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Abstract—This paper aims to build a fuzzy system by means 

of genetic programming, which is used to extract the relevant 

function for each rule consequent through symbolic regression. 

The employed TSK fuzzy system is complemented with a 

variational Bayesian Gaussian mixture clustering method, 

which identifies the domain partition –simultaneously specifying 

the number of rules and the parameters of the fuzzy sets. The 

genetic programming approach is accompanied with an 

orthogonal least square algorithm to extract robust rule 

consequent functions for the fuzzy system. The proposed method 

provides a flexible grey-box modelling strategy, which brings 

three main advantages: 1) it is suitable for estimating a system 

with varying behavior across the elements of a partition of its 

domain; 2) it can automatically determine the necessary number 

of rules, without searching for redundant rule information; and 

3) it only requires small data sets, in contrast with other machine 

learning approaches such as deep learning. The proposed model 

is validated with a synthetic surface, and then with real data 

from a gas turbine compressor map case, which is compared 

with an adaptive neuro fuzzy inference system model. The 

results have shown the adequateness of the proposed method for 

modelling systems with bifurcating dynamics, and where the 

analytical equations are not available, such as those in a typical 

industrial setting.  

 

I. INTRODUCTION 

Machine learning, besides concentrating on data feature 
representation, should contribute to the interpretation of 
cognitive process – by replicating natural reasoning patterns –
and hence sharing the motivation behind the classical symbolic 
artificial intelligence methodologies [1][2]. For instance, the 
artificial intelligence subdomain of fuzzy inference systems, 
aims at exposing new ways of performing human-like 
reasoning by encoding fuzzy inferential relations among 
symbols, and intends to solve real-world problems where the 
inferential boundaries of classical logic are too crisp to 
represent reality [3]. Hence fuzzy systems bridge the domains 
of symbolic artificial intelligence and machine learning into 
computa-tionally efficient yet bio-inspired methodologies; by 
an introduction of vagueness, fuzzy systems are suitable for 
training small data sets, described by the degree of fuzzy 
membership in the pre-defined complete set [4]. This has 
gained favor especially in industrial applications, where often 
limited data are available [5][6], and brings a significant 
advantage over machine learning techniques, such as deep 
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learning, which normally require big data for training the 
models, and can essentially be regarded as black-box systems.  

Other than being able to form inferential patterns from 
relatively small data-sets, human intelligence also surpasses 
artificial intelligence in that humans can more effectively 
perform extrapolation from existing knowledge. Traditional 
machine learning is generally more efficient at interpolating 
data, since it learns to fit, and every so often over-fit, the given 
data, disregarding its performance outside the measured 
regions – thus reducing the prediction accuracy [7]. In this 
context, fuzzy systems assist by introducing fuzziness outside 
the numerically explored regions. But, their hyper-parameters 
and estimation parameters, such as the membership functions 
and the rule consequent functions, etc., should also be 
representative for real-world applications, providing generic 
descriptions of the principal mechanisms. Fuzzy models are 
compared with the classical method of linear regression in [8], 
where they were shown to perform better when extrapolating 
from the given data.  

There are two primary types of fuzzy inference systems – 
Mamdani [9] and Sugeno [10] inference types. Herein, fuzzy 
systems of the Sugeno type are considered – also referred as 
the TSK models [10]. They differ from the Mamdani models, 
in that each rule’s consequent is a mathematical function in the 
TSK models, whereas the output membership functions of the 
Mamdani models are represented by fuzzy sets. The TSK 
models have several advantages, such as being compatible 
with other numerical analysis procedures, e.g. optimization 
algorithms, and maintaining the continuity of the output 
surface. Typically, the TSK model output membership 
functions are chosen as a constant or a linear function of the 
input. However, the model estimation result can be biased 
because of the specific constraint on function structure. Here, 
the method is extended to include generic machine learned 
functions for the rule consequent part, where both the function 
structure and the function parameters are optimized by an 
evolutionary computation technique.  

Evolutionary computation is originated from genetic 
algorithms and intends to mimic the evolutionary processes 
found in nature, where an organism adapts to the environment 
[11]. Commonly it is used to solve complex optimization 
problems. Genetic programming is an extension of genetic 
algorithms, where the population members at each iteration are 
executable programs, represented as trees instead of strings of 
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numerical quantities [12]. Genetic programming is able to 
perform symbolic regression, which makes the model or 
model hyper-parameter selection process extremely flexible, 
which may generate a more adequate model structure than the 
default one [13]. Although it is useful for the model structure 
selection, e.g. the functions that conform the model and their 
orders, genetic programming cannot be applied directly for 
nonlinear system identification because of the estimation of 
the model parameters. To tailor genetic programming for this 
purpose, Madar et al. [14] have introduced a hybridization of 
genetic programming and the orthogonal least squares 
technique for concurrent model structure selection and its 
parameters for nonlinear but linear-in-parameters models, 
which can provide more meaningful results of the fitted 
functions by eliminating the insignificant terms.  

Here, a fully automated TSK fuzzy model is designed. In 
the rest of the paper, the underlying principles of the utilized 
techniques are described briefly in Sec. II. Two case studies 
are provided, using a synthetic multi-region surface and a real 
gas turbine compressor map separately, in Sec. III. The results 
are compared with the well-known Adaptive Neuro Fuzzy 
Inference System (ANFIS) model [15]. Finally, Sec. IV 
concludes the paper, and identifies the future work.  

II. UNDERLYING PRINCIPLES 

A. Fuzzy Inference System 

An example TSK fuzzy system, with two input variables x 
and y and one output z, is presented in Fig. 1. The input fuzzy 
sets are A1 and A2 for x, and B1 and B2 for y. In the example, 
there are two rules, and the firing strength of each rule can be 
determined either by the minimum or by the product of the 
input membership values. Here, the product operator is used. 
The final output z is computed by taking a weighted average 
of the two consequent function outputs z1 and z2, where the 
weights are the resulted firing strengths w1 and w2.  

The proposed method here is called VEFIS – representing 
the combination of the Variational Bayesian technique and the 
Evolutionary computation method, integrated in a Fuzzy 
Inference System. The proposed model is based on the 
structure described in Fig. 1, where the premise fuzzy sets and 
the number of rules are determined using the variational 
Bayesian Gaussian mixture model [16]. Then, the consequent 
functions fn are determined using a hybrid genetic 
programming-orthogonal least squares approach. The 
involved techniques are described in the following sub-
sections.  

 

Figure 1. An example TSK fuzzy system architechture. 

B. Variational Bayesian Gaussian Mixture Model 

A Gaussian mixture model approximates the probability 
density function of sample data x as a linear combination of K 
Gaussian distributions with mean μk and standard deviation σk, 
denoted as 

𝑝(𝑥|𝜽, 𝝁, 𝝈) = ∑ 𝜃𝑘𝒩(𝑥|𝜇𝑘, 𝜎𝑘)
𝐾
𝑘=1  ,                  (1) 

where θk are the mixing coefficients. 

For each data sample xn, where 𝒙 ≡ {𝑥𝑛}, there exists a set 
of values Z𝑛𝑘 ∈ {0,1}, indicating whether the sample belongs 
to the k-th mixture component (as 1) or not (as 0). Normally 
the number of clusters K is pre-determined, but with the 
variational Bayesian method, K is obtained as an unknown by 
solving Znk as following.  

First, the joint probability of all variables in the mixture 
model is given by 

  𝑝(𝒙, 𝐙, 𝜽, 𝝁, 𝝈) = 𝑝(𝒙|𝐙, 𝝁, 𝝈)𝑝(𝐙|𝜽)𝑝(𝜽)𝑝(𝝁|𝝈)𝑝(𝝈),  (2) 

where  𝑝(𝜽), 𝑝(𝝁|𝝈) and 𝑝(𝝈) are established empirical 
distributions. Marginalizing (2) with respect to Z, μ and σ is 
difficult to achieve, thus it is convenient to apply a variational 
Bayesian framework on 𝑝(𝒙|𝜽) = 𝑝(𝒙|𝐙, 𝝁, 𝝈)𝑝(𝐙|𝜽).  

Then, denoting 𝚿 ≡ {𝐙, 𝝁, 𝝈}, the relation holds 

𝑝(𝒙|𝜽) = ∫𝑝(𝒙,𝚿|𝜽) 𝑑𝜳 ,                        (3) 

where 𝑝(𝚿|𝜽) can be approximated by a variational 
distribution, i.e. 𝑞(𝚿) ≈ 𝑝(𝚿|𝜽). Here, the Kullback-Leibler 
divergence of p from q is applied – minimizing the KL 
divergence is to make q as close as p, which can be achieved 
by choosing suitable q distributions. For further simplification, 
𝑞(𝚿) can be considered to factorize over its subsets, i.e. 

𝑞(𝐙, 𝝁, 𝝈) = 𝑞Z(𝐙)𝑞𝜇(𝝁)𝑞𝜎(𝝈).                  (4) 

Consequently, the mixture model can be solved through the 
standard Expectation-Maximization (E-M) procedure. It 
includes iterative updating of the variational factors through 
the E-step until convergence to obtain qi, and then the M-step 
for the mixing coefficients θk can also be achieved [17]. 

C. Genetic Programming with Orthogonal Least Squares  

Genetic programming operates by evolving hierarchical 
computer programs from an initial population. The programs 
are represented as a tree structure, consisting of functions 
(operators) and terminals (variables and numbers), which are 
drawn from a pre-determined set of functions and terminals. 
Fig. 2 shows an example of a tree structure of genetic 
programming for the function (1 + x + (3 / x) + (y × 5)). The 
members of the population are then evolved through crossover 
and mutation operations, similar to those in the genetic 
algorithms.  

The mutation mechanism in genetic programming is to 
delete one node including its children, and replace it with a 
randomly generated subtree. The crossover operation 
exchanges two randomly chosen subtrees between the parents. 
The general procedure includes: (i) initializing the population; 
(ii) calculating the fitness for each individual; (iii) reproducing 
selected individuals to form new population; (iv) performing 
crossover and mutation operations; and (v) iterating steps ii) to 
iv) until convergence. 



  

 

Figure 2. An example tree structure in genetic programming 

In genetic programming, the tree size tends to increase over 
time, which can cause computational overflow. In order to 
provide an algorithmically efficient solution that does not 
produce excessive over-fitting and over-parametrizing, an 
orthogonal least squares algorithm can be employed. This 
method combines with genetic programming to eliminate the 
complex and unnecessary terms for the case of linear-in-
parameter models [14]. 

A linear-in-parameters model is written as 

𝒐 = 𝐅𝒑 + 𝒆  ,                               (5) 

where p is an M×1 parameter vector corresponding to the M 
terms of functions, F is an N×M regression matrix, o is the 
measured 1×N output vector, and e is the error vector.  

The orthogonal least squares algorithm assumes that F can 
be orthogonally decomposed as F = WA, where A is an M×M 
upper triangular matrix, and W is an N×M matrix, which 
satisfies WTW = D (diagonal). The auxiliary parameter vector 
is introduced as g = D-1WTo. Then, the output variance can be 
described as  

𝒐T𝒐 = ∑ 𝑔𝑖
2𝑤𝑖

T𝑤𝑖
M
𝑖=1 + 𝒆T𝒆  ,                  (6) 

and then the error reduction ratio [err]i for each term Fi is 

[𝑒𝑟𝑟]𝑖 =
𝑔𝑖
2𝑤𝑖

T𝑤𝑖

𝑜T𝑜
    .                           (7) 

In this way, the order of the function terms Fi can be 
determined according to their participation to the error 
reduction ratios in a linear-in-parameters model.  

The concept of the hybrid genetic programming-
orthogonal least squares approach can be summarized in the 
following steps: (i) the model is decomposed to the function 
terms (subtrees); (ii) the error reduction ratios of the function 
terms are computed according to (7); (iii) the terms that yield 
negligible error reduction are eliminated, e.g. 0.05 as threshold 
used in this paper; and (iv) the function terms’ coefficients are 
fitted by a least squares method. 

III. CASE STUDIES 

A. Generated Surface 

First, the proposed model is tested with a synthetic 
piecewise surface. The piecewise surface has no discontinuity, 
and is conformed by four connected regions defined by the 
relations in (8). In each region, 100 points are randomly 
sampled as the testing data points. From the testing data, the 
variational Bayesian Gaussian mixture model is applied to 
determine the cluster number (K = 4). An example of the 
conforming clustered points are presented in Fig. 4, projected 
on the x-y plane for clarity. 

𝑧(𝑥, 𝑦) =

{
 
 

 
     sin𝑥

2cos 𝑦   − 2 ≤ 𝑥 ≤ 0,−2 ≤ 𝑦 ≤ 0

sin𝑥 cos 𝑦2      0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑦 ≤ 2

sin𝑥2cos 𝑦2    − 2 ≤ 𝑥 ≤ 0, 0 ≤ 𝑦 ≤ 2

 sin𝑥 cos 𝑦    0 ≤ 𝑥 ≤ 2,−2 ≤ 𝑦 ≤ 0

     (8) 

 

Figure 3. Synthetic surface for testing 

 

Figure 4. Clustering (C) results for the synthetic surface using the 
variational Bayesian Gaussian mixture model 

The results do not exhibit a clear separation of the four 
surfaces due to smooth transitioning. However, each cluster 
contains most of the information of the underlying 
functionalities in that region. Then, the four clusters of data 
points are fitted separately using genetic programming. For 
approximation purposes, the set of operators in this case is 
selected as F = {+, ×} only, i.e. higher order polynomial fitting. 
Table 1 shows the parameters of genetic programming, and it 
is trained for 500 epochs. The four corresponding functions 
after searching are  

f1(x, y) = 0.1973 (4 x2 + x2 × (x + y) + x × (x2 × (x3 + 3 y) + 
3 x + y × (3 x + y))) + 0.5612 (x5 + y) + 0.0145 x  ̶  0.5382 y + 
0.06948; 

f2(x, y) = 0.2358 (y × (x + y) + y + 3 x) + 0.00912 (((y3 + x 
× y3) + y) × y4 + x × y)  ̶  0.1612 (3 y2 × (x + y) + 2 x) + 0.2303; 

f3(x, y) = 0.9884 (x + y) + 0.1364 ((x2 × y2 + y) × x2 + x) + 
0.3303 (x + x × y2 + x × (x + y) + (x + y) × y × x)  ̶  0.5539 (x4 
+ x2 + 2 y  + x × y)  ̶  1.4028 x  ̶  0.4925 ((x + y) × 2 x2 + x × y 
+ x ) + 0.1584; 

f4(x, y) = 0.5201 x + 0.3603 (x × y + x)   ̶ 0.1046 (y + (x + 
y) × x2 + (x × y + y) × y) + 0.04176. 



  

TABLE I.  PARAMETERS OF GENETIC PROGRAMMING 

Population size 40 

Selection method Roulette wheel 

Crossover method One point crossover 

Mutation method Point mutation 

Replacement method Elitist 

Generation gap 0.8 

Probability of crossover 0.7 

Probability of mutation 0.5 

Evaluation All individuals 

 

 

Figure 5. Generated surface from the VEFIS model compared with the 
reference surface 

It is shown that the simpler function, e.g. for cluster 4, is 
fitted with a simpler structure of functions, while the more 
complex variations, e.g. in cluster 3, are captured by more 
compound polynomial terms.  

The generated surface based on the proposed VEFIS model 
and the original synthetic surface are compared in Fig. 5. It is 
shown that the highly varying characteristics of the different 
regions are approximated relatively well by the simple fitting 
technique based on the proposed scheme. This case study 
serves as a simple demonstration of the proposed method. It is 
noticed that, if ‘sin’ and ‘cos’ are included in the selected 
function set, the precise original surface can be retrieved.  

B. Compressor Map Estimation 

The proposed model is now tested with real-world 
industrial data – a gas turbine compressor map. Adequate 
component maps, including the compressor map studied here, 
are important for use in gas turbine performance modelling 
and control [18]. Generally, engine tests can only produce 
limited data due to control limit and cost constraints. 
Estimation of the performance characteristics of the gas 
turbine component, which can provide both interpolation and 
extrapolation to complete the component maps, becomes 
therefore important.  

Polynomial fitting and artificial neural networks are 
commonly used as compressor map prediction methods 

[19][20]. A single polynomial was used to describe the entire 
compressor map in [21]. Coefficients of different polynomials 
on related characteristics were computed by using genetic 
algorithms in [22]. And, different types of artificial neural 
networks were used and compared for modeling compressor 
maps in [23]. However, as mentioned in Sec. I, constraint of 
the selected function structure, e.g. the polynomials, can result 
in bias in the model prediction; and artificial neural networks 
are of a black-box nature, which may lead to overfitting within 
the known region, and significantly biased for extrapolation.  

The data used in this paper are based on gas turbine 
measurements from NASA, which are publicly accessible in 
several reports [24]. There are ten speed lines, and each speed 
line contains seven engine test data points, as shown in Fig. 6. 
Based on the proposed method, first, the variational Bayesian 
technique is applied to the 70 data points. In this case, the 
determined cluster number K = 2, and the resultant clustered 
points are presented in Fig. 7, projected on the input 1-2 space 
for clarity.  

To validate the proposed VEFIS model, the obtained 
results are compared with the results obtained using the Matlab 
ANFIS toolbox. For comparison purpose, the ANFIS model is 
also designed with two Gaussian membership functions for 
each input, and trained for 500 epochs.  

 

Figure 6. Compressor map 

 

Figure 7. Clustering (C) results for the compressor map  
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The parameters of genetic programming are the same as 
listed in Table 1. The set of operators in this case is set to be  
F = {+,  ̶ , ×,  /, log}, where ‘/’ and ‘log’ are protected for 
numerical stability. The genetic programming is trained for the 
same number of epochs as before, i.e. 500.  

The VEFIS output functions are: 

f1(x, y) = 0.3436 (x  ̶  2 y × y / x)  ̶  0.3642 (x  ̶  y)  ̶  0.06184 

(y / x + y) + 0.6077 ; 

f2(x, y) =  ̶  0.05123 ((1 / y)   ̶ (x + 2 y))  ̶  0.000434  (x × x 

× log(y) / log(x)) + 0.002168 (y × y)  ̶  0.1826 y + 0.4726. 

And the ANFIS output functions are: 

f1(x, y) = 0.003207 x + 0.03015 y + 0.2312; 

f2 (x, y) =   ̶ 0.0163 x + 0.0304 y + 1.193, 

where x and y are the two inputs, mass flow rate and pressure 
ratio, separately. The optimized structures of functions based 
on genetic programming are more complex than those 
obtained by linear regression or polynomial fitting.  

According to the results, the root-mean-square error based 
on the ANFIS is 0.0101, and the root-mean-square error based 
on the VEFIS is 0.0078, compared with the original 70 data 
points. The model prediction results are displayed in Fig. 8. It 
is shown that the VEFIS method captures better the nonlinear 
characteristics of the compressor map, especially for the low-
speed lines, where usually the dynamics are more difficult to 
model with normal thermodynamics formulas, because their 
average behavior is more affected by perturbations.  

The membership functions for the two inputs after ANFIS 
tuning and those based on the VEFIS method are illustrated in 
Fig. 9, where it is shown that, in both models, the fuzzy sets 
for Input 1 are similar, but they are significantly different for 
Input 2 in this case study. The VEFIS puts more weight on 
fitting low pressure ratio values, which correspond to low 
speed lines, justifying the results in Fig. 8 also.  

 

 

Figure 8. Model prediction results based on the proposed VEFIS method, 
compared with the original data and those from the ANFIS model  

 

Figure 9. Gaussian membership functions for Input 1: mass flow rate and 
for Input 2: pressure ratio based on ANFIS and VEFIS models 

The generated surfaces from the VEFIS model and from 
the ANFIS model are compared in Fig. 10. It is shown that the 
VEFIS model better represents the relations at lower speeds, 
in agreement with the results in Fig. 8. The compressor map 
estimation from Fig. 10(a) is qualitatively in agreement with 
the surface generated from a 4th order polynomial fitting of the 
compressor maps in [25]. This can provide a more accurate 
extrapolation capacity where the performance beyond stall and 
choke lines - on each side - has dropped significantly as 
compared with real conditions, which the ANFIS model could 
not capture as well (Fig. 10(b)).  

IV. CONCLUSION 

This paper has proposed a system modeling approach, 

based on a TSK fuzzy inference system framework, integrated 

with variational Bayesian Gaussian mixture model and 

genetic programming techniques. The variational Bayesian 

method is used to perform automatic Gaussian mixture 

clustering, which simultaneously gives the number of rules 

(clusters) and the fuzzy sets for the input variables (according 

to the centers and standard deviations of the Gaussian 

mixtures), so that the redundant rules have been disregarded 

since the initial clustering stage. Then, for each rule, the 

consequent functions are extracted using a hybrid genetic 

programming-orthogonal least squares method. This provides 

a more flexible solution when the characteristics of the system 

are difficult to model using the conventional linear functions 

such as those in the ANFIS model. Finally, the TSK fuzzy 

system is built to provide smooth transitions across different 

regions. The proposed modelling technique is tested with a 

synthetic surface, and then with an industrial compressor map 

case, where only small data are available. It has shown 

comparable performance to the well-known ANFIS model for 

the tested case. In future work, an integrated optimization 

strategy will be investigated for the proposed VEFIS 

framework, to take into consideration the coupled effect 

between each of the training stages – i.e. by fitting all the 

VEFIS parameters simultaneously.  
 



  

 

(a) 

 

(b) 

Figure 10. Generated surface from (a) the VEFIS model and (b) the ANFIS 
model based on the compressor map data 
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