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Abstract Water is an indispensable resource for human and economical welfare, and modern
society depends on complex, interconnected infrastructures to provide safe water to consumers.
Given this complexity, efficient numerical techniques are needed to support optimal control and
management of water distribution systems (WDSs). This document is intended to be a posi-
tion paper on soft computing tools to suitably handle the huge amount of data generated by
processes related to smart water applications. The paper is structured in two main parts: the
first part reviews a number of state-of-the-art soft computing techniques for WDS management
and gives a prospective on future research directions. The second part of the paper proposes
a number of new hot topics coming up nowadays in the operation and management of smart
water networks. These are Big Data, near real-time monitoring, epidemiology-based data anal-
ysis tools, uncertainty of asset states, and event-driven applications. This further research is
essential to develop new algorithms to deal with the inherent volume and complexity of WDSs
databases, able to exploit the information in advanced metering infrastructures as fully as pos-
sible. It also aims to contribute to water utilities decision support systems in both modelling
extreme events and improving network resilience.
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1 INTRODUCTION

Soft computing is a family of algorithms that aims to solve complex problems for which more

conventional methods are unable to provide a solution in polynomial time. Soft computing

approximates the solution for these kind of problems, providing insight where there is not a

feasible approach to have an exact solution. According to L.A. Zadeh, “the guiding principle of

soft computing is: Exploit the tolerance for imprecision, uncertainty, partial truth, and approx-

imation to achieve tractability, robustness and low solution cost”. Soft computing methods are

often also referred to as Computational Intelligence methods. These conform a set of algorithms

that can be classified roughly into: fuzzy systems, neural networks, evolutionary computation,

machine learning and probabilistic reasoning.

This work presents a position paper on soft computing tools to suitably handle the huge amount

of data generated by processes related to smart water applications. This new approach is rela-

tively recent, and one of the first works on water distribution systems (WDS) using advanced

data analysis is the contribution by Savic and Walters, 1999 [1]. This paper formalised the

concept of hydroinformatics as a discipline based on computational sciences and artificial in-

telligence, as a way to tackle water network management and maintenance, in particular. This

paper represented an inspirational starting point on the use of geographic information systems

and data mining in the water industry. The developed methods were mostly based on artificial

neural networks (ANN) and genetic algorithms (GA). These authors and their group (based in

Exeter, UK) have pioneered the application of evolutionary computing, in particular genetic al-

gorithms, to the design [2], scheduling [3], and optimization [4] of water distribution networks.

A second key contribution on this topic was made by Babovic et al. 2002 [5]. This work pro-

posed using data mining methods to determine the risks of pipe bursts. For example, analysis of

the database of already occurred bursts events can be used to establish a risk model as a func-

tion of associated characteristics of bursting pipes. The approach opened new avenues in that

time for asset management by applying such methods as Bayesian networks and evolutionary

algorithms.

It was 2003 when Bessler et al. [6] developed a data mining algorithm to generate a set of

control rules that gave the best historical operating policy for water reservoir control. The data

mining tool used in this work was based on decision trees (algorithm C5.0) and the obtained

results were close to those obtained by applying optimization techniques. By that time, coincid-

ing with the settle of data mining as a new data analysis trend, a range of data-driven methods

were adopted to approach several topics in urban hydraulics. This is the case of proposing to use

ANNs and fuzzy adaptive systems (FAS) to replicate the behaviour of an on-line deterministic

model that controls a water system [7]. It also was in the early 2000s when comparisons on

the performance of short-term water demand forecast models were approached. The aim was to

compare classical approaches with those based on artificial intelligence (AI) such as expert sys-

tems and ANNs [8]. The result was that, among others, the new AI methods outperformed clas-

sical regression and time series analysis. Water quality analysis has also progressively adopted

intelligent data analysis methods in that time. Chau, 2006 [9] reviewed AI techniques in wa-

ter quality modelling. The survey included knowledge-based systems, GAs, ANNs, and fuzzy

1666



Manuel Herrera, David Ayala-Cabrera, Joaquı́n Izquierdo and Idel Montalvo

inference systems. It is in 2006 when Tzatchkov et al. [10] first introduced geographic infor-

mation system (GIS) analysis and concepts inherited from graph theory to implement efficient

algorithms for WDS division into district metered areas (DMAs).

Along with the advance on intelligent data analysis methods new approaches have been tailored

to their application to WDSs. It can be highlighted the introduction of particle swarm optimiza-

tion (PSO) algorithms and its comparison to GAs for the analysis and design of water networks

[11, 12]. The use of PSO to support the design of WDSs has been improved from the stan-

dard approach and other evolutionary algorithms to a self-adaptive version of PSO [13]. The

methodology avoids this way all the process of localizing and fine-tuning suitable parameter

values for WDS design.

Machine learning methods have had a key role regarding predictive models for water demand.

In the first decade of this century, ANNs were used with the back-propagation algorithm for

several Civil Engineering applications [14]. Zhou et al. [15] developed time series models

for daily water consumption in Melbourne, Australia. ANN models have also been used to

model weekly peak demand [16]. Shrestha and Solomatine [17] presented in 2006 a regression

methodology based on fuzzy clusters applied to estimate hydrological data sets. Optimization of

pump-scheduling based on forecasting urban water demand for the city of Seoul was proposed

by Kim in 2007 [18]. It was in 2010, when Herrera et al. [19] presented a comprehensive

study where compared several machine learning models for predicting hourly water demand.

The set of models analysed was composed by ANNs, projection pursuit regression, multivariate

adaptive regression splines, random forests, and support vector regression.

The issue of detecting and locating leaks in pipes was also addressed by intelligent data analysis.

One can find several approaches in the literature. Among them, the work by Poulakis et al. [20],

who developed a Bayesian system identification methodology for leakage detection in WDSs,

is worth mentioning. The methodology was suitable to handle the associated uncertainties when

modelling leakage events. This ultimately provided estimates of the most likely leakage events.

Izquierdo et al. [21] investigated a neuro-fuzzy approach for estimating different anomalous

states in WDSs. Years later, Candelieri et al. [22] used hydraulic simulation along with data

analysis techniques, based on Supervisory Control And Data Acquisition (SCADA) systems,

Customer Information Systems (CISs) and GIS, for improving leakage management processes.

Traditionally, leakage location has been the starting point when proposing a WDS division

into DMAs. Nowadays several methods adapted from heuristics processes and machine learn-

ing tools have been developed. The most studied works on water network division are based on

variations of graph clustering [23, 24, 25], spectral clustering [26, 27, 28], community detection

[29], multi-agent systems [30, 31], breadth and depth first search [32, 33] or multilevel parti-

tioning [34]. The work by [35] is the first to propose a sectorisation approach for large-scale

water networks. A water network division into DMAs can also be used for handling several

operational and managerial issues in WDSs [34, 36, 37, 38, 39].

New trends in leakage location make use of new approaches such as ground penetrating radar

and data-driven analyses to identify pipes and locate potential pipe bursts [40]. Instances of

these analyses can be found in various of Ayala-Cabrera’s key works. These works range from

the study of wave amplitudes together with an intensive matrix manipulation [41], to combining

1667



Manuel Herrera, David Ayala-Cabrera, Joaquı́n Izquierdo and Idel Montalvo

the use of multi-agent and clustering approaches [42]. The analysis of the raw georradar images

based on multi-agent systems brings the possibility to accurately locate even such GPR-non-

friendly elements as plastic pipes [43].

Soft computing techniques used to approach these processes are expected to be robust and effi-

cient. However, despite some of the elements integrated in these issues are quantifiable, others

may be classified as intangible. As a consequence, suitable techniques to treat information

that is plagued with uncertainty and subjectivity are also needed. For example, works such as

[44, 45], have used AHP, a multi-criteria decision-making technique. Their aim is to to pri-

oritize leak management policies in the decision-making process to design the transition from

intermittent to continuous supply in third-world water distribution systems [46, 47].

2 SOFT COMPUTING TECHNIQUES FOR WDS MANAGEMENT

This section reviews a number of state-of-the-art soft computing techniques for WDS manage-

ment and gives a prospective on future research directions.

2.1 Agent Swarm Optimization for WDS design

Agent Swarm Optimization (ASO) [48] is a novel paradigm that combines several ways to ap-

proach general purpose optimization problems by using various swarm-based algorithms. The

ensemble of these swarms follows the way in which multi-agent systems are organised into

various schedules (negotiation, cooperation, and competition) to reach the optimal solution or

the Pareto front of the multi-objective optimization problem in hand. This way, ASO offers

robustness through a framework where various population-based algorithms coexist: different

agent breeds (PSO and ant colony optimization, among others; but also including human in-

put). A key for successfully developing ASO is to approach a suitable interaction among the

different swarms involved on solving the problem. ASO dynamically combines the strengths of

multiple meta-heuristics and demonstrates good performance to support decision-making pro-

cesses by solving multi-objective optimization problems, especially in the field of WDS design,

calibration, etc.

2.2 Hybrid models for water demand forecasting

Hybrid models for time series analysis were initially designed to use traditional methods, such

as autoregressive moving average (ARIMA) models. A more complex method was proposed to

modelling the residuals of the base process [49]. By combining the two models it is possible to

have the best of both worlds: the reasonable explanation of the process thanks to ARIMA and

the extraordinary accuracy of a neural network. This approach has shown to be specially suitable

on processes of time series with intervention. For instance, it is a step forward on predicting

water demand time series of sudden modification of their behaviour given valve manoeuvres or

disruption events.

The above explained classical trend has evolved to giving response to obtain the highest ac-

curacy in the predictions and being able to be easily adapted to the challenges coming from

its further on-line development. This is the basis for the work of Brentan et al. in 2017 [50]

1668



Manuel Herrera, David Ayala-Cabrera, Joaquı́n Izquierdo and Idel Montalvo

who propose applying support vector regression, as one of the currently better machine learning

options for short-term water demand forecasting, to build a base prediction. In this model, a

Fourier time series process is built over it to improve the base prediction. This addition produces

a tool able to eliminate many of the errors and much of the bias inherent in a fixed regression

structure when responding to new incoming time series data.

2.3 Social network community detection for WDS sectorization

In the computer domain, social networks are graphs intended to represent relations among so-

cial actors through a set of dyadic ties. Water supply networks can be thus represented and,

therefore, it is possible to implement over them, algorithms/concepts from the graph theory

and from the social network theory. As in a social network, the importance of each element of

a WDS depends on the interrelation degree with other elements. In a WDS, the interrelation

depends on the topological and hydraulic features but, essentially, on the topological and en-

ergy redundancy that have a different influence on each network element [51]. Social networks

applies useful concepts of density and centrality as measures of importance which can be ul-

timately useful for ranking the relative importance of pipes or also can be a guide for further

WDS division into DMAs [52, 53]. For instance, graph-theoretical indices, such as node be-

tweenness, are often applied to the individuals of a social network. In a WDS it is possible to

use the edge betweenness associated to a link which is now a water pipe. Edge betweenness

measures the amount of paths that connect two given nodes and that pass through that pipe.

Another measures coming from social networks which are useful to work with WDSs are those

measuring modularity, that is to say, how well a group of individuals (or nodes) is connected

in a network. Community detection algorithms measure how well the individuals or nodes are

represented in one community, thus providing insight for further WDS division into DMAs.

3 FURTHER RESEARCH AVENUES

This section proposes a number of new hot topics coming up nowadays in the operation and

management of smart water networks. These are Big Data, near real-time monitoring, epidemi-

ology based data analysis tools, uncertainty of asset states, and event-driven applications. This

further research is essential to develop new algorithms to deal with the inherent volume and

complexity of WDS databases, able to exploit the information in advanced metering infrastruc-

tures as fully as possible. It also aims to contribute to water utility decision support systems in

both modelling extreme events and improving network resilience.

3.1 Big data

Big data is defined in the Gartner’s IT Glossary as “high volume, high velocity, and/or high

variety information assets that require new forms of processing to enable enhanced decision

making, insight discovery and process optimization”. This definition is also known as the 3V’s,

making reference to the 3 key challenges in which big data is involved: volume, velocity, and

variety. Some researchers also view big data as a problem of high complexity. Big data is

strongly related to the topic of Urban Informatics, which analyses the high complexity, hetero-
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geneity, and volume of data generated in urban environments.

In the WDS field, big data issues arise from high rate data streams acquired through smart sen-

sors and automatic metering readers. Even for small water utilities these may produce a huge

amount of data to be stored and further analysed [54]. Despite to be a certainly unexplored

topic for WDSs, there have been some first approaches for analysing near real-time water con-

sumption and developing leakage simulation varying in the flow and pressure provided by the

demand time series [55].

The use of graph databases to manage the huge volume of data that is processed nowadays

by water utilities is another promising tool that deserves further development and research.

Graph databases use graph structures for semantic queries with nodes, edges and properties to

represent and store data. The performance of graph databases naturally engage with both the

spatially distributed customer information and the physical topology of water networks.

3.2 Near real-time monitoring

New paradigms introduced in data management within the smart city framework make that the

model can take into consideration all the available information, and can be efficiently updated

in near real-time [56]. The new paradigm of on-line modelling in WDSs is a topic of growing

interest given the high amount of data information with which water utilities operate nowadays,

aiming at making decisions in a very short time. On-line predictive models for water demand

forecasting [57] emerge to bridge the gap between this constant flow of available information

and off-line models, which are not optimized to be updated in near real-time. Through on-line

models for water demand, it is possible to improve predictions of water demand and to have

better control of such system state variables as flow and pressure, by suitable valve operation.

In the work of Brentan et al., 2017 [50] an off-line base model is coupled with a lighter-to-run

on-line process able to be adapted to any novelty. This work also proposes an optimal cycle

after which the base off-line model should be up-dated to guarantee maximum accuracy on

water demand predictions.

3.3 Epidemiology-based data analysis tools

Epidemiological data analysis applied to water engineering can be understood as whole-system

approaches that focus on empirical research and provide a multidisciplinary framework to better

study and understand customer water demand behaviour together with new capabilities to anal-

yse various risks and vulnerabilities related to water distribution [58]. The classical approaches

on epidemiological studies are associated with health-related states or events in specified pop-

ulations, and applications on control of the different problems that arise in such a context.

However, recent advances in Energy on Buildings [59] and also in Hydraulics [60] point to

epidemiology as a promising data analysis tool-set with several concepts that can be adapted to

other engineering applications.
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3.4 Soft computing methods for asset management

Asset management is a process water utilities can use to make sure that planned maintenance

can be conducted and capital assets (such as pumps, valves, and pipes, among others) can be

repaired, replaced, or upgraded on time [61, 62]. There are two main research subjects directly

related to asset management:

Uncertainty of asset states: The current asset attributes states on age, condition, and criti-

cality have associated an essential uncertainty regarding their complete knowledge. This

opens a proper research avenue on applying Soft computing methods, mostly some of

those related to probabilistic reasoning and Bayesian analysis. Another related topics

to further research are the optimal sustainable level of service, assets criticality, or min-

imising assets life-cycle cost. Heuristic model strategies for optimisation and ranking

algorithms might be applied aiming to approach these objectives.

Event-driven applications: Montalvo et al., 2015 [63] proposed not to restrict analyses

in WDSs to just using traditional hydraulic simulations. In their paper, they propose a

holistic view of processes actually affecting a WDS with the aim of enhancing its perfor-

mance. Event detection for an adaptive management of contamination threats and asset

vulnerabilities [64] or on-line source identification of contamination events by dynamic

optimization procedures [65], are instances of the processes considered as part of a global

water network analysis. In all cases, soft computing methods play a key role for approach-

ing the best practices on WDS event-driven management.

The benefits of a suitable asset management range from improving asset rehabilitation and

replacement to optimising the return of investment by reducing cost of operations and capital

expenditures. In addition, it improves responses to emergencies related to assets’ security.

4 DISCUSSION

There has been a long way from the first intelligent data analyses that approached urban water

issues. After a hard start in which these other engineering branches had the initiative on apply-

ing these concepts and methodologies, urban water management represents nowadays one of

the most active fields of applications of soft computing in Civil Engineering. So, model devel-

opment has grown fast in the last few years. New challenges have naturally arisen by attending

the needs of both the research community (Academia) and water utilities (Industry) which have

become interested in this area.

This paper, a position paper on computational issues for the Technical Session ST36: Soft com-

puting for smarter operation management in water distribution systems of CMN2017, has a

vocation of contributing to highlight just some of the future approaches and research avenues in

this flourishing field. However, many more are near to come with the huge advance of compu-

tational models and the enormous talent and determined will of many professionals working in

the field of urban hydraulics.
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optimization derivative applied to cluster analysis,” in 4th Biennial Meeting—Interantional
congress on environmental modelling and software: integrating sciences and information
technology for environmental assessment and decision making, iEMSs, pp. 1782–1790,

2008.

1672



Manuel Herrera, David Ayala-Cabrera, Joaquı́n Izquierdo and Idel Montalvo
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of supply schedules in intermittent water supply systems,” Journal of Computational and
Applied Mathematics, vol. 309, pp. 695–703, 2017.
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