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Abstract. We present a framework suited to the analysis of crypto-
graphic protocols that make use of time in their execution. We provide
a process algebra syntax that makes time information available to pro-
cesses, and a transition semantics that takes account of fundamental
properties of time. Additional properties can be added by the user if
desirable. This timed protocol framework can be implemented either as
a simulation tool or as a symbolic analysis tool in which time refer-
ences are represented by logical variables, and in which the properties
of time are implemented as constraints on those time logical variables.
These constraints are carried along the symbolic execution of the proto-
col. The satisfiability of these constraints can be evaluated as the analysis
proceeds, so attacks that violate the laws of physics can be rejected as
impossible. We demonstrate the feasibility of our approach by using the
Maude-NPA protocol analyzer together with an SMT solver that is used
to evaluate the satisfiability of timing constraints. We provide a sound
and complete protocol transformation from our timed process algebra to
the Maude-NPA syntax and semantics, and we prove its soundness and
completeness. We then use the tool to analyze Mafia fraud and distance
hijacking attacks on a suite of distance-bounding protocols.

1 Introduction

Time is an important aspect of many cryptographic protocols, and there has
been increasing interest in the formal analysis of protocols that use time. Model
checking of protocols that use time can be done using either an explicit time
model, or by using an untimed model and showing it is sound and complete
with respect to a timed model. The former is more intuitive for the user, but
the latter is often chosen because not all cryptographic protocol analysis tools
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support reasoning about time. In this paper we describe a solution that combines
the advantages of both approaches. An explicit timed specification language is
developed with a timed syntax and semantics, and is automatically translated
to an existing untimed language. The user however writes protocol specifica-
tions and queries in the timed language. In this paper we describe how such an
approach has been applied to the Maude-NPA tool by taking advantage of its
built-in support for constraints. We believe that this approach can be applied to
other tools that support constraint handling as well.

There are a number of security protocols that make use of time. In general,
there are two types: those that make use of assumptions about time, most often
assuming some sort of loose synchronization, and those that guarantee these
assumptions. The first kind includes protocols such as Kerberos [21], which uses
timestamps to defend against replay attacks, the TESLA protocol [26], which
relies on loose synchronization to amortize digital signatures, and blockchain
protocols, which use timestamps to order blocks in the chain. The other kind
provides guarantees based on physical properties of time: for example, distance
bounding, which guarantees that a prover is within a certain distance of a ver-
ifier, and secure time synchronization, which guarantees that the clocks of two
different nodes are synchronized within a certain margin of error. In this paper,
we concentrate on protocols using distance bounding, both because it has been
well-studied, and because the timing constraints are relatively simple.

A number of approaches have been applied to the analysis of distance bound-
ing protocols. In [18], an epistemic logic for distance bounding analysis is pre-
sented where timing is captured by means of timed channels, which are described
axiomatically. Time of sending and receiving messages can be deduced by us-
ing these timed channel axioms. In [2], Basin et al. define a formal model for
reasoning about physical properties of security protocols, including timing and
location, which they formalize in Isabelle/HOL and use it to analyze several
distance bounding protocols, by applying a technique similar to Paulson’s in-
ductive approach [25]. In [8], Debant et al. develop a timing model for AKiSS,
a tool for verifying protocol equivalence in the bounded session model, and use
it to analyze distance bounding protocols. In [24], Nigam et al. develop a model
of timing side channels in terms of constraints and use it to define a timed
version of observational equivalence for protocols. They have developed a tool
for verifying observational equivalence that relies on SMT solvers. Other work
concentrates on simplifying the problem so it can be more easily analyzed by
a model checker, but proving that the simple problem is sound and complete
with respect to the original problem so that the analysis is useful. In this regard,
Nigam et al. [23] and Debant et al. [9] show that it is safe to limit the size and
complexity of the topologies, and Mauw et al. [17] and Chothia et al. [5] develop
timed and untimed models and show that analysis in the untimed model is sound
and complete with respect to the timed model.

In this paper we illustrate our approach by developing a timed protocol
semantics suitable for the analysis of protocols that use constraints on time
and distance, such as distance bounding, and that can be implemented as ei-
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ther a simulation tool for generating and checking concrete configurations, or
as a symbolic analysis tool that allows the exploration of all relevant configura-
tions. We realize the timed semantics by translating it into the semantics of the
Maude-NPA protocol analysis tool, in which timing properties are expressed as
constraints. The constraints generated during the Maude-NPA search are then
checked using an SMT solver.

There are several things that help us. One is that we consider a metric space
with distance constraints. Many tools support constraint handling, e.g., Maude-
NPA [12] and Tamarin [19]. Another is that time can be naturally added to a pro-
cess algebra. Many tools support processes, e.g., Maude-NPA [30] and AKISS [8].

The rest of this paper is organized as follows. In Section 2, we recall the
Brands-Chaum protocol, which is used as the running example throughout the
paper. In Section 3, we present the timed process algebra with its intended
semantics. In Section 4, we present a sound and complete protocol transformation
from our timed process algebra to an untimed process algebra. In Section 5, we
show how our timed process algebra can be transformed into Maude-NPA strand
notation. In Section 6, we present our experiments. We conclude in Section 7.

2 The Brands-Chaum distance bounding protocol

In the following, we recall the Brands-Chaum distance bounding protocol of [3],
which we will use as the running example for the whole paper.

Example 1. The Brands-Chaum protocol specifies communication between a
verifier V and a prover P. P needs to authenticate itself to V, and also needs
to prove that it is within a distance “d” of it. X;Y denotes concatenation of
two messages X and Y , commit(N,Sr) denotes commitment of secret Sr with
a nonce N , open(N,Sr, C) denotes opening a commitment C using the nonce
N and checking whether it carries the secret Sr, ⊕ is the exclusive-or operator,
and sign(A,M) denotes A signing message M . A typical interaction between the
prover and the verifier is as follows:

P → V : commit(NP , SP )
//The prover sends his name and a commitment

V → P : NV
//The verifier sends a nonce
//and records the time when this message was sent

P → V : NP ⊕NV
//The verifier checks the answer of this exclusive-or
//message arrives within two times a fixed distance

P → V : SP
//The prover sends the committed secret
//and the verifier checks open(NP , SP , commit(NP , SP ))

P → V : signP (NV ;NP ⊕NV )
//The prover signs the two rapid exchange messages

The previous informal Alice&Bob notation can be naturally extended to include
time. We consider wireless communication between the participants located at
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an arbitrary given topology (participants do not move from their assigned lo-
cations) with distance constraints, where time and distance are equivalent for
simplification and are represented by a real number. We assume a metric space
with a distance function d : A × A → Real from a set A of participants such
that d(A,A) = 0, d(A,B) = d(B,A), and d(A,B) ≤ d(A,C) + d(C,B). Then,
time information is added to the protocol. First, we add the time when a mes-
sage was sent or received as a subindex Pt1 → Vt2 . Second, time constraints
associated to the metric space are added: (i) the sending and receiving times
of a message differ by the distance between them and (ii) the time difference
between two consecutive actions of a participant must be greater or equal to
zero. Third, the distance bounding constraint of the verifier is represented as an
arbitrary distance d. Time constraints are written using quantifier-free formulas
in linear real arithmetic. For convenience, in linear equalities and inequalities
(with <, ≤, > or ≥), we allow both 2 ∗ x = x + x and the monus function
x−̇y = if y < x then x− y else 0 as definitional extensions.

In the following timed sequence of actions, a vertical bar is included to differ-
entiate between the process and some constraints associated to the metric space.
We remove the constraint open(NP , SP , commit(NP , SP )) for simplification.

Pt1 → Vt′1 : commit(NP , SP ) | t′1 = t1 + d(P, V )

Vt2 → Pt′2 : NV | t′2 = t2 + d(P, V ) ∧ t′1 ≥ t′1
Pt3 → Vt′3 : NP ⊕NV | t′3 = t3 + d(P, V ) ∧ t3 ≥ t′2

V : t′3 −̇ t2 ≤ 2 ∗ d
Pt4 → Vt′4 : SP | t′4 = t4 + d(P, V ) ∧ t4 ≥ t3 ∧ t′4 ≥ t′3
Pt5 → Vt′5 : signP (NV ;NP ⊕NV ) | t′5 = t5 + d(P, V ) ∧ t5 ≥ t4 ∧ t′5 ≥ t′4

The Brands-Chaum protocol is designed to defend against mafia frauds,
where an honest prover is outside the neighborhood of the verifier (i.e., d(P, V ) >
d) but an intruder is inside (i.e., d(I, V ) ≤ d), pretending to be the honest prover.
The following is an example of an attempted mafia fraud, in which the intruder
simply forwards messages back and forth between the prover and the verifier.
We write I(P ) to denote an intruder pretending to be an honest prover P .

Pt1→It2 : commit(NP , SP ) | t2 = t1 + d(P, I)
I(P )t2→Vt3 : commit(NP , SP ) | t3 = t2 + d(V, I)

Vt3→I(P )t4 : NV | t4 = t3 + d(V, I)
It4→Pt5 : NV | t5 = t4 + d(P, I)
Pt5→It6 : NP ⊕NV | t6 = t5 + d(P, I)

I(P )t6→Vt7 : NP ⊕NV | t7 = t6 + d(V, I)
V : t7−̇t3 ≤ 2 ∗ d

Pt8→It9 : SP | t9 = t8 + d(P, I) ∧ t8 ≥ t5
I(P )t10→Vt11 : SP | t11 = t10 + d(V, I) ∧ t11 ≥ t7
I(P )t12→Vt13 : signP (NV ;NP ⊕NV )| t13 = t12 + d(V, I) ∧ t13 ≥ t11

Note that, in order for this trace to be consistent with the metric space, it
would require that 2 ∗ d(V, I) + 2 ∗ d(P, I) ≤ 2 ∗ d, which is unsatisfiable by
d(V, P ) > d > 0 and the triangular inequality d(V, P ) ≤ d(V, I) + d(P, I), which
implies that the attack is not possible.
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However, a distance hijacking attack is possible (i.e., the time and distance
constraints are satisfiable) where an intruder located outside the neighborhood
of the verifier (i.e., d(V, I) > d) succeeds in convincing the verifier that he is
inside the neighborhood by exploiting the presence of an honest prover in the
neighborhood (i.e., d(V, P ) ≤ d) to achieve his goal. The following is an example
of a successful distance hijacking, in which the intruder listens to the exchanges
messages between the prover and the verifier but builds the last message.

Pt1 → Vt2 : commit(NP , SP ) | t2 = t1 + d(P, V )
Vt2 → Pt3 , It′3 : NV | t3 = t2 + d(P, V ) ∧ t′3 = t2 + d(I, V )

Pt3 → Vt4 , It′4 : NP ⊕NV | t4 = t3 + d(P, V ) ∧ t′4 = t3 + d(I, V )

V : t4 −̇ t2 ≤ 2 ∗ d
Pt5 → Vt6 : SP | t6 = t5 + d(P, V ) ∧ t5 ≥ t3 ∧ t6 ≥ t4

I(P )t7 → Vt8 : signI(NV ;NP ⊕NV ) | t8 = t7 + d(I, V ) ∧ t7 ≥ t′4 ∧ t8 ≥ t6

3 A Timed Process Algebra

In this section, we present our timed process algebra and its intended semantics.
We restrict ourselves to a semantics that can be used to reason about time and
distance. We discuss how this could be extended in Section 7. To illustrate our
approach, we use Maude-NPA’s process algebra and semantics described in [30],
extending it with a global clock and time information.

3.1 New Syntax for Time

In our timed protocol process algebra, the behaviors of both honest principals
and the intruders are represented by labeled processes. Therefore, a protocol is
specified as a set of labeled processes. Each process performs a sequence of ac-
tions, namely sending (+m) or receiving (−m) a message m, but without know-
ing who actually sent or received it. Each process may also perform deterministic
or non-deterministic choices. We define a protocol P in the timed protocol pro-
cess algebra, written PTPA, as a pair of the form PTPA = ((ΣTPAP , ETPAP ),
PTPA), where (ΣTPAP , ETPAP ) is the equational theory specifying the equa-
tional properties of the cryptographic functions and the state structure, and
PTPA is a ΣTPAP -term denoting a well-formed timed process. The timed proto-
col process algebra’s syntax ΣTPA is parameterized by a sort Msg of messages.
Moreover, time is represented by a new sort Real, since we allow conditional
expressions on time using linear arithmetic for the reals.

Similar to [30], processes support four different kinds of choice: (i) a pro-
cess expression P ? Q supports explicit non-deterministic choice between P and
Q; (ii) a choice variable X? appearing in a send message expression +m sup-
ports implicit non-deterministic choice of its value, which can furthermore be
an unbounded non-deterministic choice if X? ranges over an infinite set; (iii) a
conditional if C then P else Q supports explicit deterministic choice between P
and Q determined by the result of its condition C; and (iv) a receive message
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expression −m(X1, ..., Xn) supports implicit deterministic choice about accept-
ing or rejecting a received message, depending on whether or not it matches
the pattern m(X1, ..., Xn). This deterministic choice is implicit, but it could be
made explicit by replacing −m(X1, ..., Xn) · P by the semantically equivalent
conditional expression −X. if X = m(X1, ..., Xn) then P else nilP ·P , where X
is a variable of sort Msg, which therefore accepts any message.

The timed process algebra has the following syntax, also similar to that of
[30] plus the addition of the suffix @Real to the sending and receiving actions:

ProcConf ::= LProc | ProcConf & ProcConf | ∅
ProcId ::= (Role,Nat)
LProc ::= (ProcId ,Nat) Proc

Proc ::= nilP | + (Msg@Real) | − (Msg@Real) | Proc · Proc |
Proc ? Proc | if Cond then Proc else Proc

– ProcConf stands for a process configuration, i.e., a set of labeled processes,
where the symbol & is used to denote set union for sets of labeled processes.

– ProcId stands for a process identifier, where Role refers to the role of the
process in the protocol (e.g., prover or verifier) and Nat is a natural number
denoting the identity of the process, which distinguishes different instances
(sessions) of a process specification.

– LProc stands for a labeled process, i.e., a process Proc with a label (ProcId , J).
For convenience, we sometimes write (Role, I, J), where J indicates that the
action at stage J of the process (Role, I) will be the next one to be exe-
cuted, i.e., the first J − 1 actions of the process for role Role have already
been executed. Note that the I and J of a process (Role, I, J) are omitted
in a protocol specification.

– Proc defines the actions that can be executed within a process, where +Msg@T ,
and −Msg@T respectively denote sending out a message or receiving a mes-
sage Msg . Note that T must be a variable where the underlying metric
space determines the exact sending or receiving time, which can be used
later in the process. Moreover, “Proc · Proc” denotes sequential composi-
tion of processes, where symbol _._ is associative and has the empty process
nilP as identity. Finally, “Proc ? Proc” denotes an explicit nondeterministic
choice, whereas “if Cond then Proc else Proc” denotes an explicit determin-
istic choice, whose continuation depends on the satisfaction of the constraint
Cond . Note that choice is explicitly represented by either a non-deterministic
choice between P1 ? P2 or by the deterministic evaluation of a conditional
expression if Cond then P1 else P2, but it is also implicitly represented by
the instantiation of a variable in different runs.

In all process specifications we assume four disjoint kinds of variables, similar to
the variables of [30] plus time variables:

– fresh variables: each one of these variables receives a distinct constant
value from a data type Vfresh, denoting unguessable values such as nonces.
Throughout this paper we will denote this kind of variables as f, f1, f2, . . ..
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– choice variables: variables first appearing in a sent message +M , which
can be substituted by any value arbitrarily chosen from a possibly infinite do-
main. A choice variable indicates an implicit non-deterministic choice. Given
a protocol with choice variables, each possible substitution of these variables
denotes a possible run of the protocol. We always denote choice variables by
letters postfixed with the symbol “?” as a subscript, e.g., A?,B?, . . ..

– pattern variables: variables first appearing in a received message −M .
These variables will be instantiated when matching sent and received mes-
sages. Implicit deterministic choices are indicated by terms containing pat-
tern variables, since failing to match a pattern term leads to the rejection
of a message. A pattern term plays the implicit role of a guard, so that,
depending on the different ways of matching it, the protocol can have differ-
ent continuations. Pattern variables are written with uppercase letters, e.g.,
A,B,NA, . . ..

– time variables: a process cannot access the global clock, which implies
that a time variable T of a reception or sending action +(M@T ) can never
appear in M but can appear in the remaining part of the process. Also, given
a receiving action −(M1@t1) and a sending action +(M2@t2) in a process
of the form P1 · −(M1@t1) · P2 · +(M2@t2) · P3, the assumption that timed
actions are performed from left to right forces the constraint t1 ≤ t2. Time
variables are always written with a (subscripted) t, e.g., t1, t

′
1, t2, t

′
2, . . ..

These conditions about variables are formalized by the function wf : Proc →
Bool defined in Figure 1, for well-formed processes. The definition of wf uses an
auxiliary function shVar : Proc → VarSet , which is defined in Figure 2.

wf (P ·+(M@T )) = wf (P )

if (Vars(M) ∩Vars(P )) ⊆ shVar(P ) ∧ T /∈ Vars(M) ∪Vars(P )

wf (P · −(M@T )) = wf (P )

if (Vars(M) ∩Vars(P )) ⊆ shVar(P ) ∧ T /∈ Vars(M) ∪Vars(P )

wf (P · (if T then Q else R)) = wf (P ·Q) ∧ wf (P ·R)

if P 6= nilP and Q 6= nilP and Vars(T ) ⊆ shVar(P )

wf (P · (Q ? R)) = wf (P ·Q) ∧ wf (P ·R) if Q 6= nilP orR 6= nilP

wf (P · nilP) = wf (P )

wf (nilP) = True.

Fig. 1. The well-formed function

shVar(+(M@T ) · P ) = Vars(M) ∪ shVar(P )

shVar(−(M@T ) · P ) = Vars(M) ∪ shVar(P )

shVar((if T then P else Q) ·R) = Vars(T ) ∪ (shVar(P ) ∩ shVar(Q)) ∪ shVar(R)

shVar((P ? Q) ·R) = (shVar(P ) ∩ shVar(Q)) ∪ shVar(R)

shVar(nilP) = ∅

Fig. 2. The shared variables auxiliary function
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Example 2. Let us specify the Brands and Chaum protocol of Example 1, where
variables are distinct between processes. A nonce is represented as n(A?, f),
whereas a secret value is represented as s(A?, f). The identifier of each process
is represented by a choice variable A?. Recall that there is an arbitrary distance
d > 0.

(Verifier) : −(Commit@t1) ·
+(n(V?, f1)@t2) ·
−((n(V?, f1)⊕NP )@t3) ·
if t3−̇t2 ≤ 2 ∗ d
then −(SP@t4) ·

if open(NP , SP ,Commit)

then −(sign(P, n(V?, f1);NP ⊕ n(V?, f1))@t5) else nilP

else nilP

(Prover) : +(commit(n(P?, f1), s(P?, f2))@t1) ·
−(NV @t2) ·
+((NV ⊕ n(P?, f1))@t3) ·
+(s(P?, f2)@t4) ·
+(sign(P?, NV ;n(P?, f2)⊕NV )@t5)

3.2 Timed Intruder Model

The active Dolev-Yao intruder model is followed, which implies an intruder can
intercept, forward, or create messages from received messages. However, intrud-
ers are located. Therefore, they cannot change the physics of the metric space,
e.g., cannot send messages from a different location or intercept a message that
it is not within range.

In our timed intruder model, we consider several located intruders, modeled
by the distance function d : ProcId × ProcId → Real , each with a family of
capabilities (concatenation, deconcatenation, encryption, decryption, etc.), and
each capability may have arbitrarily many instances. The combined actions of
two intruders requires time, i.e., their distance; but a single intruder can perform
many actions in zero time. Adding time cost to single-intruder actions could be
done with additional time constraints, but is outside the scope of this paper.
Note that, unlike in the standard Dolev-Yao model, we cannot assume just one
intruder, since the time required for a principal to communicate with a given
intruder is an observable characteristic of that intruder. Thus, although the Mafia
fraud and distance hijacking attacks considered in the experiments presented in
this paper only require configurations with just one prover, one verifier and
one intruder, the framework itself allows general participant configurations with
multiple intruders.

Example 3. In our timed process algebra, the family of capabilities associated
to an intruder k are also described as processes. For instance, concatenating two
received messages is represented by the process (where time variables t1, t2, t3
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are not actually used by the process)

(k .Conc) : −(X@t1) · −(Y@t2) ·+(X;Y@t3)

and extracting one of them from a concatenation is described by the process

(k .Deconc) : −(X;Y@t1) ·+(X@t2)

Roles of intruder capabilities include the identifier of the intruder, and it is
possible to combine several intruder capabilities from the same or from different
intruders. For example, we may say that the +(X;Y@T ) of a process I1 .Conc
associated to an intruder I1 may be synchronized with the −(X;Y@T ′) of a
process I2 .Deconc associated to an intruder I2. The metric space fixes T ′ =
T + d(I1, I2), where d(I1, I2) > 0 if I1 6= I2 and d(I1, I2) = 0 if I1 = I2.

A special forwarding intruder capability, not considered in the standard
Dolev-Yao model, has to be included in order to take into account the time
travelled by a message from an honest participant to the intruder and later to
another participant, probably an intruder again.

(k .Forward) : −(X@t1) ·+(X@t2)

3.3 Timed Process Semantics

A state of a protocol P consists of a set of (possibly partially executed) labeled
processes, a set of terms in the network {Net}, and the global clock. That is,
a state is a term of the form {LP1 & · · · &LPn | {Net} | t̄}. In the timed pro-
cess algebra, the only time information available to a process is the variable T
associated to input and output messages M@T . However, once these messages
have been sent or received, we include them in the network Net with extra in-
formation. When a message M@T is sent, we store M @ (A : t → ∅) denoting
that message M was sent by process A at the global time clock t, and propagate
T 7→ t within the process A. When this message is received by an action M ′@T ′

of process B (honest participant or intruder) at the global clock time t′, M is
matched against M ′ modulo the cryptographic functions, T ′ 7→ t′ is propagated
within the process B, and B : t′ is added to the stored message, following the
general pattern M @ (A : t→ (B1 : t1 · · ·Bn : tn)).

The rewrite theory (ΣTPAP+State , ETPAP , RTPAP ) characterizes the behavior
of a protocol P, where ΣTPAP+State extends ΣTPAP , by adding state constructor
symbols. We assume that a protocol run begins with an empty state, i.e., a state
with an empty set of labeled processes, an empty network, and at time zero.
Therefore, the initial empty state is always of the form {∅ | {∅} | 0.0}. Note
that, in a specific run, all the distances are provided a priori according to the
metric space and a chosen topology, whereas in a symbolic analysis, they will
simply be variables, probably occurring within time constraints.

State changes are defined by a set RTPAP of rewrite rules given below. Each
transition rule in RTPAP is labeled with a tuple (ro, i , j , a,n, t), where:
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– ro is the role of the labeled process being executed in the transition.

– i denotes the instance of the same role being executed in the transition.

– j denotes the process’ step number since its beginning.

– a is a ground term identifying the action that is being performed in the tran-
sition. It has different possible values: “+m” or “−m” if the message m was
sent (and added to the network) or received, respectively; “m” if the message
m was sent but did not increase the network, “?” if the transition performs
an explicit non-deterministic choice, “T” if the transition performs an ex-
plicit deterministic choice, “Time” when the global clock is incremented, or
“New” when a new process is added.

– n is a number that, if the action that is being executed is an explicit choice,
indicates which branch has been chosen as the process continuation. In this
case n takes the value of either 1 or 2. If the transition does not perform any
explicit choice, then n = 0.

– t is the global clock at each transition step.

Note that in the transition rules RTPAP shown below, Net denotes the net-
work, represented by a set of messages of the form M @ (A : t→ (B1 : t1 · · ·Bn :
tn)), P denotes the rest of the process being executed and PS denotes the rest
of labeled processes of the state (which can be the empty set ∅).

– Sending a message is represented by the two transition rules below, de-
pending on whether the message M is stored, (TPA++), or just discarded,
(TPA+). In (TPA++), we store the sent message with its sending informa-
tion, (ro, i) : t̄, and add an empty set for those who will be receiving the
message in the future (Mσ′@(ro, i) : t̄→ ∅).

{(ro, i, j) (+M@t · P ) & PS | {Net} | t̄}
−→(ro,i,j,+(Mσ′),0,t̄)

{(ro, i, j + 1) Pσ′ & PS | {(Mσ′@(ro, i) : t̄→ ∅), Net} | t̄}
if (Mσ′ : (ro, i) : t̄→ ∅) /∈ Net

where σ is a ground substitution binding choice variables in M

and σ′ = σ ] {t 7→ t̄} (TPA++)

{(ro, i, j) (+M@t · P ) & PS | {Net} | t̄}
−→(ro,i,j,Mσ′,0,t̄) {(ro, i, j + 1) Pσ′ & PS | {Net} | t̄}

where σ is a ground substitution binding choice variables in M

and σ′ = σ ] {t 7→ t̄} (TPA+)

– Receiving a message is represented by the transition rule below. We add the
reception information to the stored message, i.e., we replace (M ′@((ro′, k) :
t′ → AS)) by (M ′@((ro′, k) : t′ → (AS ] (ro, i) : t̄)).
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{(ro, i, j) (−(M@t) · P ) & PS | {(M ′@((ro′, k) : t′ → AS)), Net} | t̄}
−→(ro,i,j,−(Mσ′),0,t̄)

{(ro, i, j + 1) Pσ′ & PS | {(M ′@((ro′, k) : t′ → (AS ] (ro, i) : t̄)), Net} | t̄}
IF ∃σ : M ′ =EP Mσ, t̄ = t′ + d((ro′, k), (ro, i)), σ′ = σ ] {t 7→ t̂} (TPA-)

– An explicit deterministic choice is defined as follows. More specifically, the
rule (TPAif1) describes the then case, i.e., if the constraint T is satisfied,
then the process continues as P , whereas rule (TPAif2) describes the else
case, that is, if the constraint T is not satisfied, the process continues as Q.

{(ro, i, j) ((if T then P else Q) ·R) & PS | {Net} | t̄}
−→(ro,i,j,T,1,t̄) {(ro, i, j + 1) (P ·R) &PS | {Net} | t̄}IF T (TPAif1)

{(ro, i, j) ((if T then P else Q) ·R) & PS | {Net} | t̄}
−→(ro,i,j,T,2,t̄) {(ro, i, j + 1) (Q ·R) &PS | {Net} | t̄}IF¬T (TPAif2)

– An explicit non-deterministic choice is defined as follows. The process can
continue either as P , denoted by rule (TPA?1), or asQ, denoted by rule (TPA?2).

{(ro, i, j) ((P ? Q) ·R) & PS | {Net} | t̄}
−→(ro,i,j,?,1,t̄) {(ro, i, j + 1) (P ·R) & PS | {Net} | t̄} (TPA?1)

{(ro, i, j) ((P ? Q) ·R) & PS | {Net} | t̄}
−→(ro,i,j,?,2,t̄) {(ro, i, j + 1)(Q ·R) & PS | {Net} | t̄} (TPA?2)

– Global Time advancement is represented by the transition rule below that
increments the global clock enough to make one sent message arrive to its
closest destination.

{PS | {Net} | t̄} −→(⊥,⊥,⊥,Time,0,t̄+t′) {PS | {Net} | t̄+ t′}
IF t′ = mte(PS,Net, t̄) ∧ t′ 6= 0 (PTime)

where the function mte is defined as follows:

mte(∅, Net, t̄) =∞
mte(P&PS,Net, t̄) = min(mte(P,Net, t̄),mte(PS,Net, t̄))
mte((ro, i, j) nilP , Net, t̄) =∞
mte((ro, i, j) + (M@t) · P,Net, t̄) = 0
mte((ro, i, j) − (M@t) · P,Net, t̄) =

min

({
d((ro, i), (ro′, i′)) | (M ′@(ro′, i′) : t0 → AS) ∈ Net

∧∃σ : Mσ =B M ′

})
mte((ro, i, j) (if T then P else Q) ·R,Net, t̄) = 0
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mte((ro, i, j) P1?P2, Net, t̄) = 0

Note that the function mte evaluates to 0 if some instantaneous action by
the previous rules can be performed. Otherwise, mte computes the smallest
non-zero time increment required for some already sent message (existing
in the network) to be received by some process (by matching with such an
existing message in the network).

Remark The timed process semantics assumes a metric space with a dis-
tance function d : ProcId × ProcId → Real such that (i) d(A,A) = 0, (ii)
d(A,B) = d(B,A), and (iii) d(A,B) ≤ d(A,C) + d(C,B). For every mes-
sage M @ (A : t → (B1 : t1 · · ·Bn : tn)) stored in the network Net, our
semantics assumes that (iv) ti = t + d(A,Bi), ∀1 ≤ i ≤ n. Furthermore,
according to our wireless communication model, our semantics assumes (v)
a time sequence monotonicity property, i.e., there is no other process C such
that d(A,C) ≤ d(A,Bi) for some i, 1 ≤ i ≤ n, and C is not included in the
set of recipients of the message M . Also, for each class of attacks such as
the Mafia fraud or the hijacking attack, (vi) some extra topology constraints
may be necessary. However, in Section 4, timed processes are transformed
into untimed processes with time constraints and the transformation takes
care only of conditions (i), (ii), and (iv). For a fixed number of participants,
all the instances of the triangle inequality (iii) as well as constraints (vi)
should be added by the user. In the general case, conditions (iii), (v), and
(vi) can be partially specified and fully checked on a successful trace; see
Definition 5 in the additional supporting material.

– New processes can be added as follows.



∀ (ro) Pk ∈ PPA

{PS | {Net} | t̄}
−→(ro,i+1,1,New,0,t̄)

{(ro, i+ 1, 1, x?σ, y?σ) Pkσρro,i+1 & PS | {Net} | t̄}
where ρro,i+1 is a fresh substitution,
σ is a ground substitution binding x? and y?, and i = id(PS, ro)


(TPA&)

The auxiliary function id counts the instances of a role

id(∅, ro) = 0

id((ro′, i, j)P&PS, ro) =

{
max(id(PS, ro), i) if ro = ro′

id(PS, ro) if ro 6= ro′

where PS denotes a process configuration, P a process, and ro, ro′ role
names.

Therefore, the behavior of a timed protocol in the process algebra is defined
by the set of transition rules RTPAP = {(TPA++), (TPA+), (PTime), (TPA-),
(TPAif1), (TPAif2), (TPA?1), (TPA?2)} ∪ (TPA&).
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VerifierProver Intruder

0t̄

4t̄
3t̄

5t̄

1t̄
2t

6t̄

3t̄

5t̄

1t̄
1m

1m

2m 2m

4m4m

{∅|{∅}|0.0} →p,0,1,New{(p, 0, 1) : +(m1@t1) · · · | {∅} | t̄0 = 0.0} m1 = commit(n(p, f1), s(p, f2))

→i,0,1,New

{
(p, 0, 1) : +(m1@t1) · · ·
(i.F, 0, 1) : −(X@t′1) ·+(X@t′2)

∣∣∣∣ {∅} | t̄0}
→p,0,1,+(m1)

{
(p, 0, 2) : −(NV @t2) · · ·
(i.F, 0, 1) : −(X@t′1) ·+(X@t′2)

∣∣∣∣ {(m1@(p, 0) : t̄0 → ∅)} | t̄0}

→Time

{
(p, 0, 2) : −(NV @t2) · · ·
(i.F, 0, 1) : −(X@t′1) ·+(X@t′2)

∣∣∣∣ {(m1@(p, 0) : t̄0 → ∅)} | t̄1 = 1.0}

→i,0,1,−(m1)

{
(p, 0, 2) : −(NV @t2) · · ·
(i.F, 0, 2) : +(m1@t′2)

∣∣∣∣ {(m1@(p, 0) : t̄0 → (i.F, 0) : t̄1)} | t̄1}

→i,0,3,+(m1)

{
(p, 0, 2) : −(NV @t2) · · ·
(i.F, 0, 2) : nilP

∣∣∣∣ {(m1@(i.F, 0) : t̄1 → ∅
}
| t̄1}

→v,0,1,New

{
(p, 0, 2) : −(NV @t2) · · ·
(v, 0, 1) : −(Commit@t′′1 ) · · ·

∣∣∣∣ {(m1@(i.F, 0) : t̄1 → ∅)
}
| t̄1}

→Time

{
(p, 0, 2) : −(NV @t2) · · ·
(v, 0, 1) : −(Commit@t′′1 ) · · ·

∣∣∣∣ {(m1@(i.F, 0) : t̄1 → ∅)
}
| t̄2 = 2.0}

→v,0,1,−(m1)

{
(p, 0, 2) : −(NV @t2) · · ·
(v, 0, 2) : +(m2@t′′2 ) · · ·

∣∣∣∣ {(m1@(i.F, 0) : t̄1 → (v, 0) : t̄2)
}
| t̄2} m2 = n(v, f3)

→v,0,2,+(m2)

{
(p, 0, 2) : −(NV @t2) · · ·
(v, 0, 3) : −(m3@t′′3 ) · · ·

∣∣∣∣ {(m2@(v, 0) : t̄2 → ∅)
}
| t̄2} m3 = (m2 ⊕NP )

→i,1,1,New

(p, 0, 2) : −(NV @t2) · · ·
(v, 0, 3) : −(m3@t′′3 ) · · ·
(i.F, 1, 1) : −(X′@t′′′1 ) ·+(X′@t′′′2 )

∣∣∣∣∣∣ {(m2@(v, 0) : t̄2 → ∅)
}
| t̄2}

→Time

(p, 0, 2) : −(NV @t2) · · ·
(v, 0, 3) : −(m3@t′′3 ) · · ·
(i.F, 1, 1) : −(X′@t′′′1 ) ·+(X′@t′′′2 )

∣∣∣∣∣∣ {(m2@(v, 0) : t̄2 → ∅)
}
| t̄3 = 3.0}

→i,1,1,−(m2)

(p, 0, 2) : −(NV @t2) · · ·
(v, 0, 3) : −(m3@t′′3 ) · · ·
(i.F, 1, 2) : +(m2@t′′′2 )

∣∣∣∣∣∣ {(m2@(v, 0) : t̄2 → (i.F, 1) : t̄3)
}
| t̄3}

→i,1,2,+(m2)

(p, 0, 2) : −(NV @t2) · · ·
(v, 0, 3) : −(m3@t′′3 ) · · ·
(i.F, 1, 2) : nilP

∣∣∣∣∣∣ {(m2@(i.F, 1) : t̄3 → ∅)
}
| t̄3}

→Time

{
(p, 0, 2) : −(NV @t2) · · ·
(v, 0, 3) : −(m3@t′′3 ) · · ·

∣∣∣∣ {(m2@(i.F, 1) : t̄3 → ∅)
}
| t̄4 = 4.0}

→p,0,2,−(m2)

{
(p, 0, 3) : +(m4@t3) · · ·
(v, 0, 3) : −(m3@t′′3 ) · · ·

∣∣∣∣ {(m2@(i.F, 1) : t̄3 → (p, 0) : t̄4)
}
| t̄4} m4 = (m2 ⊕ n(p, f1))

→p,0,3,+(m4)

{
(p, 0, 4) : +(m5@t4) · · ·
(v, 0, 3) : −(m3@t′′3 ) · · ·

∣∣∣∣ {(m4@(p, 0) : t̄4 → ∅)
}
| t̄4} m5 = s(p, f2)

→i,2,1,New

{
(v, 0, 3) : −(m3@t′′3 ) · · ·
(i.F, 2, 1) : −(X′′@t′′′′1 ) ·+(X′′@t′′′′2 )

∣∣∣∣ {(m4@(p, 0) : t̄4 → ∅)
}
| t̄4}

→Time

{
(v, 0, 3) : −(m3@t′′3 ) · · ·
(i.F, 2, 1) : −(X′′@t′′′′1 ) ·+(X′′@t′′′′2 )

∣∣∣∣ {(m4@(p, 0) : t̄4 → ∅)
}
| t̄5 = 5.0}

→i,3,1,−(m4)

{
(v, 0, 3) : −(m3@t′′3 ) · · ·
(i.F, 2, 1) : +(m4@t′′′′2 )

∣∣∣∣ {(m4@(p, 0) : t̄4 → (i.F, 2) : t̄5)
}
| t̄5}

→i,3,2,+(m4)

{
(v, 0, 3) : −(m3@t′′3 ) · · ·
(i.F, 2, 1) : nil

∣∣∣∣ {(m4@(i.F, 2) : t̄5 → ∅)
}
| t̄5}

→Time

{
(v, 0, 3) : −(m3@t′′3 ) · · ·

∣∣ {(m4@(i.F, 2) : t̄5 → ∅)
}
| t̄6 = 6.0}

→v,0,3,−(m4)

{
(v, 0, 4) : −(SP @t4) · · ·

∣∣ {(m4@(i.F, 2) : t̄5 → (v, 0) : t̄6)
}
| t̄6}

Fig. 3. Brand and Chaum execution for a prover, an intruder, and a verifier
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Example 4. Continuing Example 2, a possible run of the protocol is represented
in Figure 3 for a prover p, an intruder i, and a verifier v. A simpler, graphical
representation of the same run is included at the top of the figure. There, the
neighborhood distance is d = 1.0, the distance between the prover and the verifier
is d(p, v) = 2.0, but the distance between the prover and the intruder as well
as the distance between the verifier and the intruder are d(v, i) = d(p, i) = 1.0,
i.e., the honest prover p is outside v’s neighborhood, d(v, p) > d, where d(v, p) =
d(v, i) + d(p, i). Only the first part of the rapid message exchange sequence is
represented and the forwarding action of the intruder is denoted by i.F .

The prover sends the commitment m1 = commit(n(p, f1), s(p, f2)) at instant
t̄0 = 0.0 and is received by the intruder at instant t̄1 = 1.0. The intruder forwards
m1 at instant t̄1 and is received by the verifier at instant t̄2 = 2.0. Then, the
verifier sends m2 = n(v, f3) at instant t̄2, which is received by the intruder at
instant t̄3 = 3.0. The intruder forwards m2 at instant t̄3, which is received by
the prover at instant t̄4 = 4.0. Then, the prover sends m4 = (m2 ⊕ n(p, f1)) at
instant t̄4 and is received by the intruder at instant t̄5 = 5.0. Finally, the intruder
forwards m4 at instant t̄5 and is received by the verifier at instant t̄6 = 6.0. Thus,
the verifier sent m2 at time t̄2 = 2.0 and received m4 at time t̄6 = 6.0. But the
protocol cannot complete the run, since t̄6−t̄2 = 4.0 < 2∗d = 2.0 is unsatisfiable.

Our time protocol semantics can already be implemented straightforwardly
as a simulation tool. For instance, [18] describes distance bounding protocols
using an authentication logic, which describes the evolution of the protocol, [23]
provides a strand-based framework for distance bounding protocols based on
simulation with time constraints, and [8] defines distance bounding protocol us-
ing some applied-pi calculus. Note, however, that, since the number of metric
space configurations is infinite, model checking a protocol for a concrete configu-
ration with a simulation tool is very limited, since it cannot prove the absence of
an attack for all configurations. For this reason, we follow a symbolic approach
that can explore all relevant configurations.

In the following section, we provide a sound and complete protocol transfor-
mation from our timed process algebra to the untimed process algebra of the
Maude-NPA tool. In order to do this, we make use of an approach introduced
by Nigam et al. [23] in which properties of time, which can include both those
following from physics and those checked by principals, are represented by linear
constraints on the reals. As a path is built, an SMT solver can be used to check
that the constraints are satisfiable, as is done in [24].

4 Timed Process Algebra into Untimed Process Algebra
with Time Variables and Timing Constraints

In this section, we consider a more general constraint satisfiability approach,
where all possible (not only some) runs are symbolically analyzed. This pro-
vides both a trace-based insecure statement, i.e., a run leading to an insecure
secrecy or authentication property is discovered given enough resources, and an
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unsatisfiability-based secure statement, i.e., there is no run leading to an insecure
secrecy or authentication property due to time constraint unsatisfiability.

Example 5. Consider again the run of the Brands-Chaum protocol given in Fig-
ure 3. All the terms of sort Real, written in blue color, are indeed variables that
get an assignment during the run based on the distance function. Then, it is
possible to obtain a symbolic trace from the run of Figure 3, where the following
time constraints are accumulated:

t̄1 = t̄0 + d((p, 0), (i.F, 0)), d((p, 0), (i.F, 0)) ≥ 0
t̄2 = t̄1 + d((v, 0), (i.F, 0)), d((v, 0), (i.F, 0)) ≥ 0
t̄3 = t̄2 + d((v, 0), (i.F, 1)), d((v, 0), (i.F, 1)) ≥ 0
t̄4 = t̄3 + d((p, 0), (i.F, 1)), d((p, 0), (i.F, 1)) ≥ 0
t̄5 = t̄4 + d((p, 0), (i.F, 2)), d((p, 0), (i.F, 2)) ≥ 0
t̄6 = t̄5 + d((v, 0), (i.F, 2)), d((v, 0), (i.F, 2)) ≥ 0

Note that these constraints are unsatisfiable when combined with (i) the
assumption d > 0, (ii) the verifier check t̄6− t̄2 ≤ 2 ∗ d, (iii) the assumption that
the honest prover is outside the verifier’s neighborhood, d((p, 0), (v, 0)) > d,
(iv) the triangular inequality from the metric space, d((p, 0), (v, 0)) ≤ d((p, 0),
(i.F, 0))+d((i.F, 0), (v, 0)), and (v) the assumption that there is only one intruder
d((i.F, 0), (i.F, 1)) = 0 and d((i.F, 0), (i.F, 2)) = 0.

As explained previously in the remark, there are some implicit conditions
based on the mte function to calculate the time increment to the closest destina-
tion of a message. However, the mte function disappears in the untimed process
algebra and those implicit conditions are incorporated into the symbolic run.
In the following, we define a transformation of the timed process algebra by (i)
removing the global clock; (ii) adding the time data into untimed messages of a
process algebra without time (as done in [23]); and (iii) adding linear arithmetic
conditions over the reals for the time constraints (as is done in [24]). The sound-
ness and completeness proof of the transformation is included in the additional
supporting material at the end of the paper.

Since all the relevant time information is actually stored in messages of the
form M @ (A : t → (B1 : t1 · · ·Bn : tn)) and controlled by the transition rules
(TPA++),(TPA+), and (TPA-), the mapping tpa2pa of Definition 1 below trans-
forms each message M@t of a timed process into a message M @ (A : t? → AS?)
of an untimed process. That is, we use a timed choice variable t? for the send-
ing time and a variable AS? for the reception information (B1 : t′1 · · ·Bn : t′n)
associated to the sent message. Since choice variables are replaced by specific
values, both t? and AS? will be replaced by the appropriate values that make
the execution and all its time constraints possible. Note that these two choice
variables will be replaced by logical variables during the symbolic execution.

Definition 1 (Adding Time Variables and Time Constraints to Un-
timed Processes). The mapping tpa2pa from timed processes into untimed
processes and its auxiliary mapping tpa2pa* are defined as follows:
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tpa2pa(∅) = ∅
tpa2pa((ro,i,j)P & PS) = (ro,i,j) tpa2pa*(P ,ro,i) & tpa2pa(PS)

tpa2pa*(nilP , ro, i) = nilP

tpa2pa*( +(M@t) . P, ro, i) = +(M@((ro, i) : t? → AS?)) . tpa2pa*(Pγ, ro, i)

where γ = {t 7→ t?}
tpa2pa*( −(M@t) . P, ro, i) =

− (M@((ro′, i′) : t′ → ((ro, i) : t) ]AS)) .

if t = t′ + d((ro, i), (ro′, i′)) ∧ d((ro, i), (ro′, i′)) ≥ 0 then tpa2pa*(P, ro, i) else nilP

tpa2pa*( (if C then P else Q) . R,ro,i,x,y)

= (if C then tpa2pa*(P ,ro,i,x,y) else tpa2pa*(Q,ro,i,x,y)) . tpa2pa*(R,ro,i,x,y)

tpa2pa*( (P ? Q) . R,ro,i,x,y)

= (tpa2pa*(P ,ro,i,x,y) ? tpa2pa*(Q,ro,i,x,y)) . tpa2pa*(R,ro,i,x,y)

where t? and AS? are choice variables different for each one of the sending ac-
tions, ro′, i′, t′, d, AS are pattern variables different for each one of the receiving
actions, P , Q, and R are processes, M is a message, and C is a constraint.

Example 6. The timed processes of Example 2 are transformed into the following
untimed processes. We remove the “else nilP” branches for clarity.

(Verifier) : −(Commit @ A1 : t′1 → V? : t1 ]AS1) ·
if t1 = t′1 + d(A1,V?) ∧ d(A1,V?) ≥ 0 then

+(n(V?, f1) @ V? : t2? → AS2?) ·
−((n(V?, f1)⊕NP ) @ A3 : t′3 → V? : t3 ]AS3) ·
if t3 = t′3 + d(A3,V?) ∧ d(A3,V?) ≥ 0 then

if t3−̇t2? ≤ 2 ∗ d then

−(SP @ A4 : t′4 → V? : t4 ]AS4) ·
if t4 = t′4 + d(A4,V?) ∧ d(A4,V?) ≥ 0 then

if open(NP , SP ,Commit) then

−(sign(P, n(V?, f1);NP ⊕ n(V?, f1)) @ A5 : t′5 → V? : t5 ]AS5)

if t5 = t′5 + d(A5,V?) ∧ d(A5,V?) ≥ 0

(Prover) : +(commit(n(P?, f1), s(P?, f2))@P? : t1? → AS1?) ·
−(V ;NV @ A2 : t′2 → V? : t2 ]AS2) ·
if t2 = t′2 + d(A2,P?) ∧ d(A2,P?) ≥ 0 then

+((NV ⊕ n(P?, f1))@P? : t3? → AS3?) ·
+(s(P?, f2)@P? : t4? → AS4?) ·
+(sign(P?, NV ;n(P?, f2)⊕NV )@P? : t5? → AS5?))

Example 7. The timed processes of Example 3 for the intruder are transformed
into the following untimed processes. Note that we use the intruder identifier I
associated to each role instead of a choice variable I?.

(I .Conc) : −(X@ A1 : t1 → I : t′1 ]AS1) ·
if t′1 = t1 + d(A1, I) ∧ d(A1, I) ≥ 0 then

−(Y@ A2 : t2 → I : t′2 ]AS2) ·
if t′2 = t2 + d(A2, I) ∧ d(A2, I) ≥ 0 then

+(X;Y@I : t3? → AS?)

16



(I .Deconc) : −(X;Y@ A1 : t1 → I : t′1 ]AS1) ·
if t′1 = t1 + d(A1, I) ∧ d(A1, I) ≥ 0 then

+(X@I : t2? → AS?)

(I .Forward) : −(X@ A1 : t1 → I : t′1 ]AS1) ·
if t′1 = t1 + d(A1, I) ∧ d(A1, I) ≥ 0 then

+(X@I : t2? → AS?)

Once a timed process is transformed into an untimed process with time vari-
ables and time constraints using the notation of Maude-NPA, we rely on both a
soundness and completeness proof from the Maude-NPA process notation into
Maude-NPA forward rewriting semantics and on a soundness and completeness
proof from Maude-NPA forward rewriting semantics into Maude-NPA backwards
symbolic semantics, see [30,29]. Since the Maude-NPA backwards symbolic se-
mantics already considers constraints in a very general sense [12], we only need
to perform the additional satisfiability check for linear arithmetic over the reals.

5 Timed Process Algebra into Strands in Maude-NPA

This section is provided to help in understanding the experimental output. Al-
though Maude-NPA accepts protocol specifications in either the process algebra
language or the strand space language, it still gives outputs only in the strand
space notation. Thus, in order to make our experimental output easier to un-
derstand, we describe the translation from timed process into strands with time
variables and time constraints. This translation is also sound and complete, as
it imitates the transformation of Section 4 and the transformation of [30,29].

Strands [28] are used in Maude-NPA to represent both the actions of honest
principals (with a strand specified for each protocol role) and those of an intruder
(with a strand for each action an intruder is able to perform on messages). In
Maude-NPA, strands evolve over time. The symbol | is used to divide past and
future. That is, given a strand [ msg±1 , . . . , msg±i |msg±i+1, . . . , msg±k ], messages

msg±1 , . . . ,msg±i are the past messages, and messages msg±i+1, . . . ,msg±k are the

future messages (msg±i+1 is the immediate future message). Constraints can be

also inserted into strands. A strand [msg±1 , . . . ,msg±k ] is shorthand for [nil |msg±1 ,
. . . ,msg±k , nil]. An initial state is a state where the bar is at the beginning for all
strands in the state, and the network has no possible intruder fact of the form
m ∈ I. A final state is a state where the bar is at the end for all strands in the
state and there is no negative intruder fact of the form m /∈ I.

In the following example, we illustrate how the timed process algebra can be
transformed into strands specifications of Maude-NPA.

Example 8. The timed processes of Example 2 are transformed into the following
strand specification.
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(Verifier) : [−(Commit @ A1 : t′1 → V : t1 ]AS1),

(t1 = t′1 + d(A1, V ) ∧ d(A1, V ) ≥ 0),

+(n(V, f1) @ V : t2 → AS2),

−((n(V, f1)⊕NP ) @ A3 : t′3 → V : t3 ]AS3),

(t3 = t′3 + d(A3, V ) ∧ d(A3, V ) ≥ 0),

(t3−̇t2 ≤ 2 ∗ d),

−(SP @ A4 : t′4 → V : t4 ]AS4),

(t4 = t′4 + d(A4, V ) ∧ d(A4, V ) ≥ 0),

open(NP , SP ,Commit),

−(sign(P, n(V, f1);NP ⊕ n(V, f1))@ A5 : t′5 → V : t5 ]AS5),

(t5 = t′5 + d(A5, V ) ∧ d(A5, V ) ≥ 0)]

(Prover) : [+(commit(n(P, f1), s(P, f2))@P : t1 → AS1),

−(NV @ A2 : t′2 → V : t2 ]AS2),

(t2 = t′2 + d(A2, P ) ∧ d(A2, P ) ≥ 0),

+((NV ⊕ n(P, f1))@P : t3 → AS3),

+(s(P, f2)@P : t4 → AS4),

+(sign(P,NV ;n(P, f2)⊕NV )@P : t5 → AS5)]

We specify the desired security properties in terms of attack patterns in-
cluding logical variables, which describe the insecure states that Maude-NPA is
trying to prove unreachable. Specifically, the tool attempts to find a backwards
narrowing sequence path from the attack pattern to an initial state until it can
no longer form any backwards narrowing steps, at which point it terminates. If
it has not found an initial state, the attack pattern is judged unreachable.

The following example shows how a classic mafia fraud attack for the Brands-
Chaum protocol can be encoded in Maude-NPA’s strand notation.

Example 9. Following the strand specification of the Brands-Chaum protocol
given in Example 8, the mafia attack of Example 1 is given as the following
attack pattern. Note that Maude-NPA uses symbol === for equality on the reals,
+=+ for addition on the reals, *=* for multiplication on the reals, and -=- for
subtraction on the reals. Also, we consider one prover p, one verifier v, and
one intruder i at fixed locations. Extra time constraints are included in an smt

section, where a triangular inequality has been added. The mafia fraud attack is
secure for Brands-Chaum and no initial state is found in the backwards search.

eq ATTACK-STATE(1) --- Mafia fraud
= :: r :: --- Verifier

[ nil, -(commit(n(p,r1),s(p,r2)) @ i : t1 -> v : t2),
((t2 === t1 +=+ d(i,v)) and d(i,v) >= 0/1),
+(n(v,r) @ v : t2 -> i : t2’’),
-(n(v,r) * n(p,r1) @ i : t3 -> v : t4),
(t3 >= t2 and (t4 === t3 +=+ d(i,v)) and d(i,v) >= 0/1),
((t4 -=- t2) <= (2/1 *=* d)) | nil ] &

:: r1,r2 :: --- Prover
[ nil, +(commit(n(p,r1),s(p,r2)) @ p : t1’ -> i : t1’’),

-(n(v,r) @ i : t2’’ -> p : t3’),
((t3’ === t2’’ +=+ d(i,p)) and d(i,p) >= 0/1),
+(n(v,r) * n(p,r1) @ p : t3’ -> i : t3’’) | nil ]

|| smt(d(v,p) > 0/1 and d(i,p) > 0/1 and d(i,v) > 0/1 and d(v,i) <= d and
(d(v,i) +=+ d(p,i)) >= d(v,p) and d(v,p) > d)

|| nil || nil || nil [nonexec] .
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6 Experiments

As a feasibility study, we have encoded several distance bounding protocols
in Maude-NPA. It was necessary to slightly alter the Maude-NPA tool by (i)
including minor modifications to the state space reduction techniques to al-
low for timed messages; (ii) the introduction of the sort Real and its asso-
ciated operations; and (iii) the connection of Maude-NPA to a Satisfiability
Modulo Theories (SMT) solver4 (see [22] for details on SMT). The specifica-
tions, outputs, and the modified version of Maude-NPA are available at http:

//personales.upv.es/sanesro/indocrypt2020/.
Although the timed model allows an unbounded number of principals, the

attack patterns used to specify insecure goal states allow us to limit the number
of principals in a natural way. In this case we specified one verifier, one prover,
and one attacker, but allowed an unbounded number of sessions.

Protocol PreProc (sec) Mafia tm (sec) Hijacking tm (sec)

Brands and Chaum [3] 3.0 X 4.3 × 11.4
Meadows et al (nV ⊕ nP ,P ) [18] 3.7 X 1.3 X 22.5
Meadows et al (nV ,nP ⊕ P ) [18] 3.5 X 1.1 × 1.5
Hancke and Kuhn [13] 1.2 X 12.5 X 0.7
MAD [4] 5.1 X 110.5 × 318.8
Swiss-Knife [14] 3.1 X 4.8 X 24.5
Munilla et al. [20] 1.7 X 107.1 X 4.5
CRCS [27] 3.0 X 450.1 × 68.6
TREAD [1] 2.4 X 4.7 × 4.2

Table 1. Experiments performed for different distance-bounding protocols

In Table 1 above we present the results for the different distance-bounding
protocols that we have analyzed. Two attacks have been analyzed for each pro-
tocol: a mafia fraud attack (i.e., an attacker tries to convince the verifier that an
honest prover is closer to him than he really is), and a distance hijacking attack
(i.e., a dishonest prover located far away succeeds in convincing a verifier that
they are actually close, and he may only exploit the presence of honest partici-
pants in the neighborhood to achieve his goal). Symbol X means the property is
satisfied and × means an attack was found. The columns labelled tm(sec) give
the times in seconds that it took for a search to complete. Finally the column
labeled PreProc gives the time it takes Maude-NPA to perform some preprocess-
ing on the specification that eliminates searches for some provably unreachable
state. This only needs to be done once, after which the results can be used for
any query, so it is displayed separately.

We note that, since our semantics is defined over arbitrary metric spaces, not
just Euclidean space, it is also necessary to verify that an attack returned by

4 Several SMT solvers are publicly available, but the programming language Maude [6]
currently supports CVC4 [7] and Yices [31].
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the tool is realizable over Euclidean space. We note that the Mafia and hijacking
attacks returned by Maude-NPA in these experiments are all realizable on a
straight line, and hence are realizable over n-dimensional Euclidean space for
any n. In general, this realizability check can be done via a final step in which
the constraints with the Euclidean metric substituted for distance is checked
via an SMT solver that supports checking quadratic constraints over the reals,
such as Yices [31], Z3 [32], or Mathematica [15]. Although this feature is not yet
implemented in Maude-NPA, we have begun experimenting with these solvers.

7 Conclusions

We have developed a timed model for protocol analysis based on timing con-
straints, and provided a prototype extension of Maude-NPA handling protocols
with time by taking advantage of Maude’s support of SMT solvers, as was done
by Nigam et al. in [24], and Maude-NPA’s support of constraint handling. We
also performed some initial analyses to test the feasibility of the approach. This
approach should be applicable to other tools that support constraint handling.

There are several ways this work can be extended. One is to extend the
ability of the tool to reason about a larger numbers or principals, in particular
an unbounded number of principals. This includes an unbounded number of
attackers; since each attacker must have its own location, we cannot assume a
single attacker as in Dolev-Yao. Our specification and query language, and its
semantics, supports reasoning about an unbounded number of principals, so this
is a question of developing means of telling when a principal or state is redundant
and developing state space reduction techniques based on this.

Another important extension is to protocols that require the full Euclidean
space model, in particular those in which location needs to be explicitly included
in the constraints. This includes for example protocols used for localization.
For this, we have begun experimenting with SMT solvers that support solving
quadratic constraints over the reals.

Looking further afield, we consider adding different types of timing models.
In the timing model used in this paper, time is synonymous with distance. But
we may also be interested including other ways in which time is advanced, e.g.
the amount of time a principal takes to perform internal processing tasks. In our
model, the method in which timing is advanced is specified by the mte function,
which is in turn used to generate constraints on which messages can be ordered.
Thus changing the way in which timing is advanced can be accomplished by
modifying the mte function. Thus, potential future research includes design of
generic mte functions together with rules on their instantiation that guarantee
soundness and completeness

Finally, there is also no reason for us to limit ourselves to time and location.
This approach should be applicable to other quantitative properties as well. For
example, the inclusion of cost and utility would allow us to tackle new classes of
problems not usually addressed by cryptographic protocol analysis tools, such as
performance analyses (e.g., resistance against denial of service attacks), or even
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analysis of game-theoretic properties of protocols, thus opening up a whole new
set of problems to explore.
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Additional Supporting Material

In order to prove soundness and completeness of the transformation in Ap-
pendix B, we first recall the untimed process algebra of Maude-NPA.

A (Untimed) Process Algebra

Maude-NPA was originally defined [10,11] using strands [28]. A process algebra
that extends the strand space model to naturally specify protocols exhibiting
choice points was given in [30,29]. Here we give a high-level summary of the
untimed process algebra syntax of Maude-NPA, see [16].

A.1 Syntax of the Protocol Process Algebra

In the protocol process algebra the behaviors of both honest principals and the
intruder are represented by labeled processes. Therefore, a protocol is speci-
fied as a set of labeled processes. Each process performs a sequence of actions,
namely, sending or receiving a message, and may perform deterministic or non-
deterministic choices. The protocol process algebra’s syntax ΣPA is parameter-
ized5 by a sort Msg of messages and a sort Cond for conditional expressions. It
has the following syntax:

ProcConf ::= LProc | ProcConf & ProcConf | ∅
LProc ::= (Role, I, J) Proc

Proc ::= nilP | + Msg | −Msg | Proc · Proc |
Proc ? Proc | if Cond then Proc else Proc

– ProcConf stands for a process configuration, that is, a set of labeled pro-
cesses. The symbol & is used to denote set union for sets of labeled processes.

– LProc stands for a labeled process, that is, a process Proc with a label
(Role, I, J). Role refers to the role of the process in the protocol (e.g., initia-
tor or responder). I is a natural number denoting the identity of the process,
which distinguishes different instances(sessions) of a process specification. J
indicates that the action at stage J of the process specification will be the
next one to be executed, that is, the first J−1 actions of the process for role
Role have already been executed. Note that we omit I and J in the protocol
specification when both I and J are 0.

– Proc defines the actions that can be executed within a process. +Msg , and
−Msg respectively denote sending out or receiving a message Msg . We as-
sume a single channel, through which all messages are sent or received by
the intruder. “Proc · Proc” denotes sequential composition of processes,

5 More precisely, as explained in Section A.2, they are parameterized by a user-
definable equational theory (ΣP , EP) having a sort Msg of messages.
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where symbol _._ is associative and has the empty process nilP as iden-
tity. “Proc ? Proc” denotes an explicit nondeterministic choice, whereas
“if Cond then Proc else Proc” denotes an explicit deterministic choice, whose
continuation depends on the satisfaction of the constraint Cond . In [30,29],
either equalities (=) or disequalities ( 6=) between message expressions were
considered as constraints.

Let PS, QS, and RS be process configurations, and P, Q, and R be protocol
processes. The protocol syntax satisfies the following structural axioms:

PS&QS = QS&PS

(PS&QS) &RS = PS& (QS&RS)

(P · Q) · R = P · (Q · R)

PS & ∅ = PS

P · nilP = P

nilP · P = P

The specification of the processes defining a protocol’s behavior may contain
some variables denoting information that the principal executing the process
does not yet know, or that will be different in different executions. In all protocol
specifications we assume three disjoint kinds of variables:

– fresh variables: these are not really variables in the standard sense, but
names for constant values in a data type Vfresh of unguessable values such
as nonces. A fresh variable f is always associated with a role ro ∈ Role in
the protocol. Throughout this paper we will denote this kind of variables as
f, f1, f2, . . ..

– choice variables: variables first appearing in a sent message +M , which
can be substituted by any value arbitrarily chosen from a possibly infinite
domain. A choice variable indicates an implicit non-deterministic choice.
Given a protocol with choice variables, each possible substitution of these
variables denotes a possible continuation of the protocol. We always denote
choice variables by uppercase letters postfixed with the symbol “?” as a
subscript, e.g., A?,B?, . . ..

– pattern variables: variables first appearing in a received message −M .
These variables will be instantiated when matching sent and received mes-
sages. Implicit deterministic choices are indicated by terms containing pat-
tern variables, since failing to match a pattern term may lead to the rejection
of a message. A pattern term plays the implicit role of a guard, so that, de-
pending on the different ways of matching it, the protocol can have different
continuations. This kind of variables will be written with uppercase letters,
e.g., A,B,NA, . . ..

Note that fresh variables are distinguished from other variables by having
a specific sort Fresh. Choice variables or pattern variables can never have sort
Fresh.

We consider only well-formed processes using the function wf : Proc → Bool
defined in Figure 4. The definition of wf uses an auxiliary function shVar :
Proc → VarSet defined in Figure 5. Note that the well-formedness property
implies that if a process begins with a deterministic choice action if T then Q
else R, then all variables in T must be instantiated, and thus only one branch
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may be taken. For this reason, it is undesirable to specify processes that begin
with such an action. Furthermore, note that the well-formedness property avoids
explicit choices where both possibilities are the nilP process. That is, processes
containing either (if T then nil else nil), or (nil ? nil), respectively.

wf (P ·+M) = wf (P ) if (Vars(M) ∩Vars(P )) ⊆ shVar(P )

wf (P · −M) = wf (P ) if (Vars(M) ∩Vars(P )) ⊆ shVar(P )

wf (P · (if T then Q else R)) = wf (P ·Q) ∧ wf (P ·R)

if P 6= nilP and Q 6= nilP and Vars(T ) ⊆ shVar(P )

wf (P · (Q ? R)) = wf (P ·Q) ∧ wf (P ·R) if Q 6= nilP orR 6= nilP

wf (P · nilP) = wf (P )

wf (nilP) = True.

Fig. 4. The well-formed function

shVar(+M · P ) = Vars(M) ∪ shVar(P )

shVar(−M · P ) = Vars(M) ∪ shVar(P )

shVar((if T then P else Q) ·R)

= Vars(T ) ∪ (shVar(P ) ∩ shVar(Q)) ∪ shVar(R)

shVar((P ? Q) ·R) = (shVar(P ) ∩ shVar(Q)) ∪ shVar(R)

shVar(nilP) = ∅

Fig. 5. The shared variables function

A.2 Protocol Specification in Process Algebra

We define a protocol P in the protocol process algebra, written PPA, as a pair
of the form PPA = ((ΣPAP , EPAP ), PPA), where (ΣPAP , EPAP ) is the equational
theory specifying the equational properties of the cryptographic functions and
the state structure, and PPA is a term denoting a well-formed process config-
uration representing the behavior of the honest principals as well as the capa-
bilities of the attacker. That is, PPA = (ro1 )P1 & . . . & (roi)Pi, where each
rok, 1 ≤ k ≤ i, is either the role of an honest principal or identifies one of the
capabilities of the attacker. PPA cannot contain two processes with the same
label, i.e., the behavior of each honest principal, and each attacker capability
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are represented by a unique process. EPAP = EP ∪ EPA is a set of equations
with EP denoting the protocol’s cryptographic properties and EPA denoting the
properties of process constructors. The set of equations EP is user-definable and
can vary for different protocols. Instead, the set of equations EPA is always the
same for all protocols. ΣPAP = ΣP ∪ΣPA is the signature defining the sorts and
function symbols as follows:

– ΣP is an order-sorted signature defining the sorts and function symbols for
the messages that can be exchanged in protocol P. However, independently
of protocol P, ΣP must always have two sorts Msg and Cond as the top sorts
in one of its connected components.

– ΣPA is an order-sorted signature defining the sorts and function symbols
of the process algebra infrastructure. ΣPA corresponds exactly to the BNF
definition of the protocol process algebra’s syntax in Section A.1.

Therefore, the syntax ΣPAP of processes for P will be in the union signature
ΣPA∪ΣP , consisting of the protocol-specific syntax ΣP , and the generic process
syntax ΣPA through the shared sort Msg.

A.3 Process Algebra Semantics

Given a protocol P, a state of P consists of a set of (possibly partially executed)
labeled processes, and a set of terms in the intruder knowledge {IK}. That is, a
state is a term of the form n {LP1 & · · · &LPn | {IK}}. Given a state St of this
form, we abuse notation and write LPk ∈ St if LPk is a labeled process in the
set LP1 & · · · &LPn.

The intruder knowledge IK models the single channel through which all
messages are sent and received. Messages are stored in the form M ∈ I. We
consider an active attacker who has complete control of the channel, i.e, can
read, alter, redirect, and delete traffic as well as create its own messages by
means of intruder processes. That is, the purpose of some LPk ∈ St is to perform
message-manipulation actions for the intruder.

State changes are defined by a set RPAP of rewrite rules, such that the
rewrite theory (ΣPAP+State , EPAP , RPAP ) characterizes the behavior of protocol
P, where ΣPAP+State extends ΣPAP by adding state constructor symbols. We
assume that a protocol’s execution begins with an empty state, i.e., a state with
an empty set of labeled processes, and an empty network. That is, the initial
state is always of the form {∅ | {∅}}. Each transition rule in RPAP is labeled
with a tuple of the form (ro, i , j , a,n), where:

– ro is the role of the labeled process being executed in the transition.
– i denotes the identifier of the labeled process being executed in the transition.

Since there can be more than one process instance of the same role in a
process state, i is used to distinguish different instances, i.e., ro and i together
uniquely identify a process in a state.

– j denotes the process’ step number since its beginning.
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– a is a ground term identifying the action that is being performed in the tran-
sition. It has different possible values: “+m” or “−m” if the message m was
sent (and added to the network) or received, respectively; “m” if the message
m was sent but did not increase the network, “?” if the transition performs
an explicit non-deterministic choice, or “T” if the transition performs an
explicit deterministic choice.

– n is a number that, if the action that is being executed is an explicit choice,
indicates which branch has been chosen as the process continuation. In this
case n takes the value of either 1 or 2. If the transition does not perform any
explicit choice, then n = 0.

The set RPAP of transition rules that define the execution of a state are given
in [30,29]. Note that in the transition rules RPAP shown below, PS denotes the
rest of labeled processes of the state (which can be the empty set ∅).

– The action of sending a message is represented by the two transition rules
below. Since we assume the intruder has complete control of the network,
it can learn any message sent by other principals. Rule (PA++) denotes the
case in which the sent message is added to the intruder knowledge. Note that
this rule can only be applied if the intruder has not already learnt that mes-
sage. Rule (PA+) denotes the case in which the intruder chooses not to learn
the message, i.e., the intruder knowledge is not modified, and, thus, no con-
dition needs to be checked. Since choice variables denote messages that are
nondeterministically chosen, all (possibly infinitely many) admissible ground
substitutions for the choice variables are possible behaviors.

{(ro, i, j) (+M · P ) & PS | {IK}}
−→(ro,i,j,+Mσ,0) {(ro, i, j + 1) Pσ & PS | {Mσ ∈ I, IK}}
if (Mσ ∈ I) /∈ IK

where σ is a ground substitution binding choice variables in M (PA++)

{(ro, i, j) (+M · P ) & PS | {IK}}
−→(ro,i,j,Mσ,0) {(ro, i, j + 1) Pσ & PS | {IK}}

where σ is a ground substitution binding choice variables in M (PA+)

– As shown in the rule below, a process can receive a message matching a pat-
tern M if there is a message M ′ in the intruder knowledge, i.e., a message
previously sent either by some honest principal or by some intruder pro-
cess, that matches the pattern message M . After receiving this message the
process will continue with its variables instantiated by the matching substi-
tution, which takes place modulo the equations EP . Note that the intruder
can “delete” a message via choosing not to learn it (executing Rule PA+
instead of Rule PA++) or not to deliver it (failing to execute Rule PA-).
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{(ro, i, j) (−M · P ) & PS | {M ′ ∈ I, IK}}
−→(ro,i,j,−Mσ,0) {(ro, i, j + 1) Pσ & PS | {M ′ ∈ I, IK}}
if M ′ =EP Mσ (PA-)

– The two transition rules shown below define the operational semantics of ex-
plicit deterministic choices. That is, the operational semantics of an if T then P
else Q expression. More specifically, rule (PAif1) describes the then case, i.e.,
if the constraint T is satisfied, the process will continue as P . Rule (PAif2)
describes the else case, that is, if the constraint T is not satisfied, the process
will continue as Q. Note that, since we only consider well-formed processes,
these transition rules will only be applied if j ≥ 1. Note also that since T has
been fully substituted by the time the if-then-else is executed, the validity
of T can be easily checked.

{(ro, i, j) ((if T then P else Q) ·R) & PS | {IK}}
−→(ro,i,j,T,1) {(ro, i, j + 1) (P ·R) & PS | {IK}} if T (PAif1)

{(ro, i, j) ((if T then P else Q) ·R) & PS | {IK}}
−→(ro,i,j,T,2) {(ro, i, j + 1) (Q ·R) & PS | {IK}} if ¬T (PAif2)

– The two transition rules below define the semantics of explicit non-deterministic
choice P ? Q. In this case, the process can continue either as P , denoted
by rule (PA?1), or as Q, denoted by rule (PA?2). Note that this decision is
made non-deterministically.

{(ro, i, j) ((P ? Q) ·R) & PS | {IK}}
−→(ro,i,j,?,1) {(ro, i, j + 1) (P ·R) & PS | {IK}} (PA?1)

{(ro, i, j) ((P ? Q) ·R) & PS | {IK}}
−→(ro,i,j,?,2) {(ro, i, j + 1)(Q ·R) & PS | {IK}} (PA?2)

– The transition rules shown below describe the introduction of a new pro-
cess from the specification into the state, which allows us to support an
unbounded session model. Recall that fresh variables are associated with a
role and an identifier. Therefore, whenever a new process is introduced: (a)
the largest process identifier (i) will be increased by 1, and (b) new names
will be assigned to the fresh variables in the new process.
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∀ (ro) Pk ∈ PPA

{PS | {IK}}
−→(ro,i+1,1,A,Num) {(ro, i+ 1, 2) P ′k & PS | {IK′}}
IF {(ro, i+ 1, 1) Pkρro,i+1 | {IK}}
−→(ro,i+1,1,A,Num) {(ro, i+ 1, 2) P ′k | {IK′}}
where ρro,i+1 is a fresh substitution,
i = id(PS, ro)


(PA&)

Note that A denotes the action of the state transition, and can be of any of
the forms explained above. The function id is defined as follows:

id(∅, ro) = 0

id((ro, i, j)P&PS, ro) = max(id(PS, ro), i)

id((ro′, i, j)P&PS, ro) = id(PS, ro) if ro 6= ro′

where PS denotes a process configuration, P a process, and ro, ro′ role
names.

Therefore, the behavior of a protocol in the process algebra is defined by the
set of transition rules RPAP = {(PA++), (PA+), (PA-), (PAif1), (PAif2), (PA?1),
(PA?2)} ∪ (PA&).

The main result in [30,29] is a bisimulation between the strand state space
generated by the narrowing-based backwards semantics of [10,11] and the transi-
tion rules RPAP above, associated to the forwards semantics for process algebra.
This is nontrivial, since there are three major ways in which the two semantics
differ. The first is that processes “forget” their past, while strands “remem-
ber” theirs. The second is that Maude-NPA uses backwards search, while the
process algebra proceeds forwards. The third is that Maude-NPA performs sym-
bolic reachability analysis using terms with variables, while the process algebra
considers only ground terms.

B Soundness and Completeness Proofs

The problem with adding choice variables t? and AS? to untimed sending mes-
sages is that they may be replaced by values that do not have a counterpart at
the timed process algebra. Let us clarify the two relevant sets of states.

Definition 2 (TPA-State). Given a protocol P, its time process specifica-
tion ((ΣTPAP , ETPAP ), PTPA) and its associated rewrite theory (ΣTPAP+State ,
ETPAP , RTPAP ), a TPA-State is a state in the time process algebra semantics
that is reachable from the initial state {∅ | {∅} | 0.0}.

Definition 3 (PA-State). Given a protocol P, its time process specification
((ΣTPAP , ETPAP ), PTPA), the simplified version ((ΣPAP , EPAP ), tpa2pa(PTPA)),
and its associated rewrite theory (ΣPAP+State , EPAP , RPAP ), a PA-State is a
state in the process algebra semantics that is reachable from the initial state
{∅ | {∅}}.
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We consider successful transition sequences where the additional conditional
expressions are evaluated.

Definition 4 (Successful PA-state). Given a protocol P, we say a PA-state
is successful if for each process (ro, i, j)P1 · · ·Pn in the state, the first action P1

is not a conditional expression introduced by the transformation tpa2pa, and the
conditions of all the conditional expressions introduced by the transformation
tpa2pa were evaluated to true in the sequence reaching the PA-state from the
initial PA-state.

The transition rule (PTime) does not have a counterpart without time. The
transition rule (PTime) is related to a proper interleaving of input actions, in
such a way that closer participants receive a message earlier than others.

Definition 5 (Realizable PA-state). Given a protocol P, a sequence of PA-
states

{∅ | {∅}} −→(ro1,i1,j1,A1,k1) PA1

−→(ro2,i2,j2,A2,k2) PA2...−→(ron,in,jn,An,kn) PAn

is called realizable if the following two sets of distance constraints are satisfied:

– Triangular inequalities. For all distinct 1 ≤ j1, j2, j3 ≤ n, d((roj1 , ij1), (roj2 , ij2)) ≤
d((roj1 , ij1), (roj3 , ij3)) + d((roj3 , ij3), (roj2 , ij2)).

– Time sequence monotonicity. For 1 ≤ j ≤ n such that Aj = −(M@ . . .) and
M @ ((ro′0, i

′
0) : t→ ((ro′1, i

′
1) : t1 · · · (roj , ij) : tj · · · (ro′m, i′m) : tm)) is stored

in the Net component of PAj, d((ro′0, i
′
0), (ro′k, ik)) ≤ d((ro′0, i

′
0), (roj , ij)),

for all 1 ≤ k ≤ j.

We say a PA-state is realizable if the sequence reaching the PA-state from the
initial PA-state is.

Lemma 1 (Realizable PA-state). Given a protocol P and a realizable se-
quence of PA-states

{∅ | {∅}} −→(ro1,i1,j1,A1,k1) PA1

−→(ro2,i2,j2,A2,k2) PA2...−→(ron,in,jn,An,kn) PAn

there exists a sequence of TPA-states

{∅ | {∅} | 0.0} −→(ro′1,i
′
1,j
′
1,A
′
1,k
′
1,t
′
1) TPA1

−→(ro′2,i
′
2,j
′
2,A
′
2,k
′
2,t
′
2) TPA2...−→(ro′

n′ ,i
′
n′ ,j

′
n′ ,A

′
n′ ,k

′
n′ ,t
′
n′ )

TPAn′
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such that for every two input steps PAa −→(ro,i,ja,−(m@...),0) PAa+1, a ∈ {0, . . . , n−
1}, PAb −→(ro′,i′,jb,−(m′@...),0) PAb+1, b ∈ {0, . . . , n − 1} s.t. a < b, there ex-
its two input steps with the same roles (ro, i) and (ro′, i′) and messages m and m′,
TPAc −→(ro,i,jc,−(m),0,tc) TPAc+1, c ∈ {0, . . . , n′−1}, TPAd −→(ro′,i′,jd,−(m′),0,td)

TPAd+1, d ∈ {0, . . . , n′ − 1} s.t. c < d, which implies that tc < td.

The transition rule (TPA&) corresponds to (PA&) but they are very different.
On the one hand, the transition rule (PA&) adds a new process if it starts
with either an output message, a conditional, a non-deterministic choice, or an
input message that synchronizes with the intruder knowledge. On the other
hand, the transition rule (TPA&) adds a new process without advancing it.
That is, it can add a time process starting with an input message that cannot
be synchronized with the current intruder knowledge. In this case, the process
never moves forward, and so it can be ignored.

Definition 6 (Blocked Process). Given a protocol P and a TPA-state
{TLP1 & · · · &TLPn | {IK}}, we say a time process TLPi = (ro, i, j) Pi is
blocked if there is no transition step from {(ro, i, j) Pi | {IK}}.

Definition 7 (Non-void TPA-state). Given a protocol P, we say a TPA-
state is non-void if the last transition step in the sequence reaching the state was
not (TPA&).

We now define the relation H that relates PA and TPA states.

Definition 8 (Relation H). Given a protocol P, a TPA-State TPA = {TLP1&
. . .&TLPn | {Net} | t̄} and a successful PA-State PA = {LP1& . . .&LPm |
{IK}} , we have that (TPA,PA) ∈ H iff:

(i) For each non-blocked timed process TLPk = (ro, i, j) Pk, 1 ≤ k ≤ n,
there exists a process LPk′ = (ro, i, j′) P ′k, 1 ≤ k′ ≤ m, such that P ′k =
tpa2pa*(Pk, ro, i); and viceversa.

(ii) For each stored message (M@((ro, i) : t→ AS)) in Net, there exists (M@((ro, i) :
t→ AS ]AS′)) ∈ I in IK; and viceversa.

We are able to prove soundness and completeness.

Proposition 1 (Completeness). Given a protocol P and a non-void TPA-
state TPA, there exists a successful PA-state PA s.t. TPA H PA.

Proof. By induction on the length n of

{∅ | {∅} | 0} −→(ro1,i1,j1,A1,k1,t1) TPA1

−→(ro2,i2,j2,A2,k2,t2) TPA2...−→(ron,in,jn,An,kn,tn) TPAn

If n = 0, then the conclusion follows. If n > 0, then the induction hypothesis
says that there exists a sequence
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{∅ | {∅}} −→(ro′1,i
′
1,j
′
1,A
′
1,k
′
1) PA1

−→(ro′2,i
′
2,j
′
2,A
′
2,k
′
2) PA2...−→(ro‘m−1,i′m−1,j
′
m−1,A

′
m−1,k

′
m−1) PAm−1

such that TPAn−1 H PAm−1. Let us consider the transition rule used in the step
n.

– Transition rules (TPAif1),(TPAif2),(TPA?1),and (TPA?2) are immediate,
since they do not use any information from the network or the global time
t̄.

– Transition rules (TPA++) and (TPA+) are also immediate, since they sim-
ply add extra information to the network.

– The transition rule (TPA-) is also immediate because the network of TPAn−1

and the intruder knowledge of PAm−1 contain the same number of messages.
Clearly, we assume that the choice variables t? and AS? for time added by
tpa2pa are replaced by the very same information existing in TPAn−1. In
this case, since we consider only successful states, the conditional expressions
added by tpa2pa are evaluated to true.

– The transition rule (PTime) is also immediate, since the global time is the
only change.

– The transition rule (TPA&) is excluded by requiring it to be non-void. ut

Proposition 2 (Soundness). Given a protocol P and a successful realizable
PA-state PA, there exists a non-void TPA-state TPA s.t. TPA H PA.

Proof. By induction on the length m of

{∅ | {∅}} −→(ro1,i1,j1,A1,k1) PA1

−→(ro2,i2,j2,A2,k2) PA2...−→(rom,im,jm,Am,km) PAm

If n = 0, then the conclusion follows. If n > 0, then the induction hypothesis
says that there exists a sequence

{∅ | {∅} | 0} −→(ro′1,i
′
1,j
′
1,A
′
1,k
′
1,t
′
1) TPA1

−→(ro′2,i
′
2,j
′
2,A
′
2,k
′
2,t
′
2) TPA2...−→(ro′n−1,i

′
n−1,j

′
n−1,A

′
n−1,k

′
n−1,t

′
n−1) TPAn−1

such that TPAn−1 H PAm−1. Let us consider the transition rule used in the step
m.

– Transition rules (PAif1),(PAif2),(PA?1),and (PA?2) are immediate.
– Transition rules (PA++), (PA+), and (PA-) are also immediate, since they

simply add the message to the intruder knowledge and the choice variables
t? and AS? added by tpa2pa are replaced by valid values, since the PA-state
is successful and realizable.
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– The transition rule (PA&) is also immediate because implies two transition
steps from TPAn−1, one using the transition rule (TPA&) and the other one
for the very same action of the step (PA&). ut
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