expert pathologists but will allow to facilitate the image annotation process
involving pathologists with different grade of expertise or even researchers
with medical knowledge (non-pathologists) that can conduct labeling under
a strict statistical quality control. First, crowdsource tagging can be progres-
sively added to the pretrained models to verify whether the labeling quality
levels are maintained in terms of predictive performance when compared to
models trained exclusively with labels provided by board certified pathol-
ogists. Secondly, integrating Active Learning into the annotation protocol
will accelerate the annotation by introducing iterative annotation (use all
available annotations - train intermediary model based on all currently avail-
able annotations - use the manually curated output of intermediary model
to augment intermediary annotations - repeat).

3. Other future directions

3.1. Open up the black box

Deep image classification and prediction models can appear as a black
box, where data is sent in, and a class or prediction is outputted without a
good way to see why that particular prediction was made, or to, for example,
localize the area in an input image that contributed most to the decision. If
the training data used to learn deep neural networks is biased, the models
will learn and adopt these biases. In addition, systems can be misled by
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perturbations in the input [97]. Especially in medical applications, the black
box models can be seen as negative, since a high degree of trust is needed in
decision-making. However, recent developments have allowed data scientists
to gain insights in relation to “what the algorithms see”, moving “from black
box to glass box” [98].

Explainable AI, sometimes abbreviated as xAl, and explainable neural
networks comprise a relatively new research field within the machine learning
community, which is increasingly looking into ways to trace back the decisions
through the layers of the network, making decisions somewhat transparent
99, 100]. In the European General Data Protection Right (GDPR) laws,
there is a “right to explanation” embedded, emphasizing the need for inter-
pretability in algorithms. Nevertheless, transparency might come at the cost
of accuracy; thus, the right level of transparency should be sought. Inter-
pretability may be understood as providing visual or textual presentation
of how the model makes the connections between input features and output
predictions [101]. Algorithms may be built as inherently interpretable or, as
a way to not affect the accuracy of the model, following a highly accurate
model and later using re-representation techniques to provide an explanation
of the behaviour of the algorithm [101].

xAI tries to answer questions like i) “How does a learned feature affect the
prediction?” and ii) “Which learned features contribute to a selected predic-
tion?”, which can increase the trust level of deep neural network based algo-
rithms for medical applications. For questions ii) Break-down (BD) plots and
shapley Additive Explanations (SHAP) [102] are examples of methods suit-
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able with a limited number of features, whereas Local Interpretable Model-
agnostic Explanations (LIME) [103] is an example of an algorithm that is
more suited for image analysis and can be used to explore question i). We
believe that an important future direction of computational pathology is to
explore and adapt such algorithms to increase the interpretability of the de-
veloped neural networks to ensure the clinical reliability and the acceptance
by pathology community. Attention-based models are also an alternative to
increase model interpretability. Although attention units are not trained with
the aim of creating human-readable explanations, they do directly reveal a
map of which information passes through the network, which can serve as a
form of explanation [104]. In addition, xAI opens a way of discovering new
image patterns that pathologists may ignore but can be relevant in similar
cases with different clinical progression and that are currently an unsolved
problem in the medical community. The topic of XAl is already getting some
attention in computational pathology [105, 106].

3.2. Data fusion

Clinical and histopathological features alone are currently unable to pre-
dict the clinical behaviour for all carcinomas and the combination of data
has become increasingly important for personalised diagnosis and prognosis.
Al algorithms can combine the features extracted from digital histological
images (WSIs) with proteomics through immunohistochemistry (IHC) data,
epigenetic and genetic information, spectroscopic images and even with other
imaging techniques. The comprehension of the molecular mechanisms which
allow for the cancer dissemination can be an essential step in the predic-
tion and prevention of the metastasis process. Incorporating proteomic data
from THC analyses adds a layer of significant data to the analysis process.
Epigenetics has emerged as a frontier science of biology which has an impor-
tant role in the progression and diagnosis of some tumours. Spectroscopy
is a highly promising optical technology in the combined identification and
localization of pathophysiological cell and tissue alterations.

Different powerful, in-vivo, noninvasive techniques such as magnetic res-
onance imaging (MRI), optical coherence tomography (OCT), endoscopy or
ultrasound imaging are also widely used for the early detection of cancer and
can be invaluable in the evaluation of the progression of a tumor. Although
this kind of analysis is usually done before the biopsy and therefore prior to
the histopathological examination, its results can be significant in providing
pathologists with annotations of regions and features of interest. Therefore,

16



the fusion of WSIs with other data sources may deem relevant in the future of
computational pathology and can help professionals in detection, diagnosis,
prognosis, treatment and monitoring of cancer lesions.

The fusion of multiple data sources can be performed following both early
and late fusion strategies. In the late-fusion modality, classification algo-
rithms for diagnosis and prognosis are developed for each of the data types
separately, and fused at a later stage. In early-fusion strategies, the system
incorporates all the different types of data input from the start, and learns to
make predictions as a single output which processes all the different datasets.

3.8. Secure and efficient role-based data sharing

One of the key factors to boost research and technical development in
a particular area is that researchers get access to relevant data. This is a
major drawback for many medical applications, since the privacy regulations
around medical data often only allows the data to be used for a particular
research project and under strict regulations. Full anonymization of data is
sometimes hard to do for different reasons, one can be that it is desirable to
connect followup information in the future with a particular data-point. The
computer science society is currently giving a lot of research effort to find
secure solutions for role-based sharing of data and metadata, using smartcon-
tracts and blockchain technology [107, 108]. With secure ways of sharing data
so that you are authenticated and you only get access to the part of the data
you are authorized to see, it is possible with easy sharing for second/experts
opinion, for running samples on other automated diagnostic systems, and
sharing to the research community for developing new models and methods
or adapting existing models. We believe that computational pathology will
benefit from the possibilities given by secure and efficient role-based data
sharing, and that this should be an area for future development.

4. Conclusion

Pathology has repeatedly been highlighted as being ripe for innovation
in terms of workflow efficiency and more accurate diagnostics. Despite a
boost in sales of digital pathology systems, diagnostic pathology in practice
today is still a slow and cumbersome process that relies heavily on the sub-
jective interpretation of a microscopic image by a qualified pathologist. Al
addresses the challenge to modernize and improve pathology departments’
workflow optimising current diagnosis, prognosis and monitoring processes to

17



help pathologists to reach better-informed decisions. Computational pathol-
ogy can provide repeatable and automatic diagnostics as a second opinion,
predict prognostic values and provide the pathologists with region of inter-
ests. It has potentially the power of reducing the workload on the pathologists
and reduce the turnaround time at pathology labs, and is becoming an area
of research and rapid development.

Within this context, in this paper, we have analysed the present, some of
the challenges and some future directions of computational pathology. The
possibly largest challenge for all medical AT applications is the lack of labelled
data. The research community is working from different angles to come with
solutions to this problem in all applications. In computational pathology, it
is a specially large problem due to the nature of the images and high data
heterogeneity due to color variability and tissue/disease-related variations.
Image processing algorithms are usually used for WSI preprocessing (e.g. for
color standardization) with the aim of alleviating the problem of data diver-
sity and scarcity. Although transfer learning is the most popular deep learn-
ing scheme used in computational pathology since it overcomes the problem
of getting enough labelled data, new directions have arisen such as weakly-
supervised, semi-supervised or unsupervised learning via multiple-instance
learning, attention-based models, autoencoders, generative adversarial net-
works, few-shot learning, domain adaptation or self-learning schemes, among
others. These approaches are gaining popularity and open up a whole new
world of possibilities. In particular, we consider that the combination of
weak label strategies with active learning and crowdsourcing scenarios will
be a very promising line of research and widely addressed in the close future.
It would remove some of the workload from clinical experts and manual anno-
tation obtaining clinically satisfactory performance with minimal annotation
effort.

In addition, we believe we will see an increased focus on explainable Al
for computational pathology, which has the potential of both gaining the
trust of pathologists to use Al, but also provide us with new knowledge, not
solely mimicking pathologists to reduce workload. Fusion of different data
sources can also provide new insights, and we believe we will see more of that
in computational pathology in years to come. In parallel, we believe that
computational pathology will benefit from the possibilities given by secure
and efficient role-based data sharing which would be useful for making more
data available across research consortium and countries and overcoming the
massive problem of lack of data.
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