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Abstract
Dealing with real world engineering problems, often comes with facing multiple and conflicting
objectives and requirements. Water distributions systems (WDS) are not exempt from this: while
cost and hydraulic performance are usually conflicting objectives, several requirements related
with environmental issues in water sources might be in conflict as well. Commonly, optimisation
statements are defined in order to address the WDS design and/or management. Multi-objective
optimisation can handle such conflicting objectives, by means of a simultaneous optimisation of
the design objectives. At the end of such process, a potential set of solutions, the Pareto front,
are calculated. In such a set of solutions, there is not a best solution, but a preferable solution.
In this paper, we will apply a multi-objective optimisation process with preferences in order to
deal with a water pollution management constrained problem with 6 design objectives. With
the provided example, it will be shown the usefulness of such tools for decision making and
trade-off analysis for WDS management.

1692



Gilberto Reynoso-Meza, Elizabeth P. Carreño-Alvarado, Idel Montalvo,, Joaquı́n Izquierdo

1 INTRODUCTION

Dealing with real world engineering problems often comes with facing multiple and conflict-

ing objectives and requirements. Water distributions systems (WDS) are not exempt from this:

while cost and hydraulic performance are usually conflicting objectives, several requirements

related with environmental issues in water sources might be in conflict as well. Commonly,

optimisation statements are defined in order to address the WDS design and/or management.

Nevertheless, such problems become difficult since, besides their multi-objective conflicting

nature, the optimisation problem might be non-linear (due to head-loss relationships for exam-

ple) and/or discrete combinatorial (due to standardization of pipe parameters) [1].

Multi-objective optimisation can handle such an issue, by means of a simultaneous optimisation

of the design objectives. At the end of this process, a potential set of solutions, the Pareto front,

are calculated. In this set of solutions, there is not a best solution, but a preferable solution.

This meaning that several solutions are calculated, with different trade-off between conflicting

objectives and the engineer will select among them the most preferable for the problem at hand.

In this paper, we will apply a multi-objective optimisation process with preferences [2] in order

to deal with a water pollution management constrained problem [3] with 6 design objectives.

Such design objectives are related with maximising dissolved oxygen concentration at three

locations while minimizing financial costs. With the provided example, it will be shown the

usefulness of such tools for decision making and trade-off analysis for WDS management.

The remainder of this paper is as follows:in Section 2 a brief background on multi-objective

optimisation is given. In Section 3 the case study is presented and in Section 4 its results are

presented. Finally, some conclusions are given.

2 BACKGROUND

As referred in [4], a multiobjective problem (MOP) with m objectives, can be stated as follows:

min
x

J(x) = [J1(x), . . . , Jm(x)] (1)

subject to:

K(x) ≤ 0 (2)

L(x) = 0 (3)

xi ≤ xi ≤ xi, i = [1, . . . , n] (4)

where x = [x1, x2, . . . , xn] is defined as the decision vector with dim(x) = n; J(x) as the

objective vector and K(x), L(x) as the inequality and equality constraint vectors respectively;

xi, xi are the lower and the upper bounds in the decision space.

It has been noticed that there is not a single solution in MOPs, because there is not generally a

better solution in all the objectives. Therefore, a set of solutions, the Pareto set, is defined. Each
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solution in the Pareto set defines an objective vector in the Pareto front (see Figure 1). All the

solutions in the Pareto front are a set of Pareto optimal and non-dominated solutions:

Pareto optimality [4]: An objective vector J(x1) is Pareto optimal if there is not another

objective vector J(x2) such that Ji(x
2) ≤ Ji(x

1) for all i ∈ [1, 2, . . . ,m] and Jj(x
2) <

Jj(x
1) for at least one j, j ∈ [1, 2, . . . ,m].

Dominance: An objective vector J(x1) is dominated by another objective vector J(x2)
iff Ji(x

2) ≤ Ji(x
1) for all i ∈ [1, 2, . . . ,m] and Jj(x

2) < Jj(x
1) for at least one j,

j ∈ [1, 2, . . . ,m]. This is denoted as J(x2) � J(x1).

Figure 1: Pareto optimality and dominance concepts for a min-mim problem. Dark solutions is the subset of

non-dominanted solutions which approximates a Pareto front (right) and a Pareto set (left). Remainder solutios are

dominated solutions, because it is possible to find at least one solution with better values in all design objectives.

To successfully implement the multiobjective optimisation approach, three fundamental steps

are required: the MOP definition, the multiobjective optimization (MOO) process and the mul-

ticriteria decision making (MCDM) stage. This integral and holistic process will be denoted

hereafter as a multiobjective optimisation design (MOOD) procedure [5].

Multiobjective problem statement: design objectives definition, decision variables and their

bounds, constraints for feasibility or suitability.

Multiobjective optimisation process: Pareto front approximation via an algorithm.

Multicriteria decision making: analysis of the approximated Pareto front, tradeoff analysis

between design alternatives and final selection according to a set of preferences.

Next, we will use this MOOD procedure in a pollution management constrained problem.

3 CASE STUDY

Case study is based on the hypothetical condensed example of the bow river valley, as presented

in [3]. It deals with the pollution problem due to a cannery industry (Pierce-Hall Cannery), to
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two sources of municipal waste (named Bowville and Plymton), with an a park in the mid-

dle (Robin State Park). Water quality is evaluated via dissolved oxygen concentration (DO).

Waste content is measured with the biochemical oxygen demanding material (BOD) which is

separated into carbonaceous and nitrogenous material (BODc and BODn respectively).

3.1 MOP definition

The MOP under consideration has 6 design objectives:

J1(x) : DO level at Bowville [mg/l] (maximise).

J2(x) : DO level at Robin State Park [mg/l] (maximise).

J3(x) : DO level at Plymton [mg/l] (maximise).

J4(x) : Return on equity [%] (maximise).

J5(x) : Tax increment (Bowville) (minimise).

J6(x) : Tax increment (Plymton) (minimise).

Additionally the DO at the state line G1(x) [mg/l] is considered. Decision variables x =
[x1, x2, x3] are the treatment levels of water discharge at the Pierce-Hall cannery, at Bowville

and a Plymton respectively. The constrained MOP for optimisation is as follows:

min
x

J(x) = [−J1(x),−J2(x),−J3(x),−J4(x), J5(x), J6(x)] (5)

subject to

G1(x) ≥ 3.5 (6)

0.3 ≤ x1 ≤ 1.0 (7)

0.3 ≤ x2 ≤ 1.0 (8)

0.3 ≤ x3 ≤ 1.0 (9)

where

J1(x) = 4.75 + 2.27(x1 − 0.3) (10)

J2(x) = 2.0 + 0.524(x1 − 0.3) + 2.79(x2 − 0.3) +

0.882(w1 − 0.3) + 2.65(w2 − 0.3) (11)

J3(x) = 5.1 + 0.177(x1 − 0.3) + 0.978(x2 − 0.3) +

0.216(w1 − 0.3) + 0.768(w2 − 0.3) (12)
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J4(x) = 7.5− 0.012

(
59

1.09− x2
1

− 59

)
(13)

J5(x) = 0.0018

(
532

1.09− x2
2

− 532

)
(14)

J6(x) = 0.0025

(
450

1.09− x2
3

− 450

)
(15)

G1(x) = 1.0 + 0.0332(x1 − 0.3) + 0.0186(x2 − 0.3) + 3.34(x3 − 0.3) +

0.0204(w1 − 0.3) + 0.778(w2 − 0.3) + 2.62(w3 − 0.3) (16)

wi =
0.39

1.39− x2
i

, i ∈ [1, 2, 3] (17)

Table 1: Preference matrix m for MOP statement. Five preference ranges have been defined: highly desirable

(HD), desirable (D), tolerable (T) undesirable (U) and highly undesirable (HU).

Preference Matrix

← HD →← D →← T →← U →← HU →
Objective J0

i J1
i J2

i J3
i J4

i J5
i

−J1(x) [mg/l] -9 -8 -6 -4 -1 0.0

−J2(x) [mg/l] -9 -8 -6 -4 -1 0.0

−J3(x) [mg/l] -9 -8 -6 -4 -1 0.0

−J4(x) [$] -9 -8 -6 -4.5 -1 0.0

J5(x) [%] 0 1 2 3 8 10

J6(x) [%] 1 1 2 3 8 10

−G1(x) [mg/l] -6 -5 -4 -3.5 -2 -1

3.2 Methods for MOO and MCDM

The sp-MODEII algorithm [2] will be used , which is an evolutionary algorithm for multi-

objective optimization which uses the preference matrix m provided in Table 1 to evolve the

population to the pertinent region of the Pareto front. For visualization, level diagrams are used

[6, 7, 8], due to their capabilities to depict m-dimensional information [9].
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4 ANALYSIS

Pareto front and set approximations using minimal information from preference matrix m are

depicted in Figures 2 and 3 respectively. Only those design alternatives which dominate the

tolerable vector T = [−4,−4,−4.5, 3, 3,−3.5] are used for such approximations. A total of

784 solutions are calculated. In Figures 4 and 5 the same problem is filtered and limited to 60

solutions (ten times the number of design objectives) using all the information provided by the

preference matrix m. In such approximations, it is easier to perform a decision making analysis;

furthermore, such analysis will focus on the most pertinent region of the objective space for the

designer.

Figure 2: Pareto front approximation. The darker the solution, the mot preferable according to the Preference

Matrix.

It can be noticed that, while there is certain degree of flexibility for decision variables x1, x3,

for x2 the recommended value practically lies in x2 ≈ 0.84. The expected return of equity, in

agreement with the requirements for pollution control, is in the range J4(x) ≈ [−6.3,−6.0]
[%] .

This allows to have a better understanding of the achievable trade-off of the MOP. If additional

tools are required in order to support the decision making, methodologies as Topsis [10] or

Promethee [11] could be used.
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Figure 3: Pareto set approximation. The darker the solution, the mot preferable according to the Preference Matrix.

Figure 4: Pareto front approximation filtered with preference matrix m.
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Figure 5: Pareto set approximation filtered with preference matrix m.

5 CONCLUSIONS

In this paper we applied a multi-objective optimisation process with preferences in order to deal

with a water pollution management constrained problem with 6 design objectives. Such design

objectives are related with maximising dissolved oxygen concentration at three locations while

minimizing financial costs.

Two approaches were compared. The first of them, with minimal information about prefer-

ences. With such information, a Pareto front with several solutions was approximated. This

could overwhelm the decision maker in the decision making step. The second approach, using

more information about preferences, in order to filter the Pareto front in a more manageable set

of solutions. Further work will focus on developing new tools for visualization and decision

making for such instances.
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