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Abstract—The use of Convolutional Neural Networks (CNN)
has experienced a huge rise over the last recent years and
its popularity has increased exponentially, mainly due to its
application both for image recognition and certain applications
related to artificial intelligence. The new applications of CNN
request computing demands that are difficult to address by
conventional processors.

As a consequence, accelerators –both prototypes and com-
mercial products– focusing on CNN computation have been
proposed. Among these accelerators, those based on systolic
arrays have acquired a special relevance; some examples are
the Google’s TPU and Eyeriss.

Current research has focused on regular squared systolic
arrays and most existing work assumes that there is enough
memory bandwidth to feed the systolic array with input data.
In this paper we explore the design of non-squared systolic
arrays and address the impact of the memory bandwidth from
a performance perspective.

This work makes two main contributions. First, we found
that some workloads with non-squared arrays achieve similar
performance to systolic arrays twice as large, which can
translate in area and/or energy benefits.

Second, we present a performance comparison varying the
main memory bandwidth for current DRAM devices. The anal-
ysis reveals that main memory bandwidth has a great impact
on performance and that the decision of which technology use
is key for the system performance. For the 64x64 array size it
is necessary to use HBM2 memory to avoid the slowdown that
would introduce cheaper technologies (e.g. DDR5 and DDR4).

Keywords-convolutional neural networks; systolic arrays;
architectural parameters; performance; main memory tech-
nology;

I. INTRODUCTION AND MOTIVATION

In the last few years, there has been an increasing interest
in Convolutional Neural Networks (CNNs) by both academia
and industry in the context of many AI applications. For ex-
ample, Google has managed to defeat its own reCAPTCHA
[1] by using CNNs. Street View [2] is a CNN that achieves
96/100 accuracy in recognizing street numbers in the images
taken by their cars. CNNs are also used to improve Google’s
voice recognition [3], to automate data centers [4] or to save
electricity in Google data centers [5].

These advances have been possible thanks to the use of
computing devices able to achieve computing and energy

constraints for these CNN-based applications. In this con-
text, accelerators based on systolic arrays have been adopted
as one of the most successful solutions to optimize CNN
calculations, due to the natural mapping of the local operand
movement which provides high compute density and low
energy consumption.

To design high-performance and efficient systolic arrays
for CNN-based applications, it is very important to study
the characteristics and requirements of these applications.
Nowadays, there is a large spectrum of CNN applications
with different numbers and types of neural network layers
and with a wide variability regarding the composition of
each layer. By analyzing the workloads, the designer keeps
in mind the most usual cases, achieving the best performance
for the existing technology limitations. Depending on the
objectives, the target can be to reach the maximum possible
efficiency, the best performance or a tradeoff between both.

In order to obtain the most suitable systolic array de-
sign for the wide range of CNN applications, studies on
the impact of the various design parameters of the array
architecture (e.g array height, array width, on-chip SRAM
sizes and dataflows) must be carried out to obtain the
constraints of performance and energy efficiency of the
applications. For this purpose, several tools have appeared
such as Eyeriss [6], a researching prototype of an energy
efficient systolic array, or SCALE-Sim [7], a simulator that
allows researchers to analyze the impact on performance
of some array parameters such as array geometry, on-chip
SRAM structures and different dataflows to perform CNN
computations in the systolic array, such as Output Stationary,
Input Stationary, and Weight Stationary.

Most of the existing or proposed systolic array accelera-
tors implement only one dataflow due to the additional cost
of implementing various dataflows on the same hardware.
In this way, research efforts are focused on optimizing the
architecture for a given dataflow. In contrast, the motivation
of this paper is to study the impact of key array parameters
such as width and height of the array, and main memory
bandwidth for different dataflows, which allows us to obtain
useful conclusions on the design of systolic arrays for both
industry and academia. To do that, we will use the SCALE-



Sim simulator. In this simulator, array geometry and dataflow
are architectural configurable parameters.

On the other hand, we detected that SCALE-Sim does
not model DRAM main memory with enough detail and
assumes that it provides sufficient bandwidth for the appli-
cations’ bandwidth requirements. This can lead to unrealistic
results due to the large amounts of data processed by CNN
applications and considering the bottleneck that the main
memory is in terms of access time and bandwidth [8].
This paper also addresses this problem and analyses the
constraints that main memory technology limitations impose
on performance.

This work makes two main contributions:
• We demonstrate that non-squared systolic arrays can,

for some applications, achieve performance similar to
squared arrays with double size. This is mainly due to
the non-squared geometry of the matrices that represent
neural networks and input data in typical CNN appli-
cations. This implies that squared arrays are not always
fully utilized, motivating the need of novel approaches
to share or partition systolic array hardware among
several applications at run time.

• We analyze the impact of the DRAM main memory
technology on CNN applications executed on systolic
arrays. We show that the impact of the technology is
very high and that only the most advanced technologies,
such as HBM2, can provide enough bandwidth to avoid
the systolic array from stalling.

The remainder of this work is organized as follows.
Section II discusses some background to help reading this
paper. Section III describes the simulation framework used
to develop this work. Section IV presents and analyzes
the experimental results. Finally, Section V presents some
concluding remarks.

II. BACKGROUND

A. Systolic Array Organization and Main System Compo-
nents

This paper focuses on the application of systolic arrays
to Convolutional Neural Network (CNN) inference compu-
tation since systolic array architectures are especially suited
for this type of computation [9].

In data centers, inference workloads require more system
performance than that provided by CPUs. Using systolic
arrays for inference increases notably the performance with
respect to CPUs and GPUs as shown by the the Google TPU
[10]. This is because systolic arrays provide high parallelism
and allow exploiting higher data reuse than CPU and GPU
devices. Below, we illustrate this parallelism and data reuse
by discussing two basic systolic array organizations.

Figure 1a represents the simplest architecture of a uni-
dimensional systolic array. The main components of this
system are the on-chip SRAM buffer and the array of Pro-
cessing Elements (PEs). PEs are simple compute nodes that
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Figure 1: Examples of systolic array organizations.

perform add and multiply operations. In the unidimensional
array, they are interconnected using a unidirectional ring
topology, which works as follows. The most-left PE gets
its input data from the on-chip SRAM buffer, and delivers
the results of its computation to the next PE neighbour in the
ring, which proceeds in the same way, and so on. The last
PE writes back the overall computation result to the SRAM
buffer.

An improvement of the previous architecture is organizing
the array in a two-dimensional way, and interconnecting PEs
with a mesh network that transfers computation results in
the right and down directions. Figure 1b shows an example
of this architecture. In this example, a PE operates from the
inputs coming from its upper and left neighbours to perform
its individual computation, whose result is delivered to its
right and down neighbours. An interesting observation is that
the simple and small 4×4 PE array plotted in the figure can
perform 16 operations in parallel per clock cycle. Thus, a
typical 64×64 array can carry out up to 212 operations per
cycle.

The CNN inference computation involves three matrices:
i) the FILTER matrix, which contains the knowledge of
the neural network and whose values are obtained in the
CNN training process; ii) the input features matrix (IFMAP),
which contains the input information for the CNN inference;
and iii) the output features (OFMAP) matrix, which contains
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Figure 2: Block diagrams of the studied dataflows.

the inference results obtained by the neural network. In a
systolic array architecture designed for CNN inference com-
puting, these matrices are stored in three different SRAM
buffers. Each of these buffers is named after the matrix
that it stores (i.e. FILTER, IFMAP, and OFMAP buffers).
The content of the input buffers (IFMAP and FILTER) is
initially stored in main memory, which is also used the store
the contents of the OFMAP buffer after the CNN inference
computation.

To obtain the OFMAP matrix, the FILTER and IFMAP
matrices are multiplied. Since these matrices are usually
larger than the PE array, the computation is done distributing
these matrices in smaller sub-matrices. Therefore, the overall
computation is carried out in several steps, where each step
works with sub-matrices to achieve the final results.

B. Dataflows

A dataflow defines the distribution of the matrices in sub-
matrices and the mapping of input (IFMAP and FILTER)
and output (OFMAP) data to each individual PE for each
step. Dataflows can be classified in two main groups de-
pending on whether they preload data in the array before
starting the computation or not. The advantage of dataflows
that involve preload over dataflows without preload is that,
in the former, the amount of required SRAM banks is
halved. Nevertheless, implementing preload increases the
implementation costs [7].

In the preload process, each PE loads a component of the
corresponding sub-matrix before performing its respective
computations. Depending on the dataflow, the preloaded sub-
matrix is obtained from the FILTER or the IFMAP matrix.
In the former case, the dataflow is named Weight Stationary
(WS), and if the latter case it is called Input Stationary (IS)
[6].

In the WS dataflow, each component (weight) in the

filter sub-matrix is mapped to a PE, as it is shown in
Figure 2a. The mapping process works by transmitting the
weights from the FILTER buffer at the top of the PE matrix
and finalizes when all PEs have their assigned weight.
Once the weights have been mapped, the input components
are streamed from the IFMAP buffer. For each PE and
cycle, the input components are multiplied by the preloaded
weights. Partial multiplication results are stored in the PEs
for further reuse [11], which includes a reduction process
that is carried out by transmitting and adding the partial
results along the PE columns to store the final results in
the OFMAP buffer. Once all the calculations that involve
the preloaded weights of a given filter sub-matrix have been
completed, a subsequent filter sub-matrix is preloaded to
continue performing the CNN inference computation.

The IS dataflow (Figure 2b) is similar to the WS dataflow
discussed above. In this case, the IFMAP components are
preloaded from the top and the components from the filter
matrix are streamed from the left side.

The last dataflow studied in this work is the Output
Stationary (OS), which does not perform preload (see Figure
2c). In this dataflow, each PE is devoted to compute a
different component of the OFMAP sub-matrix, and it is
fed with the required data to perform its corresponding
computation.

Data reuse is achieved propagating input and weight data
among neighbor PEs. Each cycle each PE transfers one
IFMAP component to its right neighbor and one FILTER
component to the neighbor below. The transferred com-
ponents are required by the PEs to calculate its assigned
OFMAP component, which saves memory accesses. Figure
2c shows the cycle when each PE can begin its computation
starting in cycle 1. During the first cycle, only the upper
right PE in the figure can compute. Then, in the second
one, following the propagation procedure explained before,
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the two neighbors of the upper right PE can start the
computation of their assigned OFMAP component, and so
on. For the PE array plotted in the figure, the last PE starts
its computation at cycle 7. For a generalized PE array with
M and height N, the last PE starts at cycle M +N − 1.

III. SCALE-SIM SIMULATOR

This section summarizes the main features of the sim-
ulator used in this paper to evaluate different systolic
architectures. In particular we use SCALE-Sim (systolic
CNN accelerator simulator). SCALE-Sim is a cycle-accurate
simulator of CNN accelerators. The simulated accelerator
is based on the systolic array architecture, similar to the
one used in Google’s TPU [10]. SCALE-Sim only simulates
convolutional neural networks (CNN) or fully connected
neural networks.

To perform a simulation, SCALE-Sim needs two in-
put files, as depicted in Figure 3. The first file, namely
config.csv, contains architectural parameters such as the
array height, array width, the sizes of the IFMAP, FILTER
and OFMAP buffers, and the selected dataflow. The second
file, namely DNN_Topology.csv, contains the weights
of the neural network and the inputs to be computed in the
array. A neural network can be composed of several layers
and each one requires a distinct inference computation.

As simulation results, SCALE-Sim provides, for each
layer of the neural network: i) the main memory bandwidth
requirement to avoid the systolic array from stalling, ii)
the total execution time, and iii) the average PE array
utilization. The two latter results are calculated assuming
that the systolic array does not stall during the execution due
to lack of enough main memory bandwidth. In addition, the
simulator provides traces with detailed information about the
accesses to the different memory structures (i.e. the SRAM
buffers and the DRAM main memory).

Notice that the impact of the main memory implemen-
tation on the system performance is not considered since

Table I: CNN workloads used in the simulation studies.

Tag Workload # of layers
w1 AlphaGoZero 10
w2 DeepSpeech2 7
w3 FasteRCNN 47
w4 Neural Collaborative Filtering 11
w5 Resnet50 56
w6 Sentimental CNN 6

SCALE-Sim assumes that the main memory can provide
enough bandwidth to avoid the systolic array from stalling,
that is, that the systolic array can be fed with input data
(e.g. weights and features) every cycle so that it can work
at its maximum performance. In this work, we overcome this
limitation by taking into account main memory constraints.

IV. EXPERIMENTAL RESULTS

This section begins analyzing the impact of the array size
on performance, that is, how the application execution time
is reduced as the number of PEs involved in the computation
is increased. These PEs are usually organized in a squared
array; nevertheless, in this section we discuss how non-
squared arrays can impact on performance. This fact could
help on reducing the energy consumed by the application or
its execution time.

Finally this section analyzes the performance impact of
memory technology with respect to previous simulation
studies (e.g. carried out with the baseline SCALE-Sim
simulator) where main memory bandwidth constraints are
not considered.

To carry out these studies, different workloads that cover
a wide range of representative CNN applications have been
considered. These workloads are listed in Table I. As it
can be seen in the table, there is a large diversity of CNN
applications, some of them using a deep structure due to the
need to generate abstract knowledge with a huge amount
of layers while in contrast others applications only use
few layers. Moreover, two CNN applications with a similar
number of layers can be notably different between them due
to complexity differences among the layers. To illustrate the
diversity of these workloads, Figure 4 shows the number
of IFMAP components (left axis) and FILTER components
(right axis) for each selected workload in thousands of
components. As it can be seen these workloads present large
differences in their composition.

A. Impact of the Array Size

This section analyzes the impact of the array size on
performance considering regular squared array sizes across
the three dataflows supported by SCALE-Sim: Output Sta-
tionary (OS), Input Stationary (IS) and Weight Stationary
(WS). Six main sizes have been considered ranging from
8×8 up to 256×256 in powers of two. These experiments
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are performed varying only the array size and the dataflow
while the size of the IFMAP, FILTER, and OFMAP buffers
has been set to 512KB, 512KB, and 256KB, respectively.

Figure 5 plots the performance results in terms of execu-
tion time. As observed, performance significantly improves
by increasing the array size from 8×8 up to 64×64 for all
workloads across all the studied dataflows. However, the
slope of the performance gains reduces beyond this size.
Moreover, some workloads do not experience any benefit at
all, such as W4 with the OS dataflow (see Figure 5a).

In summary, although intuitively, the larger the array
size, the higher the achieved performance, our experimental
results show that the performance gains dramatically drops
in arrays with sizes beyond 64×64 and therefore using larger
arrays can be inefficient since the extra non-leveraged PEs
could be powered down or used for other purposes.

B. Impact of the Array Shape

This section analyzes the impact of the array shape on
performance, that is, considering both squared and non-
squared arrays across the three studied dataflows. For this
purpose, the study is performed from a 32×32 array, which
acts as the baseline configuration. From this array we
consider two non-squared arrays obtained by doubling the
width (32×64) and the height (64×32) of the baseline.
Moreover, the 64×64 squared array, obtained from doubling
both dimension sizes, (64×64) is also evaluated. The range
between 32×32 and 64×64 has been chosen because the
results of the previous section showed that beyond these
array geometries increasing the array size offers diminished
performance improvements.

Figure 6 shows the performance results for the four shapes
considered. It can be observed that the array shape that fits
better depends on each particular workload. For instance,
workloads like W1, W3 and W5 with OS and WS dataflows
fit better in the 32×64 configuration than in 64×32 one.
Nevertheless, note these workloads improve their execution
time with both the width and the height of the array, which
does not justify using non-square array shapes. In contrast,
we can observe that other workloads fit better to non-square

shapes such as 64×32. This is the case of W2 and W6
with OS and WS dataflows. W6 improves its execution
time with a 32×64 array but the improvement is very slight
when compared to the improvement reached with the 64×32
configuration. That is, increasing the array width beyond
a certain size stops providing significant performance im-
provements. Moreover, some workloads are able to obtain
the same execution time with half the number of processing
elements. This is the case of W2 with OS and WS dataflows,
W4 with WS and IS, and finally W6 with WS for 64×32
arrays, which reach nearly the same execution time that the
one obtained by the 64× 64 arrays.

This behaviour can be explained by examining the uti-
lization of the PEs in the array during execution. Figure 7
plots the PE utilization for W2 with the WS dataflow. As it
can be seen the figure, for the 32×32 array the utilization is
high (over the 75%). However, when the number of columns
is doubled (32×64), the utilization is reduced by a half. If
the number of rows is doubled instead (64×32), then the
utilization significantly increases, which leads to the large
reduction in the execution time. Finally, if both rows and
columns are doubled the utilization is again reduced, which
means that the application does not leverage the additional
PEs. Therefore, depending on the workload, the non-utilized
part of a square PE array can be switched off or assigned
to other workloads to increase utilization.

Figure 6 also shows that when considering non-square
shapes, the dataflow plays a relevant role on performance.
First, for OS and WS a major improvement on execution
time appears in the majority of the workloads when the
height is increased, while for IS this improvement is due to
the width increase. This is because the number of IFMAP
components is always much larger than the number of
FILTER components (see Figure 4) and since in IS the
preloaded data are IFMAP components (see Figure 2b), this
dataflow gets higher improvements by adding more columns.

In summary, the analysis of the results shows that to
design more efficient accelerators it is important to partition
the array considering the utilization performed by each
application. This utilization depends on the dataflow and the
different sizes and shapes of the input matrices.

C. Analysis of Memory Constraints on Performance

As mentioned above, SCALE-Sim does not model the
main memory bandwidth technology and its constraints.
Therefore, the obtained results can be too optimistic. This
section estimates the execution time slowdown due to stall
cycles that different main memory technologies would in-
troduce due to bandwidth limitations. As mentioned above,
the simulator provides as one of its results the main mem-
ory bandwidth requirements of each application. From this
information, we can estimate the slowdown with respect to
the SCALE-Sim ideal memory. The estimations are done
assuming the worst possible case, where the three buffers
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Figure 5: Normalized execution time for regular squared arrays varying the array size over a 8x8 arrays.
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Table II: Main memory technologies studied.

Technology BW in GB/s
HBM2 [12] 256
DDR5-6400 [13] 51.2
DDR4-3200 [14] 25.6
DDR4-2666 [14] 21.3

(IFMAP, FILTER, and OFMAP) are accessed at the same
time, which requires the maximum possible bandwidth.

To perform these experiments, we select the main memory
technologies shown in Table II, which also presents the
maximum bandwidth that each technology is able to provide.

Figure 8 shows the performance slowdown normalized
to the ideal configuration, that is, the one modeled in the

simulator. Using HBM2 technology for implementing the
main memory is able to reach the ideal execution time for
almost all workloads in all dataflows except in few of them.
In W6 with the IS dataflow, the execution time is increased
by 1% and in W6 with the WS dataflow it is increased by
3%. In other words, for nearly all the simulations performed
using HBM2 all or almost all stall cycles are avoided.

If DDR5 technology is used, the performance is impacted
in all the dataflows but specially for some workloads and
some dataflows. As it can be seen in Figure 8a, the execution
time is increased around 10-15% for most of the workloads
except for W6 where the execution time is increased by
280%. For the IS dataflow, as it can be seen in Figure 8b,
most of the workloads increase their execution time around
15%, except W2 and W4, which keep the same execution
time compared to the one obtained with HBM2. Finally,
for the WS dataflow, as it can be seen in Figure 8c, the
execution time is increased between 10-30% in the different
workloads.

Figure 8 also shows that execution time slowdown ob-
tained when using DDR4 technology. As can be seen for
some workloads like W2 and W6, the degradation with
this technology can reach up to 200%. For the remaining
workloads the execution time increases around 30%.

In short, the memory bandwidth highly impacts on the
performance of the systolic array. Depending on the final
purpose of the systolic array there are different design
options, one targeting implementation costs will choose
DRR4 memories at a higher execution time. If the target is
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Figure 8: Performance slowdown over the ideal execution time (no memory stall cycles), using different main memory
technologies in a 64x64 array.

execution time no matter the implementation costs, HBM2
memories should be selected. An intermediate point may
be the most interesting option, such as implementing DDR5
memories for a good tradeoff between cost and performance.

V. CONCLUSIONS

Current research on systolic array has focused on regular
squared systolic arrays and assumes that there is enough
memory bandwidth to feed the array with input data. In this
regard, this paper makes two main contributions.

First, we found that some workloads with non-squared
systolic arrays achieve similar performance to squared arrays
with double size, which could translate in area and/or
energy or performance benefits. In particular, depending on
the workload and the implemented dataflow, benefits are
obtained from increasing the number of rows or columns.
As shown in this paper, this is related to the PE utilization
performed by the workloads and the dataflows, which, in
turn, depends on the geometries and sizes of the matrices
that represent neural networks and input data in typical CNN
applications. This conclusion opens a new research space.
For instance, assuming squared arrays, software schedulers
can be devised to share the array among different applica-
tions in order to improve the array utilization.

Second, we analyze how the memory bandwidth available
in the systolic array can impact on performance. The analysis
reveals that the main memory bandwidth has a great impact
on performance. Thus, the main memory technology drives
a tradeoff between performance and implementation costs.
For instance, the performance slowdown range from 20% up
to 600% with DDR4, and from 0% up to 180% when using
DDR5 depending on the analyzed workload and dataflow.
In contrast, the HBM2 memory technology is able to avoid
these slowdowns, although at much higher implementation
costs.
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