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ABSTRACT
The growing connection among IoT and AI poses many challenges
that call for novel approaches and rethinking of the entire archi-
tecture, communication, and processing to meet the requirements
in latency, reliability, and use of resources. Edge computing is a
promising approach in this sense. Moreover, it can become benefi-
cial to bring advanced, i.e., AI-based, IoT solutions in areas where
connectivity is scarce and where in general resources are limited.

In this paper we describe an edge/fog generic architecture to
allow the adoption of edge solutions in IoT deployments in poorly
connected and resource limited scenarios. To this end we integrated,
using microservices, anMQTT based system that can collect ingress
data, handle their persistency, and coordinate data integration with
the cloud using a specific service called aggregator. The edge sta-
tions have a dedicated channel with the aggregator that is based
on LoRa to enable long-range transmissions with low power con-
sumption.

Some details of the implementation aspects are described along
with some preliminary results. The initial tests of the architecture
indicated that is flexible and robust enough to provide a good plat-
form for the deployment of advanced IoT services in contexts with
limited resources.

CCS CONCEPTS
• Networks → Peer-to-peer protocols; Network architectures; •
Information systems→ Collaborative and social computing sys-
tems and tools.
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1 INTRODUCTION
The proliferation of smart IoT in association with artificial intelli-
gence (AI) is giving rise to the development of new applications
that not only require additional compute resources but add new
constraints of privacy and low latency. This trend has motivated
the recent adoption in IoT of the edge/fog computing paradigm,
which introduces a middle tier of resources between the cloud and
the IoT devices [1, 2].

While cloud refers to computing powered by large, distributed
groups of servers, the edge refers to compute on the edge of the
network, closer to or at the data source itself. Fog computing is
inclusive of computing anywhere along the continuum, from cloud
to the edge, into close proximity to the things [3].

For example, Machine Learning (ML) inference on the edge
shows an increasingly attractive potential. By performing infer-
ence on-device, and near-sensor, ultra-low-power machine learning
hardware like TinyML enables greater responsiveness and privacy
while avoiding the energy cost associated with wireless communi-
cation, which at this scale is far higher than that of compute [4].
A recent trend is to deploy well trained artificial intelligence (AI)
model on edge servers, whose capacities are somewhat bigger than
those of IoT devices. However, since the training of AI demands
huge computation and memory resources, the training process is
preferred to be done in the cloud.

This link among IoT, cloud, edge, and AI, poses many challenges
that call for novel approaches and rethinking of the entire architec-
ture, communication, and processing to meet the requirements in
latency, reliability, and use of resources [5]. Edge computing can
also become beneficial to bring advanced IoT solutions in areas
where connectivity is scarce and where in general resources are
limited, like for example in rural areas areas and in developing
countries.

In this paper, we detail the design of a generic frugal edge/fog
architecture to provide computing services in poorly connected
and resources limited scenarios. We first outline the concept of the
“aggregator”. The aggregator coordinates the data flow between
the services on the edge nodes with those in the cloud. It uses a
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polling technique so to: (1) obtain a higher flexibility in the use of
the channel, (2) allow the use of sleep mode at the edge node, and
(3) handle disconnection periods.

Edge nodes in this architecture are called “FUDGE” (FrUgal eDGE
node). A FUDGE is based on microservices, an architectural ap-
proach where software is composed of small independent services
that communicate over well-defined APIs. This architecture make
applications easier to scale and faster to develop. In a FUDGE var-
ious microservices coexist and interchange data with other mi-
croservices using an API based on the MQTT pub/sub system. Data,
indicated as content, enters locally into the FUDGE through so
called “content proxys”. Three main components can be found in a
FUDGE: an MQTT broker, a persistency manager, and a content
forwarder. The MQTT broker handles the flow of the content inside
the node. The persistency manager element takes care of storing
the content that is labeled as persistent in a time-series database.
This allows to maintain the temporal evolution of the system while
retaining all the required data to handle asynchronous operation
or possible disconnections. Moreover, data analytic tools can be
used to extract metrics that make sense out of the collected data,
and monitoring apps through customizable dashboards. Finally, the
content forwarder is in charge of talking with the aggregator using
a protocols called “LoRaCTP” (LoRa Content Transfer Protocol).
LoRaCTP is a reliable transport protocol designed on top of LoRa,
that allows to transfer blocks of bytes (“content”) adapting to the
quality of the channel. LoRa and LoRaWAN are one of the most
popular and successful technologies in the LPWANs space that offer
long ranges with low power and low complexity although with low
data rates [6, 7].

The paper is organized as follows. Section 2 gives an overview of
the current activities in the area, Section 3 describes the overall fog
architecture proposed, and in Section 4 the details of the FUDGE
design are presented. Section 5 describe some details of the proto-
type that was designed to test the architecture. Finally, Section 6
describe some conclusions and future works.

2 RELATEDWORKS
Other works in the literature addressed the combination of Lo-
RaWAN and MQTT to provide IoT services, for example see [8–14].
In [15] a LoRa-MQTT gateway device is described for supporting
the sensor-to-cloud data transmission in smart aquaculture IoT
applications. In this work the authors focus on the integration of
the collection of data from sensor devices and their transmission to
a cloud based data storage server. In [16] the authors describe the
design of an Internet of Things based platform having as main ob-
jective the real-time management of energy consumption in water
resource recovery facilities and their integration in a future de-
mand side management environment. A very interesting solution
is presented in [17] where a low-cost remote monitoring system
for dangerous areas based on drones is described that again takes
advantage of LoRa and MQTT as the basic technologies. Also, in
[18] an open-source earthquake and weather monitoring system is
presented based on a Long Range (LoRa)-based star topology with
a fully energy-autonomous sensor node.

IoT generates massive amounts of information, and AI helps to
make sense of all this data, turning it into predictive findings and

prescriptive recommendations [19]. Various works appeared re-
cently that take advantage to this combination. For example in [20]
the authors use a class of advanced machine learning techniques,
namely deep learning (DL), to facilitate the analytics and learning
in the IoT domain. Also, in [21] Akbar et al propose a proactive
architecture which exploits historical data using machine learning
(ML) for prediction in conjunction with Complex Event Processing
(CEP). Finally, an interesting work by Verma et al [5] reviews the
state-of-the-art of the analytics network methodologies, which are
suitable for real-time IoT analytics.

Finally, fog computing, as an architecture, supports a growing
variety of applications, including those in the Internet of Things
(IoT), fifth-generation (5G) wireless systems, and embedded arti-
ficial intelligence (AI). In [22], Chiang and Zhang summarize the
opportunities and challenges of fog, focusing primarily in the net-
working context of IoT. In [23], the authors state that over time,
because of the increasing number of IoT devices, managing them
by a fog node has become more complicated. The problem they
address in their study is the transmission rate of various IoT devices
to a fog node in order to prevent delays in emergency cases. They
formulate the decision making problem of a fog node by using a
reinforcement learning approach in a smart city as an example
of a smart environment and then develop a Qlearning algorithm
to achieve efficient decisions for IoT transmission rates to the fog
node.

Our work aims to offer an edge/fog generic architecture to al-
low the adoption of edge solutions in IoT deployment in poorly
connected and resources limited scenarios. To this end we inte-
grated, using microservices, an MQTT based systems that can
collect ingress data, handle their persistency, and coordinate data
integration with the cloud using a specific service called aggregator.

3 THE OVERALL ARCHITECTURE
Figure 1 shows the overall architecture of the system we propose.
Its basic structure is based on a central node called “aggregator”
and on various edge stations. The edge stations have a dedicated
channel with the aggregator that is based on LoRa to enable long-
range transmissions with low power consumption. On top of LoRa
we designed a reliable transport protocol called “LoRaCTP” (LoRa
Content Transfer Protocol)1 that allows to reliably transfer blocks
of bytes (“content”) bidirectionally and adapting to the quality of
the channel; the details of LoRaCTP are outside the scope of in this
paper.

Content sent is encrypted using the certificate of the aggregator.
The certificate must be manually pre-installed in the edge nodes.
This approach guarantees both privacy in the communication and
that only the authorized aggregator can handle the incoming data.
We understand that this is a minimum level of security but we
consider that given the context is enough to define a sufficiently
reliable system.

The aggregator coordinates the data flow with the edge nodes
using a polling approach. Polling was chosen due to the difficulty
in LoRa to properly detect and handle collisions, and because of the
necessity, given the low bandwidth offered by LoRa to guarantee
transmission reliability to take place at maximum speed. Moreover,

1The code of LoRaCTP can be found here: https://github.com/pmanzoni/loractp
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Figure 1: Overall architecture of the proposed system.

polling does not require for more complex hardware/software to
manage links establishment with the edge devices. overall, this
approach allows: (1) a greater flexibility in the use of the channel,
(2) the use of sleep mode at the edge node, and (3) ease the handling
of disconnection periods.

During polling, once a edge node is selected, a push/pull se-
quence in followed where first the edge node pushes the data to
the aggregator and a second phase where the edge nodes pulls the
data stored in the aggregator. The content forwarder is in charge
of this task; see Section 4 for details. Basically, in the push phase
the content forwarder sends all the content tagged as Global that
are kept stored by the consistency manager. In the pull phase the
aggregator sends the content that it kept stored since the previous
polling phase. The aggregator returns content whose topics were
registered from any service in the edge node. The idea behind this
is to give the possibility to local processes to receive both (1) replies
to requests sent locally and (2) data from other services in the cloud.
An example of the latter can be input data coming from a LoRaWAN
network server, like The Things Networks2 but the general idea is to
collect data from other MQTT enabled cloud services, like firebase3
or flespi4. This last part still has to be completely designed.

Finally, as a future idea we’ll evaluate the possibility to extend
the star topology that we depicted in Figure 1 to a mesh like to
distribute the load among various aggregators and to reduce latency.

4 THE FRUGAL EDGE-NODE
In this Section the structure and organization of an edge node is
detailed. The edge nodes are called “FUDGE” (FrUgal eDGE node)
and their structure is shown in Figure 2. A FUDGE is based on mi-
croservices. Microservices are an architectural and organizational
approach to software development where software is composed
of small independent services that communicate over well-defined
APIs. This architecture make applications easier to scale and faster

2https://www.thethingsnetwork.org/
3https://firebase.google.com/
4https://flespi.io/
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Figure 2: The FUDGE (frugal edge-node) structure.

to develop. In a FUDGE various microservices can coexist which
interchange data with other microservices using an API based on
the MQTT pub/sub system.

Three basic elements constitute a FUDGE: an MQTT broker, a
persistency manager, and a content forwarder. Beside these three
main elements, there are as many “content proxys” as the various
content sources this FUDGE is handling; more details on the content
proxys can be found in Section 5.1.

The MQTT broker is the core of the FUDGE and handles the flow
of the content inside the node. The persistency manager element
takes care of storing the content that is labeled as persistent in a
time-series database. This allows to maintain the temporal evolu-
tion of the system while retaining all the required data to handle
asynchronous operation or possible disconnections. Moreover, data
analytic tools can be used to visualize and extract metrics from
the collected data, or implement custom monitoring dashboards.
Finally, the content forwarder is in charge of talking with the ag-
gregator using LoRaCTP to interchange all the required content, as
described in Section 3.

Since MQTT is at the core of the system, we define a standard
format for topics. The structure used in the system is as follows:
<device id>/<service id>/scope/persistency/. . .others . . .

where:
• <device id>: identifies the specific FUDGE node device
• <service id>: identifies the service that provides the con-
tents. Content providers can be anything from a simple tem-
perature sensors to cameras, messaging system, ...

• scope: indicates whether the content is to be used only by
others services locally inside the FUDGE node (‘L’) or it has
to be forwarded to the aggregator (‘G’)

• persistency: used to indicate whether the content has to be
handled or not by the persistency manager. A (‘P’) will make
the content become persistent, and a (‘N’) indicates that no
action is required. A third value, (‘X’), is used to perform
searches in the persistency repository to retrieve data, and
uses the others fields to indicate whether this is a request
or a response for a search, or other details.

• others: more tags can be added if required by the specific
service.

The content itself has to be structured using the JSON data-
interchange format according to the format in Listing 1.



1 payload = {
2 "measurement": <measurement_id>,
3 "tags": {
4 "tag1": <tag1_value>,
5 ...,
6 "tagn": <tagn_value>
7 },
8 "fields": {
9 "field1": <field1_value>,
10 ...,
11 "fieldn": <fieldn_value>
12 }
13 }

Listing 1: Structure of the content based on JSON.

The <measurement_id> indicates the specific set of values. There
can be various source generating data about the same set, e.g., vari-
ous weather stations in an area close to the edge node providing
the climatic values. The difference between the <tag_value> and
the <field_value> is given by the underlying time-series database.
Basically, a measurement that changes over time should be a field,
and a metadata about the measurement should be a tag, for example
the values of pressure and temperature are fields and the name of
the weather station a tag.

In the following Section 5 more details are given on how a
FUDGE works and about the content proxys.

5 PROTOTYPE IMPLEMENTATION
In this section we describe the details of a first prototype designed
to test the feasibility of the FUDGE architecture. As the basic plat-
form we used a Raspberry Pi 3 Model B+ that comes with a CPU
Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz,
has 1GB SDRAM, and IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth
4.2, BLE connectivity as main features.

The MQTT broker used was the Eclipse Mosquitto, an open
source (EPL/EDL licensed) message broker that implements the
MQTT protocol versions 5.0, 3.1.1 and 3.1. Mosquitto is lightweight
and is suitable for use on low power single board computers. The
persistency manager used for data storage the support of InfluxDB5,
an open source time series database.

Mosquitto and InfluxDB are executed at start-up as Docker6
containers. Then, the persistency manager starts by connecting
to the InfluxDB server and by subscribing to the generic topic
"rpired/#", (in this case the <device id> is rpired). On receiving
a message from the broker the code executed was the one shown
in Listing 2 (we deleted the low level details).

Basically, the topic of the incoming message is analyzed in search
for the request to make its content persistent. If this is the case, a
proper database record is created from the payload of the message,
and eventually it’s stored in the database.

Figure 3 shows the first results of the performance evaluation
experiments we did. The figure shows the behavior of the delay
when a content proxy generates a random content at a predefined
5https://www.influxdata.com/
6https://www.docker.com/

1 def on_message(mqttc, userdata, msg):
2 top = msg.topic.split('/')
3 if (top[3]=='P'): # Checking if data must be persistent
4 jrecord = create_json_data(msg.topic, msg.payload)
5 clientIX.write_points(jrecord, database=IXDB,
6 protocol='json')
7 elif (top[3]=='X') and (top[4]=='request'):
8 read_from_db_messapp(msg.topic, msg.payload)
9 else:
10 pass # nothing to do

Listing 2: Snippet of the code of the persistency manager to
handle incoming messages.

frequency. In green is shown tha case of a 100 bytes content gener-
ated every 5 second, while in red is the case of a 100 KB content
generated every 100msec. The time is measured from the moment
the content is packed to create the message to be sent to the broker
until the persistency manager completed the storing on the message
in the DB. The first case can be considered as a very light source
of load and was used as a reference; the mean value was 29 msec
with a 75-percentile of 30 msec. The second case tried to stress a
little the system but the performance stayed stable; the mean value
was 84 msec with a 75-percentile of 63 msec.

Figure 3: Results of the performance evaluation experi-
ments. In green is shown that case of a 100 bytes content
generated every 5 second, while in red is the case of a 100
KB content generated every 100msec.

In case it is a request of a search in the persistency repository (’X’)
a search in the database is started. Listing 3 shows, as an example,
the case for the messaging service, execute calling function in line 8
in Listing 2. First, the request is transformed in a a response. Using
the payload the proper SELECT to the database is prepared and
issued to the DB server. Values are returned as a list of values, or if
no value was found, the special label "NO DATA" is returned.

Finally, as indicate before, data analytic tools can be used to
extract metrics that make sense out of the collected data, and mon-
itoring apps through customizable dashboards. Figure 4 shows a



1 r = cIX.query("SELECT * FROM "+
2 IXDB+".autogen."+pload["measurement"]+
3 " where destination='"+
4 pload["tags"]["destination"]+"'")
5 if len(r) == 0:
6 mqttc.publish(topic, "NO DATA")
7 else:
8 points = r.get_points()
9 for point in points:
10 payload = {
11 "measurement": "messapp",
12 "tags": {"sender": point['sender'],
13 "time": point['time']},
14 "fields": {"message": point['message']}
15 }
16 jpaylaod = json.dumps(payload)
17 mqttc.publish(topic, jpaylaod)

Listing 3: Snippet of a search for the messaging service.

couple of examples of how Grafana7, executed as a Docker con-
tainer too, is used to monitoring data from the Ruuvi devices and
from the device hosting the FUDGE itself.

5.1 Content proxys
In this development and testing phase we used, as content sources:
(1) some Ruuvi8 environmental sensors, (2) the internal system data
from the Raspberry Pi, and (3) a messaging system. The code can
be found in the following repository:

https://github.com/pmanzoni/fudge
Content proxys are the microservices in charge of getting the

data from the various sensors, and publish it to the broker to be
handled. The topic structure is indicated in Section 4. The code in
Listing 5 is extracted from the Ruuvi’s one and shows the basic
structure of these services. Basically, data is obtained from the
specific, physical source (line 4) and a JSON data structure is created
(lines 7-12) including the specific measurement (e.g., “ruuvis”), the
tags (e.g., the MAC address of the specific Ruuvi device), and as
fields the values from the specific device, shown in Listing 4.

6 CONCLUSIONS
In this paper we detailed the design of a generic frugal edge/fog
architecture to provide computing services in poorly connected
and resources limited scenarios. We outlined the concept of the
“aggregator”, the process that coordinates the data flow between the
services on the edge nodes with those in the cloud. We detailed the
structure of the edge nodes, called “FUDGE” (FrUgal eDGE node).
FUDGEs are based on microservices to make applications easier to
scale and faster to develop. In a FUDGE interchange data using an
API based on the MQTT pub/sub system. Data, indicated as content,
enters locally into the FUDGE through so called “content proxys”.

The edge stations have a dedicated channel with the aggregator
that is based on LoRa to enable long-range transmissions with low

7https://grafana.com/
8https://ruuvi.com/

1 {
2 'data_format': 5,
3 'humidity': 48.17,
4 'temperature': 22.84,
5 'pressure': 1014.65,
6 'acceleration': 997.3645271414058,
7 'acceleration_x': -44,
8 'acceleration_y': 28,
9 'acceleration_z': 996,
10 'tx_power': 4, 'battery': 2907,
11 'movement_counter': 234,
12 'measurement_sequence_number': 14039,
13 'mac': 'f4af92d97c3a'
14 }

Listing 4: Data provided by a Ruuvi device.

1 while True:
2 for i in range(len(sensors)):
3 # update state from the device
4 state = sensors[i].update()
5

6 devid = RTAGS[i]
7 payload = {
8 "measurement": "ruuvis",
9 "tags": {"devid": devid
10 },
11 "fields": state
12 }
13 jpaylaod = json.dumps(payload)
14 mqttc.publish("rpired/ruuvis/L/P",
15 payload=jpaylaod,
16 qos=0, retain=False)

Listing 5: Snippet of the Content proxys for the Ruuvi’s de-
vice.

power consumption. On top of LoRa we designed a reliable trans-
port protocol called “LoRaCTP” (LoRa Content Transfer Protocol)
that allows to transfer blocks of bytes (“content”) adapting to the
quality of the channel.

Some details of the implementation aspects were described along
with some preliminary results. The initial tests of the architecture
indicated that is flexible and robust enough to provide a good plat-
form for the deployment of edge services in remote or rural context.

More work and evaluation are obviously required to determine
for example whether this architecture can be adapted to other edge
computing solution like for example rCUDA[24].
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(a) Monitoring data from the Ruuvi devices. (b) Monitoring system data from the FUDGE devices.

Figure 4: Grafana examples for a monitoring app.
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