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Abstract. The Big Data domain offers valuable opportunities to gain valuable 
knowledge. The User Interface (UI), the place where the user interacts to ex-
tract knowledge from data, must be adapted to address the domain complexities. 
Designing UIs for Big Data becomes a challenge that involves identifying and 
designing the user-data interaction implicated in the knowledge extraction. To 
design such an interaction, one widely used approach is design patterns. Design 
Patterns describe solutions to common interaction design problems. This paper 
proposes a set of patterns to design UIs aimed at extracting knowledge from the 
Big Data systems’ data conceptual schemas. As a practical example, we apply 
the patterns to design UI’s for the Diagnosis of Genetic Diseases domain since 
it is a clear case of extracting knowledge from a complex set of genetic data. 
Our patterns provide valuable design guidelines for Big Data UIs. 

Keywords: User Interfaces, interaction patterns, Big Data. 

1 Introduction 

Extracting knowledge from Big Data is not a trivial task and usually involves interact-
ing with the data by identifying, combining and managing multiple and heterogeneous 
data sources as well as constructing advanced analysis models to predict outcomes. 
This task is performed at the User Interface (UI)¾the contact point between user and 
data. To design UIs for Big Data domain, software designers should know the data 
consumption challenges in this domain, understand the needs of the direct beneficiar-
ies of the information and formulate solutions to design the UI.  

The Interaction Design Patterns approach is commonly used to design UIs. An In-
teraction Design Pattern (IDP) deals with an interaction problem in the UI design and 
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provide a design solution to solve it. The interaction problems in the Big Data analy-
sis are different from the traditional data analysis ones. How to interact with the data 
when they surpass any of three dimensions volume, velocity, and variety [1] is a prob-
lem to address in Big Data and the literature do not fit such Big Data interaction need; 
therefore, identifying suitable IDPs that help the designers to develop interactive Big 
Data UIs is a challenge.  

We aim to define a set of IDPs for extracting knowledge from Big Data. To do 
that, we a) analyze several real Big Data use cases available in the literature, b) identi-
fy the challenges posed by the domain, and c) derive IDPs as solutions to such chal-
lenges. Each IDP describes in detail the user-data interaction, referencing the data 
schema (conceptual model) that the interactive system supports and highlighting the 
effect that the dimensions of volume, velocity, and variety produce on the interaction. 

We illustrate the IDPs by applying them to the Diagnosis of Genetic Diseases 
(DGD) domain, a concrete Big Data example. In this domain, the researchers extract 
knowledge by contrasting huge volumes of genetic data with information from data 
sources of heterogeneous formats [2]. Several tools have been developed to support 
the researchers in the genetic data analysis [3]. However, the lack of intuitive and 
interactive-usable mechanisms of such tools converts the analysis activity into a com-
plex and time-consuming one. That is why this domain is the perfect setting to apply 
the defined IDPs. We illustrate the IDPs through UIs designed for analyzing genetic 
diseases and highlight the benefits of using such UIs. 

This paper is organized as follows: Section 2 discusses several endeavors aimed to 
define IDPs. Section 3 discusses relevant concepts in the DGD, the domain where we 
will illustrate our patterns. Section 4 describes the Big Data challenges upon which 
the IDPs have been derived. Section 5 presents the classification of the proposed IDPs 
and how they have been applied to the illustrative example. Finally, section 6 discuss-
es the conclusions and outlines future work. 

2 Related Works 

The pattern term comes from the design of buildings and architectural planning [4]. 
Later, the pattern term was adopted by HCI and Software Engineering disciplines. 
Especially in the UI design context, the patterns emerged to solve interaction design 
problems, hence its name “interaction design patterns”.  

There is a wide range of IDPs collections, available in articles, web sites, and 
books addressing several platforms and domains. Tidwell’ book [5] describes a pat-
tern collection to deal with common design problems of the web, desktop, mobile, 
social media UIs. For example, the “Showing Complex Data” chapter deals with de-
sign problems to represent large and complex data sets. Duyne et al. [6] present a 
pattern collection, organized into 13 groups, to design websites pointed to several 
domains (e.g., government, e-commerce, educational). The “K. Making Navigation 
Easy” group, for example, contains 14 patterns to make the web navigation easy to 
understand and easy to find by applying techniques for organizing and displaying 
navigational elements. In the Information Retrieval domain, Schmettow’s article [7] 
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exposes a pattern language containing 10 patterns for designing UIs in this domain. 
Other patterns dealing with massive data sets have been presented by the industry 
such as Expero (an enterprise focused on the user experience for complex domains) 
that exposes through webinar1 a set of patterns to solve design interaction problems 
such as How to configure a complex data table to view the status at a glance? Or 
When to apply column filtering to display what user wants to see?  

In the Big Data domain, the published literature about IDPs is limited, and the little 
existing literature describes the problems rather than providing solutions. In particu-
lar, the problems related to data consumption (i.e., the way in which users extract 
knowledge from data) are documented in Big Data’s use cases ([8], [9], [10]), howev-
er, there is no formal proposals to solve them. 

In relation to how to apply the patterns to design UIs, as far we know, there is no 
formal method or standard recipe. However, Situational Method Engineering (SME) 
[11] becomes a potential framework for formulating a pattern-based UI design meth-
od. SME aims to create a method adapted to a specific situation by harmonizing 
fragments of existing standard methods. The Big Data UI design is a specific situation 
where the patterns, which form the UI, behave as fragments that can be selected from 
situational factors and data characteristics. 

At the user interface level, Big Data interaction problems have been little studied. 
Addressing these problems involves considering the Big Data dimensions and the 
inherent connection between the UI and what happens behind it. In this work, we will 
analyze the Big Data’s use cases to define the interaction involved in the knowledge 
extraction and then we will suggest IDPs as solutions to design UIs for extracting 
knowledge from Big Data.  

3 The Diagnosis of Genetic Diseases (DGD) 

Differences between humans are registered in the genome under the name of “genetic 
variation”. Genetic variations not only represent different physical traits among hu-
mans but can also be the potential cause of genetic diseases (e.g., Alzheimer, Neuro-
blastoma). The DGD aims to extract knowledge from genetic data to diagnose a cer-
tain disease by identifying the disease-causing genetic variations and it represents a 
complex and time-consuming data comparison process. The researchers use web 
browsers provided by public biological databases (e.g., PubMed, ClinVar, dbSNP, 
and other databases maintained by the NCBI2) to search for and identify the diseases 
related to each of the genetic variations of a sample, which are commonly stored in 
large digital files (e.g., VCF file3). The main concepts and their relationships sur-
rounding the DGD are described in an earlier work [12] through a conceptual model 
(CM) upon which an application for DGD, named GenDomus, was designed. 
                                                             
1  https://www.experoinc.com/post/ui-design-patterns-for-navigating-complex-data-sets-

online-seminar. 
2  National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/guide/all/ 
3  The Variant Call Format (VCF) Version 4.2 Specification. https://samtools.github.io/hts-

specs/VCFv4.2.pdf 
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DGD is a clear example of Big Data. Table 1 shows the special data characteristics 
of this domain in terms of Big Data dimensions. 

Table 1. DGD data characteristics in terms of Big Data dimensions. 

VCF files Volume The size of a VCF file ranges from gigabytes to terabytes. Frequently, more than 
one file is required to perform the data analysis. 

Variety The content format of this text file is semi-structured. Each genetic variation in 
this file is described in one row and several tab-separated text columns; howev-
er, several different data can be stored in the same column. 

Velocity VCF files are processed in batch mode. 
Biological 
databases 

Volume Especially, PubMed, the database most frequented by researchers, contains more 
than 28 million citations of biomedical literature, as reported on its website4. 

Variety Biomedical literature contained in NCBI biological databases is available as web 
text, PDF documents, images, videos, or XML format. 

Velocity The data from biological databases can be retrieved on demand by using availa-
ble APIs or FTP service and processed in batch mode. 

 
A systematic way to perform the DGD is the SILE methodology [13], which con-

sists of four levels: Search (the researchers search for external biological databases 
and select those that serve the analysis purposes), Identification (for each biological 
database, the researchers identify the content suitable for the analysis), Load (the 
VCF files and the biological databases content are loaded into a central repository) 
and Exploitation (the researchers explore, operate, analyze, and extract knowledge 
from genetic data by drawing conclusions from them). 

In the next sections, we will illustrate how the proposed patterns, embedded into 
UIs, match with the SILE methodology levels and deal with the interaction difficulties 
immersed in identifying disease-causing genetic variations.  

4 Big Data Challenges in Knowledge Extraction  

Our two initial steps in defining IDPs in the Big Data are: to analyze several real Big 
Data’s use cases and to identify clearly the challenges related to the data consumption 
issues (i.e., browsing, exploring, and visualizing the data). We analyze real Big Data’s 
use cases since they become ideas arising from real environments to address a specific 
need, as explicitly described by IBM [8]. We studied 27 Big Data use cases (5 IBM’s 
Big Data use cases [8], 7 Pentaho’s use cases [10], 10 use cases exposed by Laskow-
ski [14], and 5 use cases reported by Datamer [9]) from different domains and indus-
trial sectors (e.g., online stores, financial services, security, real state, pharmaceutical, 
energy management, IoT and telecommunications service). From the set of Big Data 
use cases, we identified the common challenges related to the knowledge extraction 
and summarized them as follow: 

• Challenge 1: Enhance Data Discovery. – Need for novel mechanisms to navigate 
and explore structured and unstructured data sources. These mechanisms should 
consider the large amount of data and the diversity of data sources, the provenance 

                                                             
4  https://www.ncbi.nlm.nih.gov/pubmed/ 
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(e.g., data within and outside the limits of what you have). This challenge is related 
to the use cases in [8]. 

• Challenge 2: Enlarge visualization. – Need for advanced visualizations and pow-
erful interactive dashboards to present, in a single UI, a complete view about an en-
tity of interest. The visualization should consider different perspectives to represent 
the data (e.g., data charts) and support static data as well as data in motion (i.e., 
such as audio, video, social media). This challenge is related to the use cases in [8], 
[10], [9]. 

• Challenge 3: Perform data analysis operations. – Need for intuitive mechanisms 
to operate the data to find differences and similarities between different datasets. 
Data operations should consider the different data types (e.g., relational data, ma-
chine data, social media data) as well as the state of the data (static data or data in 
motion). This challenge is related to the use cases in [8], [14], [9].  

• Challenge 4: Contextualize data by augmenting it. – Current data analysis relies 
on the data warehouses content; therefore, the conclusions drawn from the analysis 
are limited to such data warehouse content. To draw better conclusions, users re-
quire enriching the data warehouses with information in context (i.e., place, social 
space, time) from internal or external multi-structured data sources. This challenge 
is related to the use cases in [10], [14], [9]. 

The Big Data challenges are common to all domains dealing with large volumes of 
heterogeneous data, and the genomic domain is one of them. Therefore, the challeng-
es will serve as a starting point to derive IDPs for extracting knowledge from genetic 
data.  

5 Interaction Design Patterns (IDP) 

Based on our context, we define an IDP as a proven solution to a recurring interac-
tion design problem in the knowledge extraction from Big Data. Where “interaction 
design problem” refers to the difficulty of designing the user-data dialog when ex-
tracting knowledge from data. Therefore, the answer to “how” the dialog can be per-
formed becomes an IDP that can be implemented into a UI, allowing the user to com-
plete his/her task. For example, when designing the UI for purchasing an airline tick-
et, one of the design problems we must face is: How can the user specify the depar-
ture and return dates? The proven solution to such a design problem is an IDP which 
has already been documented by other authors (e.g., the Date Selector pattern5 from 
the Welie.com catalog). 

A UI is an individual piece of presentation containing visual components known as 
widgets (e.g., list box, push button) which can be manipulated by the user to perform 
an interactive task. Designing UIs is a difficult task since the aesthetic and behavior 
aspects should be considered as well as the strong dependency with the platform de-
rived from the use of concrete widgets. To avoid such difficulties we adopt a high-
                                                             
5  Data Selector pattern. http://www.welie.com/patterns/showPattern.php?patternID=date-

selector 
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level perspective by focusing on the abstract and generalist instead of the concrete and 
specific. To this end, the concept of interaction units (IU)[15] becomes a useful per-
spective since it defines an individual piece of presentation by abstracting both the 
presentation and behavior from the UI. The IU represents the “what”¾ the task or set 
of tasks to be performed by the user¾and contains several interaction patterns rep-
resenting the “how” such tasks can be performed. Indeed, an IU encloses several in-
teraction patterns aimed to achieve a common goal. The interaction patterns range 
from the simplest to the most complex interaction. Elemental patterns represent the 
atomic interactions becoming the building blocks of the interaction and can come 
together to form more complex compound patterns called composite patterns. Using 
the elemental patterns proposed in this paper implies the existence of an underlying 
CM that represents the data abstractly since such patterns work with the information 
represented in conceptual schemas. The CM is specific to the problem to solve, in our 
example, we use the DGD model [12] as illustrative study. 

From the implementation point of view, an IU becomes the form or web page with 
which the user interacts [15]. A standard website for purchasing airline tickets, for 
example, contains at least three IUs represented by three web forms such as “Book 
flights” to specify departure dates, “Choose flights” to specify the available flights and 
“Purchasing flights” to pay for tickets. The user interacts with each IU to achieve 
his/her goal: “To buy an air ticket”.  

In the Book flights web form, the “how the user can specify the departure and re-
turn dates” could be solved through an elemental pattern whereas in the “Purchasing 
flights” web form, the “how to deal with the pay process” could use a composite pat-
tern containing two elemental patterns: The input data for the credit card information 
and the payment gateway that informs whether the payment has been approved or 
denied. 

 

Fig. 1. Overview of the interaction units (IU) and interaction patterns for extracting knowledge 
from Big Data 
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Based on the identified Big Data challenges, we identify the IUs and patterns need-
ed to extract knowledge from the Big Data domain, as shown in Figure 1. In this sec-
tion, we will define each IU and interaction pattern and demonstrate how they can be 
applied through an illustrative example: The Diagnosis of Genetic Diseases. 

5.1 Interaction Units 

From Figure 1, the data environment for extracting knowledge is made up of three (3) 
IUs, defined as follow: 

Knowledge extraction. -  It acts as an IU container by encapsulating the set of in-
dispensable IUs for extracting knowledge. This IU is related to all Big Data challeng-
es (i.e., challenge 1 to 4) since it provides access to the IUs involved in the knowledge 
extraction space, as shown in Figure 2 or 3 for our illustrative example (DGD). 

Figure 2, for example, shows the "navigation tabs" to navigate to the Data Man-
agement and Exploration UIs. The implicit top-level UI containing the navigation 
structure becomes the implementation of this IU.  

Data Management. – It searches for and identifies the available data sources and 
highly related to the subject under study. This IU is related to challenge 3. 

Figure 2 shows the UI web that implements this UI for our illustrative example 
(DGD). Because not all the content of the data sources is useful for diagnosis, the 
content must be verified and selected before being loaded and thus safeguard the per-
formance of the application. Therefore, the user can work with a comparison matrix 
(Figure 2b) where the data sources and genetic samples available in the "Data Cata-
log" panel can be added and compared in memory (Figure 2a). Crossing of genetic 
samples with the content of the data sources reveals similarities or significant differ-
ences that are useful to determine the appropriate content of the sources to be loaded 
for analysis purposes. The red "Set operation" red box represents an IDP involved in 
this UI that will be explained in detail in the next section.  

Exploration. – It allows the user to explore, visualize, analyze and understand the 
data, make relevant annotations and share insights to draw conclusions. This IU is 
related to the challenges 1, 2 and 3. 

Figure 3 shows the web UI design that implements this IU for our illustrative ex-
ample (DGD). Through this UI, the user prioritizes the genetic variations and genes 
causing a certain disease by exploring and filtering the data, as well as visualizing the 
data distribution from different perspectives. This UI is made up of three panels locat-
ed on the left, top and bottom of the UI, respectively. The left panel, hosting two sub-
panels, aims to keep the user aware of the data analysis interactions performed and 
provide contextual information about a certain topic of interest. The top panel (“Navi-
gator” panel) allows to visualize the data from several perspectives and manipulate 
the data in a direct and intuitive way. The bottom panel displays the resulting data 
from the filter conditions applied in the top panel. The IDPs involved in this UI will 
be explained in the next section. 
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Fig. 2. Design of data management user interface. Source: The authors 

 
Fig. 3. Design of exploration user interface. Source: The authors. 
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5.2 Interaction Patterns 

In this section, we define the IDPs stated in Figure 1 by using a five-parts template 
(name, context, problem, solution, why, and example) which was defined as a com-
mon denominator between other analyzed templates ([7], [5]). Especially the “exam-
ple” part of the template describes how the pattern has been applied to the DGD, our 
illustrative example, by referring to CM [12] of the DGD. What challenge solves each 
pattern and what level of SILE methodology is affected by each pattern are showed at 
the end of this section.  

Name: Implicit Data Delivery 
Context: User interfaces showing vast volumes of data present performance prob-

lems. The user navigates across the dataset by visiting part by part like a person navi-
gates across the pages of a huge book. 

Problem: Users experience delays when scrolling through large data volumes. 
How to improve the user experience when showing and navigating through large data 
volumes? 

Solution: Allow the user to navigate freely across the data set. Loading and deliv-
ering the data as the user navigates through a data set of interests. The data is loaded 
only when the user expresses implicitly her intention to move across them (e.g., navi-
gate freely by an entire data table), rather an explicit intention of the user (e.g., paging 
control). This solution is applicable to retrieve any data object from the underlying 
data schema. 

Why:  Users need to visualize and navigate the data in a fluid manner, even when 
the data volume grows exponentially to terabytes or petabytes and the sources that 
provide them are scattered and with different structures (i.e., structured or unstruc-
tured). Navigating and viewing the entire data set is very expensive in terms of per-
formance. The implicit on-demand data delivery is an adequate alternative since it 
motivates the user to discover the unknown data set by visualizing it and navigating it 
through each of its parts, focusing on one area of interest at a time. The navigation 
and visualization status is updated according to the intention to consume the data, 
making the data recovery transparent to the user. This pattern takes advantage of the 
performance and computational processing by loading the data on demand. Thus, the 
UI is not overloaded with data. 

Example: In the Identification and Exploitation SILE’s levels for the DGD, the us-
er scrolls through large sets of genetic variations (represented by the Variation class 
in the CM). Figure 3g shows a data table containing more than 10.000 genetic varia-
tions records to be explored (a number easily reached in the genetic test, even when 
several data filter conditions have been applied), of which only 4 are visible. Instead 
of using a paging control to navigate the data table, the table implements the "Implicit 
Data Delivery" pattern allowing the user to fluidly navigate the content. When the 
user scrolls freely the table, only the section of genetic variations of interest is implic-
itly requested, loaded, and displayed. Therefore, the user can scroll from the first rec-
ord to the thousandth record through a single mouse scroll movement without over-
loading the UI with data.  
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Name: Filter Movable Box 
Context: The user segregates large volume of data by using predefined filter op-

tions which are generally placed in a restrictive area of the UI. To filter and visualize 
the effects in the data, the user moves to the predefined filter area, then apply the filter 
and finally, move again to the data chart to visualize the results. The time of response 
is affected by the required performance to process the large volume of data.   

Problem: How can the user define filter conditions and apply them in a fluid way 
within the analysis space? 

Solution:  Allow the user to define data filter conditions from any intrinsic object 
attribute in the underlying data schema. Of course, the representation aspects and 
filter operations available in each filter box will depend on the object attribute’s data 
type. A numeric data type, for example, can be well represented by a “single slider” 
component to select a certain value or a “multiple slider” component to determine a 
range of values. Likewise, filter operations such as greater than (>), equal to (=) can 
be included to express the data filter condition. The user is free to move the filter box 
across the canvas and to place them wherever he/she need it. 

Why: The “pre-defined” filters limit the data filtering to specific criteria of the 
domain. What if we need to extend the set of filters? This pattern allows the user to 
create filter options from any attribute from the underlying data schema under analy-
sis. In the front-end, the filter boxes can be moved and placed next to data charts al-
lowing the user to filter the data and to look directly at the effect caused, thus, users 
avoid moving unnecessarily between the parts of the UI (data charts and the filter 
options usually predefined and strictly located in a specific area within the UI) to look 
at the results of the data filtering. In the back-end, performance issues need to be con-
sidered to process the large data volume since high performance to index and process 
the data on the fly is required when filtering the data. Node-based databases engines 
are suitable to store large volume of structured and structured data; however, the in-
dexation of data is an issue to be considered when filtering the data.  

Example: In the Identification and Exploitation SILE’s levels for the DGD, a 
common task is to filter the genetic variations. Figure 3a shows this pattern imple-
mented to assist the user to perform such task. From the CM, the user has selected the 
name and position attributes (from Phenotype and Variation classes respectively) to 
create the Phenotype and Position filter boxes. So, when the user selects the “Breast 
Cancer” as disease name in the Phenotype filter box, the visual data components (i.e., 
data charts, data table) refresh their state by showing the updated distribution of varia-
tions matching the Breast Cancer disease. Likewise, by using the Position filter box, 
the user filters the genetic variations ranging from 10.000 to 20.000 positions into the 
chromosome.  

Name: Set Operation Box 
Context: Users compare two or more data sets to find similarities or differences 

between them. Data query languages rely on set operations to compare data sets. Such 
languages are difficult to use for non-technical users.  

Problem: How can the user perform set operations on data in an intuitive way? 
Solution: Provide the user a set operations kit (i.e., union, intersection, comple-

ment, difference) to compare data sets sharing at least one common attribute of the 
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data schema. The user must select as input, at least two data sets from the data sche-
ma, and then select the set operation to be performed.  Because of comparison, a new 
data set is created that can be reused in further comparisons. In the Big Data domain, 
the set operations must be supported by a sound technological architecture with a 
high-performance data processing because of a large amount of existent data.  

Why: The user identifies valuable information by comparing several data sets. Of-
ten. This pattern allows the user to operate the data intuitively avoiding using and 
understand complex query languages and relying on technical users to extract 
knowledge from the data. The variety and volume of data are two Big Data dimen-
sions committed in this pattern. The first involves the hardware performance needed 
to integrate dispersed sources with different formats that participate in the operation. 
The second involves increasing memory and storage to store the data produced by the 
operations performed. A hardware architecture with a flexible vertical and horizontal 
scaling support is appreciated for the implementation of this pattern. 

Example: In the Search and Identification SILE’s levels for the DGD, one of the 
key issues is to select the adequate data sources for the analysis. The reliability of the 
findings depends on large extent on the data used in the analysis. Not all the available 
data is useful for the data analysis. Selecting the adequate data sources, those contain-
ing the most number of variations matching with the variations in the sample under 
study, ensures valuable and accurate conclusions. Figure 2 shows this pattern applied 
to identify the adequate data sources for DGD. From the Data Catalog (Figure 2a), the 
user adds the data sources (represented by Data Source class in the CM) to the com-
parative matrix (Figure 2b) in the Data Comparison panel. The panel contains the "set 
operation” box located in the top-right corner. The intersection, the set operation se-
lected in this case, is applied to each data source located in the first column and to 
each genetic sample located in the first row. The number of genetic variations match-
ing between the data sources and the samples is shown graphically through a circle of 
variable area along with its value expressed as a percentage. The user selects the data 
sources containing the highest degree of concurrence with the samples. Finally, the 
selected data sources are added to the "Selected Data Sources" panel. 

Name: Visualize-connect-filter 
Context: Users use data charts (e.g., bar, lines, maps) to understand the data, even 

more, if it comes in enormous data volumes. A chart is an isolated view that shows 
how the data behaves respect to a particular point of view. Working with multiple 
data charts makes possible to show the behavior of the entire data set. However, 
working with several charts at the same time is complicated. If a filter condition is 
applied to the entire data set, each data chart must be manually updated to present the 
new behavior.  

Problem: How can the user visualize the multiple changes in the data behavior 
caused by a simple filtered data? 

Solution: Allow the user to orchestrate all data charts to visualize, from different 
perspectives, how the data behaves against a certain condition. Provide a canvas 
where the user is free to place interactive data charts and organize them according to 
their needs. For each chart, the user sets the data objects, from the underlying data 
schema, to be displayed. To define the behavior between the charts, the user can de-
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fine links between the data objects that populate the charts. In this way, an interaction 
performed (e.g., filter) on a chart’ sector will automatically affect the display state 
(behavior) of the charts linked to it. 

Why: This pattern allows users to explore and filter the data visually, intuitively 
and interactively, focusing on the details while maintaining the overview of the big 
picture. Combining this pattern with the Command History pattern [5] that shows the 
list of events performed, the user remains aware of the traceability of the actions. The 
Big Data dimensions of volume, variety, and velocity are directly related to this pat-
tern. In many cases, visualizing the large volume of data requires an architecture that 
supports GPU accelerated visualization. Display components must support the variety 
of content formats (images, text, video, sound) including graphics that support the 
visualization of multiple variables and various organizational models (e.g., hierar-
chical, tabular, geographic, linear data, node networks interconnected). The connec-
tion between interactive graphics becomes an alternative to integrate dispersed and 
heterogeneous data sources in format. When graphs are connected through semanti-
cally similar data attributes, the underlying data sources that feed each graph are im-
plicitly integrated. Depending on the velocity of data consumption (i.e., real time, or 
batch mode), visualization components can range from 2D distribution data charts to 
complex real-time monitoring charts that allow configuring alerts to react to events. 
Contrary to data processed in batch mode, real-time data imposes high performance 
on rendering the visualization implying the need for cloud rendering software or an 
underlying architecture supporting hardware-accelerated interactive data visualiza-
tion. 

Example: Figure 3 shows this pattern implemented for the Exploitation SILE’ lev-
el for the DGD where the user can filter intuitively and visualize the data. By select-
ing the Chromosome and Variation classes from the CM, the user has set the Pie 
Chart (Figure 3d) entitled as “Chromosome vs Variant”. Similarly, the Genotype and 
Variation classes from the CM have been used to set the Bar chart (Figure 3e) entitled 
as “Genes vs Variations”. The dashed lines indicate the dynamism when filtering and 
exploring the data. When the user “click” the sector corresponding to the chromosome 
17 in the “Chromosome vs Variant” chart (arrow pointer), the “Genes vs Variations” 
chart refreshes its content by presenting the genes contained within the chromosome 
17 (i.e., CDH, BRCA2, BRCA1), and how they are distributed according to the num-
ber of genetic variations. In addition, each filter interaction is registered into the “His-
tory Filters” panel (i.e., an implementation of the Command History pattern). 

Name: Interaction Recommender 
Context: Users need to be supported when navigating across the voluminous and 

heterogeneous set of data. By interacting with the data, the user requires relevant in-
formation (e.g., events, people, places, things) relatives to the data of interest. 

Problem: Each user-data interaction expresses the user needs in an indirect way. 
How can the user be provided with knowledge obtained from such interactions? 

Solution: Store the interactions performed by the users together with the involved 
data schema’ elements and the related contextual information. For each meaningful 
interaction performed by the user, the application identifies similar stored interac-
tions, gathers contextual information and defines alternatives exploration ways based 



13 

on the data schema. The application uses the information to support the user across 
the data navigation. 

Why: The human capacity to figure out all relationships in the large volumes of 
data is limited. This pattern uses the user-data interaction (e.g., select, filter), compare 
it with existent ones to obtain contextual information which is made available to user 
as suggestions to enhance his/her data navigation. The variety and volume Big Data 
dimensions affect the user-data interaction. The underlying infrastructure must to 
consider automated and scalable storage to store the large volume of interactions, as 
well as, the mechanisms to analytically process the interactions (e.g., classification 
and clustering algorithms), retrieve the interaction-related contextual information 
(e.g., ETL or microservices), and display the contextual information related to the 
interactions considering the different content formats (e.g., images, text, video, au-
dio). 

Example: This pattern is useful for the Exploitation SILE’ level for the DGD. 
From the interactions performed by the user in the data exploration, the pattern sug-
gests relevant information as illustrated in the Contextual Information panel (Figure 
3f). By selecting a specific genetic variation from the data table (Figure 3g), the pat-
tern recommends useful resources such as clinical reports, research papers or studies 
which are related to the selected genetic variation. All resources obtained come from 
previous interactions similar to the current interaction. In addition, to motivate the 
exploration of the data, the system identifies the conceptual model elements closely 
related to the genetic variation (Chromosome, Phenotype, Gen) and suggests alterna-
tive contents under the template: People who searched for “A”, searched for “B” too. 

The correspondence between the described patterns with the Big Data challenges 
and the levels of the SILE methodology mentioned in our illustrative example is 
shown in Table 2. The Load (L) level of SILE methodology is not covered by the 
interaction patterns because of this level is pointed to data processing data level in-
stead of front-end level. 

Table 2. Interaction patterns vs Big Data challenges and SILE methodology levels. 

 

6 Conclusions and Future Works 

In this document, we define interaction patterns for designing user interfaces for ex-
tracting knowledge from Big Data. The proposed patterns were derived from data 
consumption challenges identified from the study of several real use cases of Big 
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Data. The patterns to extract knowledge from Big Data were illustrated through the 
design of two user interfaces for diagnosing genetic diseases. The first one, to select 
the right data sources for the data analysis through an intuitive mechanism based on 
set operations to compare data. The last one, to explore the genetic data by incorporat-
ing recommendation mechanisms and interactive data filtering.  

Historically, the patterns have been applied in software engineering to increase the 
performance in the development of applications, as well as the improvement of their 
quality. In this sense, the application of the proposed interaction patterns aims to ac-
celerate the design of Big Data user interfaces that incorporate quality attributes such 
as efficiency and usability and that promote productivity in the extraction of 
knowledge. 

From the experience in the design and implementation of GenDomus’ UIs for the 
genetic data analysis, we have identified the interaction needs of the user and the data 
characteristics involved, as well as, the available solutions to face the user needs and 
the difficulties to implement them. The proposed patterns gather all those experiences 
and provide useful recommendations for consuming genetic data considering the dis-
persion of genetic sources, the type and the volume of data. This experience can be 
extended perfectly to the Big Data domain. 

Once the patterns have been defined, our next step in the research line is to refine, 
implement, evaluate the proposed patterns and propose a methodology to apply the 
patterns. Although the defined patterns do not solve all the interaction problems in 
Big Data, we consider that the patterns presented here become the initiative to create a 
catalog of interaction patterns to design user interfaces oriented to the extraction of 
knowledge from Big Data. 
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