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Abstract. The electricity sector presents new challenges in the opera-
tion and planning of power systems, such as the forecast of power de-
mand. This paper proposes a comprehensive approach for evaluating
statistical methods and techniques of electric demand forecast. The pro-
posed approach is based on smoothing methods, simple and multiple
regressions, and ARIMA models, applied to two real university buildings
from Ecuador and Spain. The results are analyzed by statistical metrics
to assess their predictive capacity, and they indicate that the Holt-Winter
and ARIMA methods have the best performance to forecast the electric-
ity demand (ED).
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1 Introduction

The electricity is an essential element for the development of the current world,
it promotes the progress of societies and raises the standard of living of peo-
ple. However, the increasing population and new generation solutions, such as
renewable energy, create new challenges for the operation, planning and energy
management of power systems [10,19]. Thus, it is essential to have proper tools to
forecast electricity demand (ED), considering its significant uncertainties, which
have widely been studied for several years [8].

There are three kinds of load forecasting depending on the time scale: short-
term, medium-term, and long-term. The short-term carries out a forecast of the
ED many hours or days ahead. The medium-term carries out a forecast of various
weeks and months ahead, and it is of particular interest for negotiating energy
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contracts. The long-term forecasting corresponds for a study of several years
ahead [7]. Short-term forecasting allows managing generation, distribution, and
transmission operation efficiently [18,20].

Researchers in this area have developed several techniques. For example,
fuzzy procedures have been performed for short-term [9], and medium-term
forecasting [6]. In [3], Echo State Networks and Principal Component Analy-
sis were used for a day horizon. Another technique significantly used are neural
networks. For example, the authors of [5] studied a neural-network-based model
for the short-term load forecast of the distribution grid. In [17], a method based
on backpropagation neural networks and election of important variables as in-
puts were studied. The authors of [15] proposed an ensemble forecast framework,
combining three neural network predictors.

In [14], advanced metering infrastructure was used to improve the load fore-
casting, based on clustering techniques of a group of customers.

Most of these techniques suffer from a lack of an efficient feature selection
technique. To address this, the authors of [1] studied the load and price forecast
based on new feature selection techniques.

Fewer works have investigated probabilistic load forecasting techniques. For
example, in [11] the load forecasting problem includes quantile regression aver-
aging on a set of sister point forecasts.

Although these works and others have studied the forecast of demand in dis-
tribution systems, fewer works have explored the demand forecast in buildings,
which could allow managing efficiently the energy. For example, in [16] a sta-
tistical methodology to assess changes in the electric demand of buildings was
proposed. The authors of [2] compared various techniques to forecast electric-
ity consumption of buildings. The aim of this paper is to assess probabilistic
forecasting methods in university buildings.

The rest of the paper is organized as follows: Section II describes an overview
of various probabilistic forecasting techniques. Section III presents the Case
Study and the Overall procedure. The results are discussed in Section IV. Finally,
Section V highlights the main conclusions.

2 Background

This section describes probabilistic forecasting techniques.

2.1 Simple Linear Regression (SLR)

The SLR models the ED from an independent variable. The information of this
independent variable is used for performing a forecast of the ED, based on the
following mathematical expression:

py � β0 � β1.x� e (1)

where py is the forecast value of the ED, β0 the intercept, β1 the slope, x the
independent variable, and e the error.
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2.2 Multiple Linear Regression (MLR)

The MLR is an extension regression of the SLR. The forecast is obtained based
on the information of two or several k independent variables:

py � β0 � β1.x1 � ...� βk.xk � e (2)

To determine the best relation between the independent variables, the least-
squares approach has to be implemented, which minimizes the sum of squared
residuals.

2.3 Time Series

Time series models consist of data recorded in an orderly manner over time. They
can be stationary or non-stationary. The time series is stationary if the mean
and variance are constant. The trend, seasonal variation, cyclical and irregular
variation, are factors that have time series. The trend shows a uniform behavior
that grows or decreases within time. Seasonal variation exists when the data
series shows a pattern that varies in a similar way year after year. The cyclic
variation is described as the fluctuation of the time series data in defined periods.
Finally, the random variation presents fortuitous changes in the time series.

2.4 Exponential smoothing (ES)

Exponential smoothing (ES) methods involve standard procedures for contin-
uously revising a forecast in light of more actual information corresponding to
the estimated data. In brief terms, the methods relegate exponentially decreas-
ing weights as the observation gets older [12]. Various approaches of exponential
smoothing exists, of which the Holt and Winter methods are detailed:

Holt Method (HM) The HM appropriates for series including a linear time
trend and additive seasonal variation. The series are expressed as follows:

At � α.Yt � p1 � αq.pAt�1 � Tt�1q (3)

The trend estimation is defined by:

Tt � β.pAt �At�1q � p1 � βq.Tt�1 (4)

The forecast is computed by:

pYt�p � At � p.Tt (5)

where pY is the new series value.
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Winter Method (WM) The WM includes a linear trend and multiplicative
seasonal variation. The smoothed series are defined:

pY � pAt � p.Ttq.St�L�p � et (6)

where S is the seasonal factor, the coefficients are defied by the recursions:

At � α.
Yt
St�L

� p1 � αq.pAt�1 � Tt�1q (7)

Tt � βpAt �At�1q � p1 � βq.Tt�1 (8)

St � γ.
Yt
At

� p1 � γq.St�L (9)

2.5 ARIMA Models

The ARIMA Models (p,d,q) are a class of stochastic processes used to ana-
lyze time series [4]. They include autoregressive processes, which are univariable
models whose value in time depends on its data in a previous time series and
on a random term. The time series data are used for searching and prediction
[13]. The obtained forecasts are aggregated for each bootstrapped time series to
generate the final output Yt [12]. It is defined as follows:

Yt � µ� β0.ut � β1.ut�1 � β2.ut�2 � ...� βq.ut�q (10)

where µ is a constant term, βq are the means , and ut the static errors.

3 Case Study and Overall Procedure

3.1 Case Study

The ED data corresponds to two university buildings: the Edificio Cornelio
Merchán (ECM) of the Universidad Politécnica Salesiana (UPS), Cuenca, Ecuador,
and the 8E building (8EB) of the Universitat Politècnica de València (UPV),
Spain. The ED data was adjusted in order to be hourly. Besides, the analysis of
variance (ANOVA) allowed classifying the ED according to the similarity of the
consumption, as well as relating them with working and non-working days. The
data of the ED from the ECM corresponds from March 14th 2017 to December
8th 2017. The data of the ED from the 8EB corresponds from July 1st 2014 to
November 27th 2016.

3.2 Evaluation Measures

To evaluate the effectiveness of each method, various evaluation measures are
used:
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Mean Absolute Error (MAE)

MAE �
1

n

ņ

i�1

|yi � pyi| (11)

Mean Absolute Percentage Error (MAPE)

MAPE � 100.
1

n

ņ

i�1

|
yi � pyi
yi

| (12)

Root Mean Squared Error (RMSE)

RMSE �

gffe 1

n

ņ

i�1

pyi � pyiq2 (13)

3.3 Overall Procedure

The studied ARIMA model is estimated based on the methodology of Box-
Jenkins. Firstly, the Autocorrelation Function (ACF) is obtained to identify
the possible parameters: p, d, and q. The procedure used includes four steps:
identification, estimation, validation, and evaluation.

Identification Due to the behavior of the time series, an integration has been
applied. Fig. 1 shows the ACF and the partial autocorrelation function (PACF).
The results of the functions shown in the figures already have a differentiation to
guarantee seasonality in the data. The first ACF presents a decrease toward zero
but is not erased, approaching the behavior of first-order autoregressive (AR)
model. While, when reviewing the PACF in Fig. 1 (b), it can be observed that
the behavior is similar to a moving average (MA) process.

Estimation The model is approximated to the theoretical patterns of the ACFs,
which are shown in Table 1. First, order parameters are estimated for the ECM
model of the UPS, that is, an AR (1), I (1) and MA (1). Due to the initial
integration, the final model is an ARIMA.

Validation Various considerations are taken to select the best alternative. The
ARIMA model has to reflect the most effective results in RMSE, Bayesian in-
formation criteria (BIC), and having an R2 ¡ 0.8, with a p¡0.05. Table 1 and
2 show the ARIMA model parameters for the ECM, in working and in a non-
working day respectively. Based on Table 1, the ARIMA (100) (011) is the most
suitable and is used for the forecast of the ED in working days. Based on Table
2, the ARIMA is the ideal for non-working days.
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Fig. 1. (a) Autocorrelation Function; (b)Partial Autocorrelation Function.

Table 1. Arima Model Parameters for the ECM in a working day

Model Param. Param. RMSE R2 p CIB

(100)(111) AR SARMA 1,227 0,974 0 0,437

(100)(011) AR SMA 1,226 0,974 0 0,43

(001)(110) MA SAR 1,344 0,968 0 0,613

(101)(101) ARMA SARMA 1,33 0,969 0 0,606

(102)(111) ARMA SARMA 1,235 0,970 0.001 0,433

Table 2. Arima Model Parameters for the ECM in a non-working day

Model Param. Param. RMSE R2 p CIB

(100)(011) AR SMA 0,771 0,796 0,0414 -0,456

(101)(111) ARMA SARMA 0,764 0,808 0,056 -0,432

(101)(011) ARMA SMA 0,767 0,799 0,102 -0,446

(001)(111) MA SAR 0,954 0,688 0 -0,31

(001)(011) AR SARMA 0,769 0,798 0,02 -0,441

Evaluation To evaluate the ARIMA model, several predictions were performed
in the SPSS software, for working and non-working days. The ARIMA model
(100)(011) with R2=0.974 and RMSE=1.266 kW is used, and its result is de-
picted in Fig. 2 (a). For the prediction of non-working days, the ARIMA (101)(111)
is performed, with a RMSE=0.764 kW and R2=0.808, and the forecast is illus-
trated in Fig. 2 (b).

Concerning the 8EB building, the ACF shows a similar behavior than the
ECM. The ACF defines an AR. As a result, the ARIMA model (101) (111)
is selected for predicting both working and non-working days. In Fig. 3 the
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Fig. 2. ARIMA forecast of ECM: (a) in a working day; (b) in a non-working day.

Fig. 3. ARIMA forecast of 8EB Building in a non-working day.

prediction of a working day with the chosen model is shown, the coefficient of
determination is R2=0.985, and RMSE=6.686 kW.

4 Results and Discussion

4.1 Results Comparison

To assess the different forecasting methods, their results are compared. The
methods used are SLR, MLR, MHW, and ARIMA. The ES and MH were not
considered since its forecasting capacity is weak and the errors are high enough.
Fig. 6 illustrates the forecasting patterns of the different methods of a working
day of the two university buildings studied. The forecast errors of the ECM and
the 8EB are shown in Table 3.

The results indicate that the ARIMA method and the HW have better fore-
cast capacity. Although SLR and MLR have a low prediction error, these models
have difficulty following the shape of the electrical source profile.

Then, to assess the forecast capacity of the ARIMA and HW methods, a non-
working and a working day were also simulated. Fig. 5 depicts the ED forecast of
a non-working day in the two studied university buildings for the corresponding
methods. Table 4 shows the forecast errors of ARIMA and HW of a non-working
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Fig. 4. ED Forecast of a working day: (a) In the ECM; (b) In the 8EB.

Table 3. Forecast Errors of a working day in the ECM

Holt-Winter SLR MLR ARIMA

MAE (ECM) [kW] 11.77 3.6493 6.47 0.9001

MAPE (ECM) [%] 78.79 24.1601 65.19 7.2902

RMSE (ECM) [kW] 14.10 5.3338 7.71 1.1763

MAE (8EB) [kW] 35.21 30.58 46.8818 8.3135

MAPE (8EB) [%] 40.27 58.49 75.0664 12.8791

RMSE (8EB) [kW] 44.38 38.18 51.7378 10.2593

Table 4. Forecast Errors of ARIMA and HW of a non-working day in the ECM

Holt-Winter ARIMA

MAE (ECM) [kW] 13.1100 0.8469

MAPE (ECM) [%] 239.2056 13.6818

RMSE (ECM) [kW] 14.6200 1.0692

MAE (8EB) [kW] 13.7052 1.1036

MAPE (8EB) [%] 63.6774 5.1225

RMSE (8EB) [kW] 15.4199 1.2538

day in the ECM. It is observed that the HW does not present proper results and
the ARIMA is significantly more accurate comparing to the real demand.

The ED forecast of ARIMA and HW of a working day is depicted in Fig. 6,
in the two university buildings. The forecast errors are shown in Table 5. Note
also that the ARIMA model presents the most accurate results, and the HW is
not proper to forecast the ED of the university buildings.
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Fig. 5. ED Forecast of ARIMA and HW a non-working day: (a) In the ECM; (b) In
the 8EB.

Table 5. Forecast Errors of ARIMA and HW of a working day in the ECM

Holt-Winter ARIMA

MAE (ECM) [kW] 17.8018 1.1365

MAPE (ECM) [%] 107.9935 9.9044

RMSE (ECM) [kW] 22.6148 1.4875

MAE (8EB) [kW] 20.8968 8.6825

MAPE (8EB) [%] 61.1155 12.0744

RMSE (8EB) [kW] 24.2468 13.2142

4.2 Discussion

The ARIMA model obtains the best short-term prediction results. The average
value of the MAPE for five working days (one week) is 9.90% and 12.07% for the



10 Serrano-Guerrero et al.

Fig. 6. ED Forecast of ARIMA and HW of a working day: (a) In the ECM; (b) In the
8EB.

ECM and 8EB respectively while the HW method obtains a MAPE of 107.99%
and 61.12% for the same case.

Regarding the predictions for non-working days, the HW method evidences
a MAPE of 239% and 65% for the ECM and the 8EB respectively. The ARIMA
model for this same case presents MAPE values of 13.68% and 5.12% respec-
tively.

The results obtained indicate that the simple exponential smoothing methods
and the Holt method cannot predict electrical source profiles. The models based
on SLR and MLR did not achieve either good results because the dependent
variables have a coefficient of determination (R2) less than 0.6 concerning the
output of the model. On the other hand, the HW method obtains better results,
but the prediction errors increase with time.

The application of the Box-Jenkins methodology allows estimating suitable
ARIMA models for the prediction of electrical sources for any ED. An adequate
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theoretical approximation of the ACF allows estimating the order of the param-
eters of the model. In comparison with other statistical models, the ARIMA
models are the ones that best adjust to the shape of the real electrical consump-
tion, obtaining low prediction errors.

5 Conclusions

In this paper, various statistical forecasting methods have been studied for two
university buildings, to assess the effectiveness of these methods. This study
was performed in working and non-working days in the Universidad Politécnica
Salesiana and Universitat Politècnica de Valencia, which are universities from
Ecuador and Spain, and present different load patterns.

Forecasting methods have presented strengths and weakness. The forecasts
from Winter methods have strong similarities with the real electricity load pat-
tern, but the power values differ significantly. Linear Regression methods have
presented severe disadvantages because the external variables do not have a
significant relationship with electricity consumption.

Finally, the ARIMA models are the most suitable, comparing to the other
studied models. However, the forecast requires an organized experimental process
to select the best model.

The prediction of the ARIMA models could be improved by the incorporation
of advanced data clustering techniques, seasonality analysis of time series data
and artificial intelligence techniques.
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