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Abstract 

Assessment of drug cardiotoxicity is crucial in the 

development of new compounds and is typically addressed 

by evaluating the blockade they cause in the potassium 

human ether-à-go-go related gene (hERG) channels. Our 

objective is to develop a classifier to determine the 

preference for binding to the different states of a drug. 

We created a set of 2600 virtual blockers with different 

affinities and kinetics to the conformational states of the 

channel divided into 13 classes. Simulations were carried 

out using three stimulation protocols that enhance the 

probabilities of the channel to occupy a certain state. 

Three measurements were taken for each of the 

simulations: IC50, the recovery constant of the IKr 

potassium current and an estimation of the time required 

for the simulation to be stable. Therefore, we obtained 9 

variables for each of the blockers studied. A two-step 

classifier was developed, trained and evaluated. First, we 

used support vector machines on the IC50 to separate the 

13 classes into three groups with 4, 5 and 4 classes 

respectively. Secondly, we used neural networks on each 

group with all the variables to finally classify the blockers. 

The three classifiers obtained an overall accuracy on 

the test group of 90.83, 88.66 and 89.16% for each of the 

groups respectively. 

 

1. Introduction 

Preclinical assessment of cardiac toxicity of new drugs 

has become a priority for pharmaceutical companies due to 

potentially life-threatening side effects involving 

ventricular arrythmias [1]. Nowadays, the most commonly 

used tests to assess cardiac safety are based on the in vitro 

blockade that a drug causes in the human ether-à-go-go-

related gene (hERG) and the in vivo prolongation of the 

QT interval. Both these phenomena have been linked to the 

appearance of Torsades de Pointes (TdP). 

While these safety tests have proved successful in 

preventing harmful drugs from reaching the market, they 

have also stopped the development of potentially useful 

drugs. In fact, there are drugs such as verapamil, a well 

know hERG blocker, that do not lead to the development 

of TdP despite of being potent IKr blockers. 

Recent studies have shown that assessment of cardiac 

safety improves when drug dynamics and kinetics are 

taken into account [2]. State dependent drug binding can 

significantly alter the IC50 values, which is the drug 

concentration at which the value of the ionic current is 

halved, depending on the voltage clamp protocols used [3]. 

Thus, consideration of drug behaviour and standardization 

of the voltage clamp protocols are important aspects for the 

improvement of the assessment of cardiac safety. A recent 

study proposed a set of three protocols enhancing the 

probability of the channel to occupy a certain state [4]. In 

this work, we will use these stimulation protocols with the 

aim of elucidating the channel state preference of a drug by 

using machine learning techniques. 

 

2. Material and Methods 

2.1. Models 

Six variants of human ventricle the Fink et al. [5] IKr 

Markov model were used in order to simulate drug-channel 

interactions, as shown in Figure 1. The original drug free 

model has five conformational states, three closed (C1, C2 

and C3), open (O) and inactivated (I). The five drug bound 

states (C1d, C2d, C3d, Od and Id) were incorporated to 

simulate the states of the channel when the drug is bound. 

Transition from the drug free state to the drug bound one 

is regulated by a constant named k(C, O, I) which is 

multiplied by the drug concentration (D) to obtain the 

transition rate. Drug unbinding from a certain state is 

regulated by a constant r (C, O, I). 

2.2. Protocols 

Three previously developed voltage clamp protocols 

were used to simulate the effects of the drugs [4]. These 

protocols, which were called P40, P0 and P-80, maximized 

the time the channel are at 40, 0 and -80 mV, respectively. 

P40 consist of a 5 s conditioning step at 40 mV, followed 

by 0.2 s test pulse at -60 mV and a 0.2 s recovery time at -

80 mV resting potential. P0 is equal to P40 but the 

conditioning step is applied at 0 mV. P-80 consist of a 0.5 
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s test step at 20 mV, followed by a 0.2 s step at -50 mV and 

a 4.5 s conditioning step at -80 mV. The protocols enhance 

the probability of the channel to occupy the inactivated, 

open and close state respectively. Protocols shown in 

figure 2. [6] 

 

 

 

 

 

 

 

 

 

 

 

2.3. Drugs 

A set of 2600 virtual drugs with different dynamics and 

kinetics for the conformational states of the channel was 

created. Considering all affinities, there are thirteen 

possible classes of drug. The names of these classes appear 

with their corresponding Markov model in Figure 1 and are 

defined as follows. Drugs that bind exclusively the closed 

state (Closed), the open state (Open) and the inactivated 

state (Inactivated). Drugs that bind the open and close 

states simultaneously with equal affinities (CO), 

preference for the closed state (ClosedO) or the open state 

(OpenC). Drugs which binds the open and inactivated 

states without preference (OI), with higher affinity for the 

open state (OpenI) or the inactivated state (InactivO). 

Finally, drugs that bind simultaneously to all three states, 

equally (COI), with closed state preference (ClosedOI), 

open state preference (OpenCI) and inactivated state 

preference (InactivCO). In all cases, the association rate 

constant is equal for all blocked states. Higher affinity to a 

certain state is simulated by a 100-fold reduction in the 

dissociation rate constant of the corresponding state. 200 

drugs of each class were simulated, randomly generating 

the transition rates values using Matlab. 

 

3. Results 

The effects of the virtual drugs were simulated using the 

three aforementioned voltage clamp protocols. For each 

simulation we calculated three variables, 1) IC50 for each 

of the protocols, the most commonly used parameter to 

assess cardiac safety, 2) a derivative based estimation of 

the number of pulses required to reach steady state and 3) 

the time constant of the evolution of the inhibition of the 

current at the IC50 concentration, which was estimated 

using an exponential fitting.  Therefore, a total of nine 

variables per drug were calculated. 

After all variables were obtained, a two-step classifier was 

developed to try to classify drugs intro the thirteen target 

classes (shown in Figure 1). All data analysis was 

conducted using Matlab (Matworks Inc.) 

Figure 1: Markov models with drug free (C3, C2, C1, O and I) and drug bound (C3d, C2d, C1d, O and I) states. D is the drug 

concentration, kC, ko and kI are multiplied by D to calculate the association rate constants in the closed, open and inactivated 

states respectively, and rC, ro and rI are the dissociation rate constants. Red letters indicate binding states. The name of the 

classes appear with the corresponding the Markovian model.  

Figure 2: Voltage clamp protocols used to simulate 

drug effects, namely P-80, P0 and P40. 
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3.1. Support Vector Machine Classifier 

An exploratory analysis of the data was conducted to 

visualize all variables. 3D plots were constructed by 

plotting the values of the variable obtained with each 

protocol in each axis. A 3D representation of the IC50 

values is shown in Figure 3 (plots for the other two 

variables are not shown). 

 

 
Figure 3: 3D representation of the IC50 values of the 2600 

virtual blockers. Axis represent the –log([IC50]) obtained with the 

three voltage clamp protocols (P40, P0 and P-80).  

As seen in Figure 3, there are three clearly 

distinguishable groups among the drugs, which can be 

separated by drawing a hyperplane between them. For this 

reason, we decided to use support vector machines (SVM) 

to create the frontier between groups. Thus, two SVM were 

trained using a one-vs-all approach. The first SVM 

separated the top group, considering all classes present in 

this group as one, from the rest of drugs (Figure 4, top 

panel). The second SVM did so with the bottom group, 

again considering all classes in that group as one (Figure 

4, bottom panel). All drugs not fitting to any of the two 

groups were assigned to the middle one. 

This first step of the classifier was able to fully separate 

drugs into three groups based only on IC50 values. The first 

group (top, blue coloured in the top panel of Figure 4) 

corresponded with drugs that preferably binded to the 

closed state and drugs that equally binded the closed and 

open state (Closed, ClosedO, ClosedOI, CO). The second 

group (middle) contained drugs with higher affinity for the 

open state and those that equally blocked all three states 

(Open, OpenC, OpenI, OpenCI, COI). Finally, the bottom 

group (blue coloured in the bottom panel of Figure 4) 

corresponds to inactivated state preference drugs and drugs 

simultaneously binding the open and inactivated states 

with equal affinity (Inactivated, InactivO, InactivCO, OI). 

Thus, using only the IC50 values obtained with the three 

protocols we were able to separate drugs based on their 

preferred binding state. 

 

 

Figure 4: Hyperplanes created by the SVM to separate the 

drugs into three groups based on the IC50 values obtained with the 

protocols P-80, P0 y P40. (A) SVM used to separate the top 

(Closed state preference) group. (B) SVM used to separate the 

bottom (Inactivated state preference). Blue dots represent drugs 

belonging to the separated group and red dots correspond to the 

ones that do not. 

3.2. Neural Networks Classifier 

After the first step of the classification procedure, a set 

of three neural networks was trained using Matlab toolbox. 

These networks were used to classify the remaining drugs 

in each of the previously separated groups into the final 

target classes. Training and test groups were automatically 

selected by the toolbox. 120, 126 and 120 drugs were 

selected for the test groups, respectively. All nine available 

variables were considered in this step. A range of 1-18 

(double the number of neurons in the input layer) neurons 

in the hidden layer was evaluated, keeping the combination 

providing best results on the test group [7]. The best results 

were obtained with 11, 7 and 9 hidden neurons for the 

groups of closed, open and inactivated state preference, 

respectively. Results for the test group are shown in Figure 
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5. This figure shows an overall accuracy of 90.83, 88.66 

and 89.16% for the test groups. 

 

 

 

 

Figure 5: Confusion matrices of the test groups for the neural 

networks. The top number in the cells represents the absolute 

number of drugs and the bottom number the percentage. (A) 

Closed state preference group. (B) Open state preference group. 

(C) Inactivated state preference group. Rows correspond to the 

predicted class and columns to the real class. Green cells show 

correctly classified drugs and red cells missclassified ones. The 

far right column summarizes the positive predictive value (green) 

and the false discovery rate (red) and the bottom row shows the 

true positive rate (green) and the false negative rate (red). Dark 

grey colored cells show the overall accuracy.  

4. Conclusion 

 
We have developed a tool for classifying drugs 

according to their affinities based on measurements 

obtained from voltage clamp protocols with high accuracy. 

 

5. Future Work 

 
We intend to further increase the accuracy of our neural 

networks. We will also use newly generated virtual drugs 

sets, containing drugs with different kinetics and 

dynamics. An additional step will be the validation of our 

in-silico results with experimental data using the same 

voltage clamp protocols.  
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