

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/179960

García Mollá, VM.; Salazar Afanador, A.; Safont Armero, G.; Vidal, AM.; Vergara
Domínguez, L. (2019). Parallelization of an algorithm for automatic classification of medical
data. Springer. 3-16. https://doi.org/10.1007/978-3-030-22744-9_1

https://doi.org/10.1007/978-3-030-22744-9_1

Springer

Parallelization of an algorithm for automatic

classification of medical data

Victor M. Garcia-Molla, Addisson Salazar, Gonzalo Safont, Antonio M. Vidal, Luis

Vergara

Victor M. Garcia-Molla1, Antonio M. Vidal: Department of Information Systems and Compu-

ting (DSIC), Universitat Politècnica de València, 46022 SPAIN.

Email: vmgarcia@dsic.upv.es, avidal@dsic.upv.es

Addisson Salazar, Gonzalo Safont, Luis Vergara: Institute of Telecommunications and Multi-

media Applications (ITEAM), Universitat Politècnica de València, 46022 SPAIN.

Email: asalazar@dcom.upv.es, gonsaar@upvnet.upv.es,

lvergara@dcom.upv.es

Abstract. In this paper, we present the optimization and parallelization of a state-

of-the-art algorithm for automatic classification, in order to perform real-time

classification of clinical data. The parallelization has been carried out so that the

algorithm can be used in real time in standard computers, or in high performance

computing servers. The fastest versions have been obtained carrying out most of

the computations in Graphics Processing Units (GPUs). The algorithms obtained

have been tested in a case of automatic classification of electroencephalographic

signals from patients.

Keywords: High Performance Computing; Bioinformatics; Automatic Classi-

fication; ICA (independent component analysis); SICAMM; GPU Computing

1 Introduction

Modern clinical monitoring systems usually deliver large amounts of data, which in

some cases must be processed in real time. Typical examples of such medical proce-

dures are electroencephalography (EEG), functional magnetic resonance imaging

(fMRI), etc.. Furthermore, sometimes the medical data must be heavily processed, for

example, the processing of medical images or the spectral analysis of EEG data. Very

often the amount of data cannot be handled appropriately (in a reasonable time) by

standard computers and parallel computing becomes necessary for achieving accepta-

ble computing times [1,2,3]. This is especially true when real time computing is needed.

1 Corresponding author vmgarcia@dsic.upv.es

2

In this paper, we use the SICAMM (Sequential Independent Component Analysis

Mixture Modeling) algorithm, a Bayesian classification procedure [4]. The case study

tackled in this paper is the analysis of EEG signals in epileptic patients taken during

memory and learning neuropsychological tests. Since this case study provides large

amounts of output data, initial versions of the SICAMM algorithm (written in Matlab

language [12]) would need large, unacceptable computing times.

This paper describes several parallelization techniques that are applied to the

SICAMM algorithm. The parallel algorithms proposed have been implemented in dif-

ferent hardware platforms so that the system can be adapted to different requirements.

The best results have been obtained using GPUs for the heaviest computations. More-

over, the GPU utilization has allowed an increase in the performance of SICAMM al-

gorithm, making it possible its use in real-time applications.

The rest of the paper is structured as follows. Section2 describes the SICAMM al-

gorithm. Section 3 discusses the different optimizations and parallelization applied to

the SICAMM algorithm. Section 4 presents a case study of EEG signal processing

where the different implementations were applied. Section 5 includes an analysis of the

results in terms of efficiency. Conclusions and future work are presented in Section 6.

2 State of the art: Automatic classification, Sequential

ICAMM

The automatic classification problem can be described as follows: let 𝑥𝑖 ∈ ℝ𝑀, 𝑖 =
1,2, …. Nx be the observed data, 𝑀 the number of data sources and Nx the number of

signal to be processed. Each data vector 𝑥𝑖 may belong to one of 𝐾 different classes. A

procedure is sought that classifies the data, i.e. a procedure that indicates if the vector

𝑥𝑖 belongs to one of the k existing classes. The output of the classification is given in

a vector of class assignments, 𝐶𝑒 ∈ ℝ𝑁𝑥, such that if the 𝑖-th data vector 𝑥𝑖 is found to

belong to the 𝑗-th class (j = 1, … , 𝐾), then 𝐶𝑒(𝑖) is given the value 𝑗. There are many

automatic classification methods (neural networks, support vector machines, k-nearest

neighbors, etc. see for example [7]). Here, we only consider and optimize the SICAMM

method [4].

We will start by describing the ICAMM (Independent Component Analyzer Mixture

Modeling) method. ICAMM is an automatic classification method where several clas-

ses are considered and each class is modeled using an independent component analyzer

(ICA). ICAMM has been applied to a number of real-world applications, for instance,

non-destructive testing, image processing, and change detection (see [8-10] and their

references). The SICAMM algorithm is the extension of ICAMM to the case where

data has sequential dependence i.e., when 𝑥𝑖 depends in some way on the values of

𝑥𝑗 , 𝑗 < 𝑖 .

Let us review the main concepts of the SICAMM algorithm. An ICA is formulated

as a linear model of the observed data, the vectors 𝑥𝑖 ∈ ℝ𝑀. These vectors are assumed

to be a linear transformation of a vector of sources 𝑠𝑖 ∈ ℝ𝑀 given by a mixing matrix

∈ ℝ𝑀×𝑀 , as 𝑥𝑖 = 𝐴 𝑠𝑖.

3

If the mixing matrix 𝐴 is invertible (with 𝑊 = 𝐴−1 ∈ ℝ𝑀×𝑀 being the demixing

matrix), we can express the joint probability density p(𝑥𝑖) in terms of the product of

the marginal densities of the elements of p(𝑠𝑖) , as p(𝑥𝑖) = |det 𝑊| p(𝑠𝑖), where 𝑠𝑖 =

𝑊 𝑥𝑖. The general expression of ICAMM requires some bias vectors to separate the

components of the mixture of 𝐾 classes or data groups. To do this, each class will have

its own mixing matrix (𝐴𝑘) and its own bias vector (𝑏𝑘). Therefore, if 𝑥𝑖 belongs to

class 𝑘 (𝐶𝑒(𝑖) = 𝑘), then 𝑥𝑖 = 𝐴𝑘 𝑠𝑘,𝑖 + 𝑏𝑘, where it is assumed that 𝑥𝑖 belongs to class

𝑘, denoted by 𝐶𝑒(𝑖). 𝐴𝑘 and 𝑠𝑘 are, respectively, the mixing matrix and the source

vector of the ICA model of class 𝑘, and 𝑏𝑘 is the corresponding bias vector.

SICAMM extended the mixture model to consider time dependencies. This is mod-

elled through transition probabilities, 𝜋𝑘𝑗, which give the probability that the 𝑖-th data

vector belongs to class 𝑘 given that the 𝑖 − 1-th data vector belongs to class 𝑗: 𝜋𝑘𝑗 =

𝑃(𝐶𝑒(𝑖) = 𝑘|𝐶𝑒(𝑖 − 1) = 𝑗). An initial description of the SICAMM algorithm in its

more general form (𝐾 classes) is shown as Algorithm 1.

1 Algorithm 1: SICAMM with 𝐾 classes:

2 Input: demixing matrices 𝑊1, 𝑊2,… 𝑊K; bias vectors 𝑏1, 𝑏2, ,…, 𝑏𝐾 and

signals 𝑥𝑖, 𝑖 = 1 … 𝑁𝑥

3 Output: vector 𝐶𝑒

4 /* Initialization; 𝑖 = 1 , Classification of 𝑥1 */

5 Calculate sources for each class, 𝑠𝑘 = 𝑊𝑘(𝑥1 − 𝑏𝑘), 𝑘 = 1 … 𝐾

6 Calculate posterior probabilities 𝑃(𝐶𝑒(1) = 𝑘|𝑥1) using an ICAMM algo-

rithm (e.g., [11]):

𝑃(𝐶𝑒(1) = 𝑘|𝑥1) =
|det 𝑊𝑘| 𝑝(𝑠𝑘) 𝑃(𝐶𝑒(1) = 𝑘)

∑ |det 𝑊𝑗| 𝑝(𝑠𝑗) 𝑃(𝐶𝑒(1) = 𝑗)𝐾
𝑗=1

7 Initial signal 𝑥1is assigned to the class with maximum posterior probability

8 /* classification of 𝑥𝑖 , 𝑖 > 1 */

9 for 𝑖 = 2 … 𝑁𝑥, with 𝑁𝑥 being the number of signals:

10 Select current signal, 𝑥𝑖, and build 𝑋𝑖 = [𝑥1, … , 𝑥𝑖]
11 Calculate sources for each class, 𝑠𝑘 = 𝑊𝑘(𝑥𝑖 − 𝑏𝑘), 𝑘 = 1 … 𝐾

12 Calculate conditional class probabilities using:

𝑃(𝐶𝑒(𝑖) = 𝑘|𝑋𝑖−1) = ∑ 𝜋𝑘𝑗 𝑃(𝐶𝑒(𝑖 − 1) = 𝑗|𝑋𝑖−1)
𝐾

𝑗=1

13 Calculate posterior probabilities using:

𝑃(𝐶𝑒(𝑖) = 𝑘|𝑋𝑖) =
|det 𝑊𝑘| 𝑝(𝑠𝑘) 𝑃(𝐶𝑒(𝑖) = 𝑘|𝑋𝑖−1)

∑ |det 𝑊𝑗| 𝑝(𝑠𝑗) 𝑃(𝐶𝑒(𝑖) = 𝑗|𝑋𝑖−1)𝐾
𝑗=1

14 Current signal 𝑥𝑖 is assigned to the class with maximum 𝑃(𝐶𝑒(𝑖) = 𝑘|𝑋𝑖)

15 end for

4

3 Optimization and parallelization

In this section, we discuss the implementation of the SICAMM algorithm plus the

different optimizations. We start with an initial implementation of the SICAMM algo-

rithm, given in pseudo code.

We restrict ourselves to the case where two classes (𝐾 = 2) are considered. The

source probabilities 𝑝(𝑠1) and 𝑝(𝑠2) (𝑝𝑠1 and 𝑝𝑠2 in Algorithm 2) are computed using

two sets of (correctly) pre-classified signals, 𝑆1 ∈ ℝ𝑀×𝑁𝑓1 and 𝑆2 ∈ ℝ𝑀×𝑁𝑓2. There-

fore, the input data is the following: the two pre-classified sets 𝑆1and 𝑆2, the demixing

matrices 𝑊1 ∈ ℝ𝑀×𝑀, 𝑊2 ∈ ℝ𝑀×𝑀; the bias vectors 𝑏1 ∈ ℝ𝑀, 𝑏2 ∈ ℝ𝑀; and the

probability transition parameter 𝑟 ∈ ℝ, where 𝑟 = 𝜋11 = 𝜋22 . Accordingly, 𝜋21 =
𝜋12 = 1 − 𝑟. The signals to be classified are the vectors 𝑥𝑖 ∈ ℝ𝑀; in a real situation,

these vectors should be processed at a fast rate. A total of 𝑁𝑥 signals are analyzed. The

first version of this algorithm was developed in Matlab (R2016b), using the Statistics

Toolbox function “ksdensity” to obtain the probability densities 𝑝𝑠1 and 𝑝𝑠2. Although

1 Algorithm 2: Optimized SICAMM for 2 classes:

2 Input: 𝑊1, 𝑊2, 𝑏1, 𝑏2, 𝑆1, 𝑆2, 𝑁𝑥, r , and signals 𝑥𝑖 , i = 1. . 𝑁𝑥

3 Output: vector 𝐶𝑒

4 /*Precomputation of sig1, sig2 */

5 for j=1:M

6 med1=median(S1(j,:)); med2=median(S2(j,:))

7 sig1[j]= median(abs(S1(j,:)-med1)/0.6745)

8 sig2[j]= median(abs(S2(j,:)-med2)/0.6745)

9 end for

10 dW1=det(W1); dW2=det(W2)

11 /*Main Loop */

12 for i=1:Nx

13 𝑠1 = 𝑊1 ∗ (𝑥𝑖 − 𝑏1); 𝑠2 = 𝑊2 ∗ (𝑥𝑖 − 𝑏2)

14 ps1=density(S1, 𝑠1,sig1); ps2=density(S2, 𝑠2,sig2)

15 p1=abs(dW1)*ps1; p2=abs(dW2)*ps2

16 if (i==1)

17 p=p1+p2

18 PC1=p1/p; PC2=p2/p

19 else

20 PC1X=r*PC1+(1-r)*PC2; PC2X=(1-r)*PC1+r*PC2

21 p=p1*PC1X+p2*PC2X

22 PC1=(p1*PC1X)/p; PC2=(p2*PC2X)/p

23 end if

24 if PC1>PC2

25 Ce(i)=1

26 else

27 Ce(i)=2

28 end if

29 end for

5

the results were correct, the code was quite inefficient due to (among other circum-

stances) repeated pre-computations of medians and typical deviations of the pre-classi-

fied signals, 𝑆1 and 𝑆2. A basic (but more efficient) version of the SICAMM algorithm

is presented here as Algorithm 2, where these pre-computations are made only once,

outside of the main loop.
For each incoming signal 𝑥𝑖, the output is the value of the vector 𝐶𝑒(𝑖), which will

be 1 if the signal 𝑥𝑖 belongs to class 1 and 2 if the signal 𝑥𝑖 belongs to class 2. The part

of algorithm with the larger computational cost is the computation of the source prob-

abilities 𝑝𝑠1 and 𝑝𝑠2. The “density” routine (Algorithm 3) is a simplified and adapted

version of the Matlab “ksdensity” function. In order to obtain reasonable execution

times, this algorithm was coded in C language.

Some interesting aspects of Algorithms 2 and 3 are commented on below:

 The initial iteration of the algorithm (line 20, for the first signal) is slightly different

from the rest of the iterations in order to correctly initialize the probabilities 𝑃𝐶1 and

𝑃𝐶2.

 For each incoming signal, the most computationally expensive part is the execution

of the “density” function (Algorithm 3). The computational cost of Algorithm 3 for

each signal (discarding lower order terms) can be established by examining lines 12

and 13 in Algorithm 3. These two lines are executed 𝑀 · 𝑁𝑓 times, and there are six

floating point operations and one call to the exponential function in these lines.

1 Algorithm 3: density

2 Input: S, s, sig; Output: ps

3 [M,Nf]=size(S)

4 weight=1.0/Nf

5 Pi_constant=1/sqrt(2*PI)

6 /* computation of the density for each component s(j)

7 for each s(j), the density probability is out(j)*/

8 for j=1:M

9 u=sig(j) * pow(4/(3*Nf),(1.0/5.0))

10 aux=0

11 for i=1:Nf

12 z=(S(j,i)-s(j))/u

13 aux=aux + exp(-0.5*z*z)*Pi_constant

14 end for

15 out(j)=aux*weight/u

16 end for

17 /* computation of the joint probability for all the vector s */

18 ps=1.0

19 for j=1:M

20 ps=ps*out(j)

21 end

6

Therefore, the cost per signal is 6 · 𝑀 · 𝑁𝑓 flops and 𝑀 · 𝑁𝑓 evaluations of the ex-

ponential function. Algorithm 3 is called twice with each signal, one with 𝑆1 ∈
 ℝ𝑀×𝑁𝑓1 and the other with 𝑆2 ∈ ℝ𝑀×𝑁𝑓2. Therefore, the theoretical cost of the

whole “density” algorithm for a single entry signal 𝑥𝑖 can be established as 6 · 𝑀 ·
(𝑁𝑓1 + 𝑁𝑓2) flops and 𝑀 · (𝑁𝑓1 + 𝑁𝑓2) exponentials.

 Algorithm 3 is easily parallelizable in different ways. The inner loop (“For i=1:Nf”,

line 11) can be parallelized using, for example, standard OpenMP directives [13].

The outer loop (“For j=1:M”, line 8) can also be executed trivially in parallel. In

such situations, usually the best strategy is to parallelize the outer code using

OpenMP (so that each “j” index is processed by a single core), and to use compiler

directives to force the compiler to “vectorize” the inner loop. This means that, in

each core, the computation is accelerated by using vector registers and vector in-

structions, such as the AVX instruction set, which can carry out several operations

in a single clock cycle [14]. The parallel version tested in Section 5 was parallelized

in this way.

3.1 Block version.

Algorithm 2 must process incoming signals sequentially because of the dependence

of the probabilities 𝑃𝐶1𝑋 and 𝑃𝐶2𝑋 on the accumulated probabilities 𝑃𝐶1 and 𝑃𝐶2,

which come from former iterations. However, the computational cost of the code where

these probabilities are used (lines 16 to 28) is minimal; the largest computational cost

is in the calls to the “density” function and, to a lesser extent, in the matrix-vector prod-

ucts in line 13. On the other hand, the computations carried out in “density” for an

incoming signal, and the matrix-vector products, are completely independent from the

computations for other signals. Therefore, it is possible to group several incoming sig-

nals in a block and perform several calls to “density” (possibly in parallel), and later

on, process the output of the “density” function for all of the signals of the block, ob-

taining the corresponding values of the 𝐶𝑒 vector.

A block version of Algorithms 2 and 3 was developed where the signals are pro-

cessed in blocks of 𝐵𝑠𝑖𝑧𝑒 signals. The use of blocks improves the memory traffic, and

allows the matrix-vector products in line 13 to be embodied as matrix-matrix products,

which are significantly more efficient [14]. They are carried out using calls to BLAS

routines [15].

This version obtained good performance, but it cannot be presented here due to lack

of space. Nevertheless, the best results were obtained with GPU-accelerated versions,

which are described in the next section.

3.2 GPU version

Nowadays GPUs are used in many science fields where heavy computations are re-

quired. These devices, which were originally designed to handle the graphic interface

with the computer user, have had strong development driven by the videogame market.

7

Therefore, GPUs have actually become small supercomputers. The main feature of

GPUs (considered as computing devices) is that they have a large number of small,

relatively slow cores (slow compared with CPU cores). The number of cores in a

NVIDIA GPU ranges today from less than 100 in cheap GeForce cards to around 4000

cores in a Tesla K40.

The use of GPUs for general-purpose computation received an enormous push with

the launch of CUDA, a parallel programming environment for GPUs created by

NVIDIA. CUDA allows for relatively easy programming of the GPUs by using exten-

sions of the C language (it is also possible to program in other languages). CUDA pro-

grams look like standard C programs, but they have special routines to send/receive

data from the GPU, and allow special pieces of code called “kernels”, which contain

the code to be executed in the GPU. A detailed description of CUDA can be found in

many recent papers; we will assume a basic knowledge of CUDA from the reader in

order to avoid another lengthy description of the basics of CUDA programming [6].

3.2.1 Description of the main GPU Algorithm

The idea behind our GPU implementation is: 1) to process the signals in blocks,

processing them as matrices with 𝐵𝑠𝑖𝑧𝑒 columns, 2) to leave the sequential part of the

main loop of Algorithm 2 (lines 16 to 28) untouched, and 3) to use the GPUs for the

bulk of the computation (lines 13 to 14).

The main GPU algorithm is Algorithm 4. The first change is that the data must be

sent to the GPU; the data that must remain in the GPU all of the time (variables

𝑊1,𝑊2,𝑏1,𝑏2,𝑆1, 𝑆2, 𝑠𝑖𝑔1, 𝑠𝑖𝑔2) is sent to the GPU before the start of the main loop

(line 9). Then the main loop starts like Algorithm 2, but the signals are grouped in

blocks of 𝐵𝑠𝑖𝑧𝑒 columns which are sent to the GPU. The matrix-matrix products are

carried out using the CUBLAS “cublas_dgemm” routine [17]. The calls to “density”

are rewritten as CUDA kernels that process a block with 𝐵𝑠𝑖𝑧𝑒 signals in each call. A

value of 𝐵𝑠𝑖𝑧𝑒 = 100 has shown to be adequate to obtain good performance with this

routine. These CUDA kernels are described in the next section. The goal is the same,

to compute the probabilities 𝑝𝑠1 and 𝑝𝑠2. Once these probabilities are computed, they

are sent back to the CPU, where the rest of the algorithm is identical to Algorithm 2.

8

3.2.2 Description of the “density” algorithm for GPU

The “density” algorithm must be rewritten as a CUDA kernel. The work unit in the

GPU is the thread. The cores of the GPU can execute these threads concurrently so

there can be thousands of threads running in a GPU at the same time. GPU threads can

be organized in thread blocks that can be one-, two-, or three-dimensional. The thread

1 Algorithm 4: GPU SICAMM for 2 classes.

2 Input: 𝑊1, 𝑊2, 𝑏1, 𝑏2, 𝑆1, 𝑆2, 𝑥, 𝑁𝑥, 𝐵𝑠𝑖𝑧𝑒

3 Output: vector Ce

4 /*Precomputation of sig1, sig2 like in Algorithm 2 */

5 Initial_iteration(PC1,PC2, 𝑥1)

6 indce=2

7 /*Main Loop */

8 Send Data to GPU: 𝑊1, 𝑊2, 𝑏1, 𝑏2, 𝑆1, 𝑆2, 𝑠𝑖𝑔1, 𝑠𝑖𝑔2

9 for i=2:𝐵𝑠𝑖𝑧𝑒: 𝑁𝑥

10 xBi = 𝑥(: , 𝑖: 𝑖 + 𝐵𝑠𝑖𝑧𝑒 − 1) /*select B_size signals */

11 Send xBi to GPU

12 compute in GPU 𝑠𝐵1 = 𝑊1 ∗ (xBi − repmat(𝑏1, 1, 𝐵𝑠𝑖𝑧𝑒))

/*CUBLAS call*/

13 compute in GPU 𝑠𝐵2 = 𝑊2 ∗ (xBi − repmat(𝑏2, 1, 𝐵𝑠𝑖𝑧𝑒))

/*CUBLAS call*/

14 out1=density_block_GPU(S1, 𝑠𝐵1,sig1) /*kernel with with M*𝐵𝑠𝑖𝑧𝑒

blocks */

15 out2=density_block_GPU(S2, 𝑠𝐵2,sig2) /*kernel with M*𝐵𝑠𝑖𝑧𝑒

blocks */

16 ps1=product_reduction_GPU(out1) /*kernel with 𝐵𝑠𝑖𝑧𝑒 blocks

*/

17 ps2=product_reduction_GPU(out2) /*kernel with 𝐵𝑠𝑖𝑧𝑒 blocks

*/

18 Send ps1,ps2 to CPU.

19 for j=1:B_size

20 p1=abs(det(W1))*ps1(j); p2=abs(det(W2))*ps2(j)

21 PC1X=M(1,1)*PC1+M(2,1)*PC2

22 PC2X=M(1,2)*PC1+M(2,2)*PC2

23 p=p1*PC1X+p2*PC2X

24 PC1=(p1*PC1X)/p; PC2=(p2*PC2X)/p

25 if PC1>PC2

26 Ce(indce)=1

27 else

28 Ce(indce)=2

29 end if

30 indce=indce+1

31 end for

32 end for

9

blocks can be visualized as “teams” of blocks working together with some shared in-

formation. The kernels are executed in parallel by all of the threads in all of the blocks,

but they execute their tasks on different data. The blocks can also be organized in grids,

which can also be one-, two-, or three-dimensional. Clearly, there is plenty of flexibil-

ity.

We have chosen the following scheme to obtain a kernel called “den-

sity_block_GPU” equivalent to “density”, but computes the probabilities of 𝐵𝑠𝑖𝑧𝑒 sig-

nals in a single call to the kernel. We have chosen one-dimensional blocks, with 512

threads each. Each block of threads is responsible for the computation of an

𝑜𝑢𝑡(𝑗, 𝑘) value. In other words, each block performs computations analogous to the

inner loop (“For i=1:Nf”) in “density”. This loop is a reduction, where all the “aux”

values must be added to obtain the final 𝑜𝑢𝑡(𝑗, 𝑘) value. This reduction has been pro-

grammed using a simplified version of the algorithm for reductions in CUDA proposed

by Mark Harris [18]. All of the threads of the block cooperate using shared memory.

Then we use a two-dimensional grid of blocks of threads of size 𝑀 · 𝐵𝑠𝑖𝑧𝑒. The num-

ber of rows of the grid is 𝑀, and each row (the blocks of threads of that row) performs

computations that are analogous to the “for j=1:M“ loop (line 8, Algorithm 3) . Finally,

the number of columns of the grid is 𝐵𝑆𝑖𝑧𝑒, and each column (the blocks of threads of

that column) of the grid deals with a column of the 𝐵𝑠𝑖𝑧𝑒 blocks of signals being pro-

cessed. Then, the block of the grid with index (𝑗, 𝑘) computes the value 𝑜𝑢𝑡 (𝑗, 𝑘). A

simplified version of the kernel is shown in Algorithm 5.

1 Algorithm 5: density_block_GPU (CUDA kernel)

2 Input: S, sB, sig, 𝐵𝑠𝑖𝑧𝑒; Output: 𝑜𝑢𝑡

3 [M,Nf]=size(S)

4 weight=1.0/Nf

5 Pi_constant=1/sqrt(2*PI)

6 j=BlockIdx.x; /* BlockIdx.x is a CUDA built-in function giving the Block row

in the grid of blocks (of threads)*/

7 k=BlockIdx.y /* BlockIdx.y is a CUDA built-in function giving the Block col-

umn in the grid of blocks (of threads)*/

8 u=sig(j) * pow(4/(3*Nf),(1.0/5.0))

9 aux=0

10 /*All threads of block (j,k) cooperate in the “parallel for” to compute aux */

11 parallel_for i=1:Nf

12 z=(S(j,i)-sB(j,k))/u

13 aux=aux + exp(-0.5*z*z)*Pi_constant

14 end_parallel_For

15 out(j,k)=aux*weight/u

10

Lines 18 to 21 of the “density” function involve a further reduction, which is needed

to compute the final 𝑝𝑠 values . In the GPU version, this computation must be carried

out for 𝐵𝑠𝑖𝑧𝑒 vectors. For the sake of simplicity, it was more convenient to carry out this

reduction in a different kernel. Thus, the “density_Block_GPU” returns the matrix

“𝑜𝑢𝑡”, of size 𝑀 · 𝐵𝑆𝑖𝑧𝑒 , and a different kernel (Algorithm 6) carries out the final

reduction through two kernel calls (lines 16 and 17 of Algorithm 4).

4 Case study

As mentioned above, we considered the analysis of EEG signals taken from six epi-

leptic patients that were performing a memory and learning neuropsychological test.

This test was performed as part of the clinical evaluation of the patients.

The signals were recorded using an EEG device of 19 channels with a sampling

frequency of 500 Hz positioned according to the 10 − 20 system. The signals were

filtered and split into epochs of 0.25 second length (i.e., window size of 125 with 124

samples of overlap). This short length was selected in order to ensure that all stages of

the test (some of which were very short) were spread over multiple epochs, thus im-

proving parameter estimation. The theta-slow-wave-index (TSI) was estimated for each

epoch as a feature for classification. (e.g. see [19], for its definition and computation).

The neuropsychological test was drawn from the Wechsler Adult Intelligence Scale

(WAIS, [20]) suite. WAIS is designed to measure intelligence in adults and older ado-

lescents.

The specific sub-test of WAIS used was the Digit Span, which is divided into two

stages. In the first stage, called Digit Span Forward, the participant is read a sequence

of numbers and then is asked to recall the numbers in the same order. In the second

stage, Digit Span Backward, the participant is read a sequence of numbers and is asked

to recall the numbers in reverse order. In both stages, the objective is to correctly recall

as many sequences as possible. The test is repeated a number of trials until the subject

fails two consecutive trials. In the case of Subject #5, the total number of trials per-

formed was 30, of which the data of the first 14 trials was used for training and the data

of the last 16 trials was used for testing the developed algorithms. The TSI index was

recorded with the goal of classifying the phases of stimuli presentation (phase 1) and

subject response (phase 2).

1 Algorithm 6: product_reduction_GPU (CUDA kernel)

2 Input: out; Output: ps

3 [M,B_size]=size(out)

4 k=BlockIdx.x

5 ps(k)=1.0

6 /*All threads of block k cooperate in the “parallel for” to compute ps(k)*/

7 parallel_for j=1:M

8 ps(k)=ps(k)*out(j,k)

9 end_parallel_For

11

The classification accuracy obtained for the six subjects is shown in Table 1. The

results obtained have reasonable accuracy.

Table 1. Classification accuracy results

Subject # 1 2 3 4 5 6

Classification ac-

curacy %
61.05 82.44 78.01 81.60 77.85 80.41

The case selected for testing the algorithms was the data from subject #5. In this

case, the classification accuracy was 77.85% and the total number of EEG signals was

115886 (231.77 seconds). Fifty per cent of this data (57943 signals) was used for the

training stage of the algorithm and the rest (57943 signals) was used for testing. Thus,

the dimensions of the parameters were the following: 𝑘 = 1,2 (1: stimuli presentation;

2: subject response); matrices 𝑊1 and 𝑊2 of size 19𝑥19; bias vectors 𝑏1 and 𝑏2 of

size 19𝑥1; transition probability parameter r; signals of the first class 𝑆1 of size

19𝑥30654; and signals of the second class 𝑆, of size 19𝑥27289.

5 Analysis of results in terms of efficiency

The data of the experiment described above for Subject #5 was processed with the

initial, sequential, and parallel versions. The results of all of the versions were identical

(in terms of classification) in all of the cases. We used two machines with different

characteristics. The first one was a standard desktop computer with a core-i7 Intel CPU,

with 4 cores, 10 GB of RAM, and a GeForce GT 530 GPU with 96 cores. The second

computer is a relatively expensive machine, with a Xeon CPU with 24 cores, and a k40

Tesla NVIDIA GPU with 2880 cores.

In the standard desktop, we tested the following versions of the code: single core (to

evaluate the benefits of parallelization); version parallelized with OpenMP, running

with 4 cores and GPU version running in a GT530 card.

The results are summarized in Table 2:

Table 2. Execution time for the experiment on a standard desktop computer.

Version Single core 4 cores GPU GT530

Time (seconds) 951 320 126

This table shows the effect of the different parallelization/optimizations. Since the

total duration of the experiment was 231.77 seconds, the last version (with a cheap

GPU) would allow real-time processing of the data.

We tested two versions on the second machine: v1: version parallelized with

OpenMP, running with 24 cores, and v2 :GPU version running in a k40 Tesla card. The

results are shown in Table 3.

12

Table 3. Execution time for the experiment on a high performance server.

Version v1:24 cores v2:GPU k40

Time (seconds) 104 14,5

In order to obtain a better evaluation of the computational cost, we generated differ-

ent subsets of the EEG data of Subject #5 and tested the code by varying the “size” of

the problem. Taking into account that the computational cost per signal received was

6 ∗ 𝑀 · (𝑁𝑓1 + 𝑁𝑓2) flops and 𝑀 · (𝑁𝑓1 + 𝑁𝑓2) exponentials, we defined the “size”

of the problem as 𝑀 · (𝑁𝑓1 + 𝑁𝑓2). We fixed the number of incoming signals (20000)

and executed the different versions of the code for increasing values of problem size:

100000, 300000, 600000, and 800000 corresponding to 2, 5, 10, and 14 EEG chan-

nels from the total of the 19 EEG channels measured. The results are summarized in

Figures 1 and 2.

 Fig. 1. Computing time (seconds) on a standard desktop

13

Fig. 2. Computing time (seconds) on a high performance computing server

6 Conclusion

The results show the large reduction of computational time due to the proposed par-

allelization. GPU versions are especially appropriate in problems of this kind. Specifi-

cally, a small laptop with a GPU with some data-acquisition equipment may be enough

to register and process large amounts of biomedical data in an affordable period of time.

The approach has been illustrated in the automatic classification of electroencepha-

lographic signals from epileptic patients that were performing a neuropsychological

test. The state-of-the-art SICAMM algorithm has been considered due to its computa-

tional complexity and good results. Moreover, it is especially suited to parallelization.

This parallelization opens up the use of SICAMM in real time on a realistic clinical

setting. There are many possible applications for this setting, for instance, the real-time

detection of epileptic seizures would allow the activation of certain clinical procedures

or analyses.

As a future work, the proposed approach might be implemented in wearable devices

for medical applications, thus facilitating fast, real-time monitoring and diagnosis.

Acknowledgements

This work was supported by Spanish Administration (Ministerio de Economía y

Competitividad) and European Union (FEDER) under grants TEC2014-58438-R and

TEC2017-84743-P; and Generalitat Valenciana under grants PROMETEO II/2014/032

and PROMETEO II/2014/003.

References

14

1. Shi, L., Liu, W., Zhang, H., Xie, Y., Wang, D.: A survey of GPU-based medical image

computing techniques. Quantitative Imaging in Medicine and Surgery 2(3):188-206. (2012)

doi:10.3978/j.issn.2223-4292.2012.08.02.

2. Montagnat, J., Bellet, F. , Benoit-Cattin, H., Breton, V. Brunie, L. Duque, H. Legré, Y.

Magnin, I. E. Maigne, L, Miguet, S., Pierson, J. -M., Seitz, L., Tweed, T.,: Medical Images

Simulation, Storage, and Processing on the European DataGrid Testbed, Journal of Grid

Computing, vol.2, 4, (2005), doi=10.1007/s10723-004-5744-y

3. Saxena, S., Sharma, S., Sharma, N.: Image registration techniques using parallel computing

in multicore environment and its applications in medical imaging: An overview, In: Interna-

tional Conference on Computer and Communication Technology (ICCCT) (2014)

4. Salazar, A., Vergara, L., Miralles, R.: On including sequential dependence in ICA mixture

models, Signal Processing, vol. 90, 2314-2318, (2010).

5. Niedermeyer, E., Lopes da Silva, F.: Electroencephalography: Basic Principles, Clinical Ap-

plications, and Related Fields, Fifth Edition, Lippincott Williams & Wilkins, (2005).

6. Cuda C Programming Guide, http://docs.nvidia.com/cuda/cuda-c-programming-guide/in-

dex.html

7. Common P., Jutten, C.: Handbook of Blind Source Separation: Independent Component

Analysis and Applications. Oxford, UK: Academic Press, (2010).

8. Salazar, A., Igual, J., Vergara, L., Serrano, A.: Learning hierarchies from ICA mixtures. In:

IEEE International Conf. on Neural Networks, IJCNN 2007, 2271-2276, (2007).

9. Salazar, A. : On Statistical Pattern Recognition in Independent Component Analysis Mixture

Modelling. New York: Springer, (2013).

10. Safont, G., Salazar, A., Vergara, L., Gomez, E., Villanueva, V.: Probabilistic Distance for

Mixtures of Independent Component Analyzers, IEEE Transactions on Neural Networks

and Learning Systems, (29) 4, 1161-1173, (2018).

11. Salazar, A., Vergara, L., Serrano, A., Igual, J. : A general procedure for learning mixtures

of independent component analyzers, Pattern Recognition, (43) 1, 69-85, (2010).

12. The Mathworks Inc., MATLAB R14 Natick MA (2004).

13. http://www.openmp.org/

14. Intel(R) AVX - Intel(R) Software Network, http://software.intel.com/en-us/avx/

15. Golub, G. H., Van Loan, C. F. : Matrix Computations. The Johns Hopkins University Press,

Baltimore, MD, USA, third edition, (1996).

16. Anderson, E., Bai, Z. , Bischof, C., Blackford, S., Demmel, J. , Dongarra, J. , Du Croz, J. ,

Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide.

SIAM, Philadelphia, (1999).

17. CUBLAS http://docs.nvidia.com/cuda/cublas/index.html

18. Harris, M.: Optimizing parallel Reduction in CUDA, https://developer.down-

load.nvidia.com/assets/cuda/files/reduction.pdf.

19. Motamedi-Fakhr, S., Moshrefi-Torbati, M. , Hill, M., Hill, C.M. , White, P.R. :Signal pro-

cessing techniques applied to human sleep EEG signals-A review, Biomedical Signal Pro-

cessing and Control, vol. 10, 21-33, (2014).

20. Strauss, E.: A Compendium of Neuropsychological Tests. Oxford University Press, (2006).

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.openmp.org/
http://software.intel.com/en-us/avx/
http://docs.nvidia.com/cuda/cublas/index.html

