

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/180058

Zhang, Y.; Martínez-García, M.; Serrano, J.; Latimer, A. (2019). Multi-region System
Modelling by using Genetic Programming to Extract Rule Consequent Functions in a TSK
Fuzzy System. IEEE. 987-992. https://doi.org/10.1109/ICARM.2019.8834163

https://doi.org/10.1109/ICARM.2019.8834163

IEEE



Abstract—This paper aims to build a fuzzy system by means

of genetic programming, which is used to extract the relevant

function for each rule consequent through symbolic regression.

The employed TSK fuzzy system is complemented with a

variational Bayesian Gaussian mixture clustering method,

which identifies the domain partition –simultaneously specifying

the number of rules and the parameters of the fuzzy sets. The

genetic programming approach is accompanied with an

orthogonal least square algorithm to extract robust rule

consequent functions for the fuzzy system. The proposed method

provides a flexible grey-box modelling strategy, which brings

three main advantages: 1) it is suitable for estimating a system

with varying behavior across the elements of a partition of its

domain; 2) it can automatically determine the necessary number

of rules, without searching for redundant rule information; and

3) it only requires small data sets, in contrast with other machine

learning approaches such as deep learning. The proposed model

is validated with a synthetic surface, and then with real data

from a gas turbine compressor map case, which is compared

with an adaptive neuro fuzzy inference system model. The

results have shown the adequateness of the proposed method for

modelling systems with bifurcating dynamics, and where the

analytical equations are not available, such as those in a typical

industrial setting.

I. INTRODUCTION

Machine learning, besides concentrating on data feature
representation, should contribute to the interpretation of
cognitive process – by replicating natural reasoning patterns –
and hence sharing the motivation behind the classical symbolic
artificial intelligence methodologies [1][2]. For instance, the
artificial intelligence subdomain of fuzzy inference systems,
aims at exposing new ways of performing human-like
reasoning by encoding fuzzy inferential relations among
symbols, and intends to solve real-world problems where the
inferential boundaries of classical logic are too crisp to
represent reality [3]. Hence fuzzy systems bridge the domains
of symbolic artificial intelligence and machine learning into
computa-tionally efficient yet bio-inspired methodologies; by
an introduction of vagueness, fuzzy systems are suitable for
training small data sets, described by the degree of fuzzy
membership in the pre-defined complete set [4]. This has
gained favor especially in industrial applications, where often
limited data are available [5][6], and brings a significant
advantage over machine learning techniques, such as deep

* Research supported by EPSRC Grant EVES (EP/R029741/1).

Y. Zhang is with the School of Engineering, University of Lincoln,
Lincoln, LN6 7TS, UK (corresponding author, phone: +44-1522-837938; e-

mail: yzhang@ lincoln.ac.uk).

M. Martínez-García is with the School of Engineering, University of
Lincoln, Lincoln, LN6 7TS, UK (e-mail: mmartinez@ lincoln.ac.uk).

learning, which normally require big data for training the
models, and can essentially be regarded as black-box systems.

Other than being able to form inferential patterns from
relatively small data-sets, human intelligence also surpasses
artificial intelligence in that humans can more effectively
perform extrapolation from existing knowledge. Traditional
machine learning is generally more efficient at interpolating
data, since it learns to fit, and every so often over-fit, the given
data, disregarding its performance outside the measured
regions – thus reducing the prediction accuracy [7]. In this
context, fuzzy systems assist by introducing fuzziness outside
the numerically explored regions. But, their hyper-parameters
and estimation parameters, such as the membership functions
and the rule consequent functions, etc., should also be
representative for real-world applications, providing generic
descriptions of the principal mechanisms. Fuzzy models are
compared with the classical method of linear regression in [8],
where they were shown to perform better when extrapolating
from the given data.

There are two primary types of fuzzy inference systems –
Mamdani [9] and Sugeno [10] inference types. Herein, fuzzy
systems of the Sugeno type are considered – also referred as
the TSK models [10]. They differ from the Mamdani models,
in that each rule’s consequent is a mathematical function in the
TSK models, whereas the output membership functions of the
Mamdani models are represented by fuzzy sets. The TSK
models have several advantages, such as being compatible
with other numerical analysis procedures, e.g. optimization
algorithms, and maintaining the continuity of the output
surface. Typically, the TSK model output membership
functions are chosen as a constant or a linear function of the
input. However, the model estimation result can be biased
because of the specific constraint on function structure. Here,
the method is extended to include generic machine learned
functions for the rule consequent part, where both the function
structure and the function parameters are optimized by an
evolutionary computation technique.

Evolutionary computation is originated from genetic
algorithms and intends to mimic the evolutionary processes
found in nature, where an organism adapts to the environment
[11]. Commonly it is used to solve complex optimization
problems. Genetic programming is an extension of genetic
algorithms, where the population members at each iteration are
executable programs, represented as trees instead of strings of

J. R. Serrano-Cruz is with the School of Design Engineering, Universitat

Politècnica de València, 46022 Valencia, Spain (e-mail: jrserran@ mot.upv.
es)

A. Latimer is with the Siemens Industrial Turbomachinery Ltd., Lincoln,

LN6 3AD, UK (e-mail: anthony.latimer@siemens.com).

Multi-region System Modeling by using Genetic Programming to

Extract Rule Consequent Functions in a TSK Fuzzy System

Yu Zhang, Member, IEEE, Miguel Martínez-García, Member, IEEE,

José R. Serrano-Cruz and Anthony Latimer

jrserran
Highlight
University Research Institute CMT-Motores Térmicos.

numerical quantities [12]. Genetic programming is able to
perform symbolic regression, which makes the model or
model hyper-parameter selection process extremely flexible,
which may generate a more adequate model structure than the
default one [13]. Although it is useful for the model structure
selection, e.g. the functions that conform the model and their
orders, genetic programming cannot be applied directly for
nonlinear system identification because of the estimation of
the model parameters. To tailor genetic programming for this
purpose, Madar et al. [14] have introduced a hybridization of
genetic programming and the orthogonal least squares
technique for concurrent model structure selection and its
parameters for nonlinear but linear-in-parameters models,
which can provide more meaningful results of the fitted
functions by eliminating the insignificant terms.

Here, a fully automated TSK fuzzy model is designed. In
the rest of the paper, the underlying principles of the utilized
techniques are described briefly in Sec. II. Two case studies
are provided, using a synthetic multi-region surface and a real
gas turbine compressor map separately, in Sec. III. The results
are compared with the well-known Adaptive Neuro Fuzzy
Inference System (ANFIS) model [15]. Finally, Sec. IV
concludes the paper, and identifies the future work.

II. UNDERLYING PRINCIPLES

A. Fuzzy Inference System

An example TSK fuzzy system, with two input variables x
and y and one output z, is presented in Fig. 1. The input fuzzy
sets are A1 and A2 for x, and B1 and B2 for y. In the example,
there are two rules, and the firing strength of each rule can be
determined either by the minimum or by the product of the
input membership values. Here, the product operator is used.
The final output z is computed by taking a weighted average
of the two consequent function outputs z1 and z2, where the
weights are the resulted firing strengths w1 and w2.

The proposed method here is called VEFIS – representing
the combination of the Variational Bayesian technique and the
Evolutionary computation method, integrated in a Fuzzy
Inference System. The proposed model is based on the
structure described in Fig. 1, where the premise fuzzy sets and
the number of rules are determined using the variational
Bayesian Gaussian mixture model [16]. Then, the consequent
functions fn are determined using a hybrid genetic
programming-orthogonal least squares approach. The
involved techniques are described in the following sub-
sections.

Figure 1. An example TSK fuzzy system architechture.

B. Variational Bayesian Gaussian Mixture Model

A Gaussian mixture model approximates the probability
density function of sample data x as a linear combination of K
Gaussian distributions with mean μk and standard deviation σk,
denoted as

𝑝(𝑥|𝜽, 𝝁, 𝝈) = ∑ 𝜃𝑘𝒩(𝑥|𝜇𝑘, 𝜎𝑘)
𝐾
𝑘=1 , (1)

where θk are the mixing coefficients.

For each data sample xn, where 𝒙 ≡ {𝑥𝑛}, there exists a set
of values Z𝑛𝑘 ∈ {0,1}, indicating whether the sample belongs
to the k-th mixture component (as 1) or not (as 0). Normally
the number of clusters K is pre-determined, but with the
variational Bayesian method, K is obtained as an unknown by
solving Znk as following.

First, the joint probability of all variables in the mixture
model is given by

 𝑝(𝒙, 𝐙, 𝜽, 𝝁, 𝝈) = 𝑝(𝒙|𝐙, 𝝁, 𝝈)𝑝(𝐙|𝜽)𝑝(𝜽)𝑝(𝝁|𝝈)𝑝(𝝈), (2)

where 𝑝(𝜽), 𝑝(𝝁|𝝈) and 𝑝(𝝈) are established empirical
distributions. Marginalizing (2) with respect to Z, μ and σ is
difficult to achieve, thus it is convenient to apply a variational
Bayesian framework on 𝑝(𝒙|𝜽) = 𝑝(𝒙|𝐙, 𝝁, 𝝈)𝑝(𝐙|𝜽).

Then, denoting 𝚿 ≡ {𝐙, 𝝁, 𝝈}, the relation holds

𝑝(𝒙|𝜽) = ∫𝑝(𝒙,𝚿|𝜽) 𝑑𝜳 , (3)

where 𝑝(𝚿|𝜽) can be approximated by a variational
distribution, i.e. 𝑞(𝚿) ≈ 𝑝(𝚿|𝜽). Here, the Kullback-Leibler
divergence of p from q is applied – minimizing the KL
divergence is to make q as close as p, which can be achieved
by choosing suitable q distributions. For further simplification,
𝑞(𝚿) can be considered to factorize over its subsets, i.e.

𝑞(𝐙, 𝝁, 𝝈) = 𝑞Z(𝐙)𝑞𝜇(𝝁)𝑞𝜎(𝝈). (4)

Consequently, the mixture model can be solved through the
standard Expectation-Maximization (E-M) procedure. It
includes iterative updating of the variational factors through
the E-step until convergence to obtain qi, and then the M-step
for the mixing coefficients θk can also be achieved [17].

C. Genetic Programming with Orthogonal Least Squares

Genetic programming operates by evolving hierarchical
computer programs from an initial population. The programs
are represented as a tree structure, consisting of functions
(operators) and terminals (variables and numbers), which are
drawn from a pre-determined set of functions and terminals.
Fig. 2 shows an example of a tree structure of genetic
programming for the function (1 + x + (3 / x) + (y × 5)). The
members of the population are then evolved through crossover
and mutation operations, similar to those in the genetic
algorithms.

The mutation mechanism in genetic programming is to
delete one node including its children, and replace it with a
randomly generated subtree. The crossover operation
exchanges two randomly chosen subtrees between the parents.
The general procedure includes: (i) initializing the population;
(ii) calculating the fitness for each individual; (iii) reproducing
selected individuals to form new population; (iv) performing
crossover and mutation operations; and (v) iterating steps ii) to
iv) until convergence.

Figure 2. An example tree structure in genetic programming

In genetic programming, the tree size tends to increase over
time, which can cause computational overflow. In order to
provide an algorithmically efficient solution that does not
produce excessive over-fitting and over-parametrizing, an
orthogonal least squares algorithm can be employed. This
method combines with genetic programming to eliminate the
complex and unnecessary terms for the case of linear-in-
parameter models [14].

A linear-in-parameters model is written as

𝒐 = 𝐅𝒑 + 𝒆 , (5)

where p is an M×1 parameter vector corresponding to the M
terms of functions, F is an N×M regression matrix, o is the
measured 1×N output vector, and e is the error vector.

The orthogonal least squares algorithm assumes that F can
be orthogonally decomposed as F = WA, where A is an M×M
upper triangular matrix, and W is an N×M matrix, which
satisfies WTW = D (diagonal). The auxiliary parameter vector
is introduced as g = D-1WTo. Then, the output variance can be
described as

𝒐T𝒐 = ∑ 𝑔𝑖
2𝑤𝑖

T𝑤𝑖
M
𝑖=1 + 𝒆T𝒆 , (6)

and then the error reduction ratio [err]i for each term Fi is

[𝑒𝑟𝑟]𝑖 =
𝑔𝑖
2𝑤𝑖

T𝑤𝑖

𝑜T𝑜
 . (7)

In this way, the order of the function terms Fi can be
determined according to their participation to the error
reduction ratios in a linear-in-parameters model.

The concept of the hybrid genetic programming-
orthogonal least squares approach can be summarized in the
following steps: (i) the model is decomposed to the function
terms (subtrees); (ii) the error reduction ratios of the function
terms are computed according to (7); (iii) the terms that yield
negligible error reduction are eliminated, e.g. 0.05 as threshold
used in this paper; and (iv) the function terms’ coefficients are
fitted by a least squares method.

III. CASE STUDIES

A. Generated Surface

First, the proposed model is tested with a synthetic
piecewise surface. The piecewise surface has no discontinuity,
and is conformed by four connected regions defined by the
relations in (8). In each region, 100 points are randomly
sampled as the testing data points. From the testing data, the
variational Bayesian Gaussian mixture model is applied to
determine the cluster number (K = 4). An example of the
conforming clustered points are presented in Fig. 4, projected
on the x-y plane for clarity.

𝑧(𝑥, 𝑦) =

{

 sin𝑥

2cos 𝑦 − 2 ≤ 𝑥 ≤ 0,−2 ≤ 𝑦 ≤ 0

sin𝑥 cos 𝑦2 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑦 ≤ 2

sin𝑥2cos 𝑦2 − 2 ≤ 𝑥 ≤ 0, 0 ≤ 𝑦 ≤ 2

 sin𝑥 cos 𝑦 0 ≤ 𝑥 ≤ 2,−2 ≤ 𝑦 ≤ 0

 (8)

Figure 3. Synthetic surface for testing

Figure 4. Clustering (C) results for the synthetic surface using the
variational Bayesian Gaussian mixture model

The results do not exhibit a clear separation of the four
surfaces due to smooth transitioning. However, each cluster
contains most of the information of the underlying
functionalities in that region. Then, the four clusters of data
points are fitted separately using genetic programming. For
approximation purposes, the set of operators in this case is
selected as F = {+, ×} only, i.e. higher order polynomial fitting.
Table 1 shows the parameters of genetic programming, and it
is trained for 500 epochs. The four corresponding functions
after searching are

f1(x, y) = 0.1973 (4 x2 + x2 × (x + y) + x × (x2 × (x3 + 3 y) +
3 x + y × (3 x + y))) + 0.5612 (x5 + y) + 0.0145 x ̶ 0.5382 y +
0.06948;

f2(x, y) = 0.2358 (y × (x + y) + y + 3 x) + 0.00912 (((y3 + x
× y3) + y) × y4 + x × y) ̶ 0.1612 (3 y2 × (x + y) + 2 x) + 0.2303;

f3(x, y) = 0.9884 (x + y) + 0.1364 ((x2 × y2 + y) × x2 + x) +
0.3303 (x + x × y2 + x × (x + y) + (x + y) × y × x) ̶ 0.5539 (x4
+ x2 + 2 y + x × y) ̶ 1.4028 x ̶ 0.4925 ((x + y) × 2 x2 + x × y
+ x) + 0.1584;

f4(x, y) = 0.5201 x + 0.3603 (x × y + x) ̶ 0.1046 (y + (x +
y) × x2 + (x × y + y) × y) + 0.04176.

TABLE I. PARAMETERS OF GENETIC PROGRAMMING

Population size 40

Selection method Roulette wheel

Crossover method One point crossover

Mutation method Point mutation

Replacement method Elitist

Generation gap 0.8

Probability of crossover 0.7

Probability of mutation 0.5

Evaluation All individuals

Figure 5. Generated surface from the VEFIS model compared with the
reference surface

It is shown that the simpler function, e.g. for cluster 4, is
fitted with a simpler structure of functions, while the more
complex variations, e.g. in cluster 3, are captured by more
compound polynomial terms.

The generated surface based on the proposed VEFIS model
and the original synthetic surface are compared in Fig. 5. It is
shown that the highly varying characteristics of the different
regions are approximated relatively well by the simple fitting
technique based on the proposed scheme. This case study
serves as a simple demonstration of the proposed method. It is
noticed that, if ‘sin’ and ‘cos’ are included in the selected
function set, the precise original surface can be retrieved.

B. Compressor Map Estimation

The proposed model is now tested with real-world
industrial data – a gas turbine compressor map. Adequate
component maps, including the compressor map studied here,
are important for use in gas turbine performance modelling
and control [18]. Generally, engine tests can only produce
limited data due to control limit and cost constraints.
Estimation of the performance characteristics of the gas
turbine component, which can provide both interpolation and
extrapolation to complete the component maps, becomes
therefore important.

Polynomial fitting and artificial neural networks are
commonly used as compressor map prediction methods

[19][20]. A single polynomial was used to describe the entire
compressor map in [21]. Coefficients of different polynomials
on related characteristics were computed by using genetic
algorithms in [22]. And, different types of artificial neural
networks were used and compared for modeling compressor
maps in [23]. However, as mentioned in Sec. I, constraint of
the selected function structure, e.g. the polynomials, can result
in bias in the model prediction; and artificial neural networks
are of a black-box nature, which may lead to overfitting within
the known region, and significantly biased for extrapolation.

The data used in this paper are based on gas turbine
measurements from NASA, which are publicly accessible in
several reports [24]. There are ten speed lines, and each speed
line contains seven engine test data points, as shown in Fig. 6.
Based on the proposed method, first, the variational Bayesian
technique is applied to the 70 data points. In this case, the
determined cluster number K = 2, and the resultant clustered
points are presented in Fig. 7, projected on the input 1-2 space
for clarity.

To validate the proposed VEFIS model, the obtained
results are compared with the results obtained using the Matlab
ANFIS toolbox. For comparison purpose, the ANFIS model is
also designed with two Gaussian membership functions for
each input, and trained for 500 epochs.

Figure 6. Compressor map

Figure 7. Clustering (C) results for the compressor map

jrserran
Highlight
post stall

The parameters of genetic programming are the same as
listed in Table 1. The set of operators in this case is set to be
F = {+, ̶ , ×, /, log}, where ‘/’ and ‘log’ are protected for
numerical stability. The genetic programming is trained for the
same number of epochs as before, i.e. 500.

The VEFIS output functions are:

f1(x, y) = 0.3436 (x ̶ 2 y × y / x) ̶ 0.3642 (x ̶ y) ̶ 0.06184

(y / x + y) + 0.6077 ;

f2(x, y) = ̶ 0.05123 ((1 / y) ̶ (x + 2 y)) ̶ 0.000434 (x × x

× log(y) / log(x)) + 0.002168 (y × y) ̶ 0.1826 y + 0.4726.

And the ANFIS output functions are:

f1(x, y) = 0.003207 x + 0.03015 y + 0.2312;

f2 (x, y) = ̶ 0.0163 x + 0.0304 y + 1.193,

where x and y are the two inputs, mass flow rate and pressure
ratio, separately. The optimized structures of functions based
on genetic programming are more complex than those
obtained by linear regression or polynomial fitting.

According to the results, the root-mean-square error based
on the ANFIS is 0.0101, and the root-mean-square error based
on the VEFIS is 0.0078, compared with the original 70 data
points. The model prediction results are displayed in Fig. 8. It
is shown that the VEFIS method captures better the nonlinear
characteristics of the compressor map, especially for the low-
speed lines, where usually the dynamics are more difficult to
model with normal thermodynamics formulas, because their
average behavior is more affected by perturbations.

The membership functions for the two inputs after ANFIS
tuning and those based on the VEFIS method are illustrated in
Fig. 9, where it is shown that, in both models, the fuzzy sets
for Input 1 are similar, but they are significantly different for
Input 2 in this case study. The VEFIS puts more weight on
fitting low pressure ratio values, which correspond to low
speed lines, justifying the results in Fig. 8 also.

Figure 8. Model prediction results based on the proposed VEFIS method,
compared with the original data and those from the ANFIS model

Figure 9. Gaussian membership functions for Input 1: mass flow rate and
for Input 2: pressure ratio based on ANFIS and VEFIS models

The generated surfaces from the VEFIS model and from
the ANFIS model are compared in Fig. 10. It is shown that the
VEFIS model better represents the relations at lower speeds,
in agreement with the results in Fig. 8. The compressor map
estimation from Fig. 10(a) is qualitatively in agreement with
the surface generated from a 4th order polynomial fitting of the
compressor maps in [25]. This can provide a more accurate
extrapolation capacity where the performance beyond stall and
choke lines - on each side - has dropped significantly as
compared with real conditions, which the ANFIS model could
not capture as well (Fig. 10(b)).

IV. CONCLUSION

This paper has proposed a system modeling approach,

based on a TSK fuzzy inference system framework, integrated

with variational Bayesian Gaussian mixture model and

genetic programming techniques. The variational Bayesian

method is used to perform automatic Gaussian mixture

clustering, which simultaneously gives the number of rules

(clusters) and the fuzzy sets for the input variables (according

to the centers and standard deviations of the Gaussian

mixtures), so that the redundant rules have been disregarded

since the initial clustering stage. Then, for each rule, the

consequent functions are extracted using a hybrid genetic

programming-orthogonal least squares method. This provides

a more flexible solution when the characteristics of the system

are difficult to model using the conventional linear functions

such as those in the ANFIS model. Finally, the TSK fuzzy

system is built to provide smooth transitions across different

regions. The proposed modelling technique is tested with a

synthetic surface, and then with an industrial compressor map

case, where only small data are available. It has shown

comparable performance to the well-known ANFIS model for

the tested case. In future work, an integrated optimization

strategy will be investigated for the proposed VEFIS

framework, to take into consideration the coupled effect

between each of the training stages – i.e. by fitting all the

VEFIS parameters simultaneously.

(a)

(b)

Figure 10. Generated surface from (a) the VEFIS model and (b) the ANFIS
model based on the compressor map data

REFERENCES

[1] J. Haugeland, Artificial Intelligence: The Very Idea. MIT Press,
Cambridge, MA, 1985.

[2] H. Prade, “Reasoning with data - a new challenge for AI?” In Proc. Int.
Conf. Scalable Uncertainty Management, Nice, France, 2016.

[3] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy
Sets and Systems, vol. 1, pp. 3–28, 1978.

[4] U. Mönks, D. Petker and V. Lohweg, “Fuzzy-pattern-classifier training
with small data sets,” In Proc. Int. Conf. Information Processing and

Management of Uncertainty in Knowledge-Based Systems, Dortmund,

Germany, 2010.

[5] Y. Zhang, J. Chen, C. Bingham and M. Mahfouf, “A new adaptive

Mamdani-type fuzzy modeling strategy for industrial gas turbines,” In
Proc. IEEE Int. Conf. Fuzzy Systems, Beijing, China, 2014.

[6] C. Li, W. Zou, N. Zhang and X. Lai, “An evolving T–S fuzzy model
identification approach based on a special membership function and its

application on pump-turbine governing system,” Engineering

Applications of Artificial Intelligence, vol. 69, pp. 93-103, 2018.

[7] S. S. Sahoo, C. H. Lampert and G. Martius. “Learning equations for

extrapolation and control,” In Proc. 35th Int. Conf. Machine Learning,

Stockholm, Sweden, 2018.

[8] C. Tzimopoulos, L. Mpallas and C. Evangelides, “Fuzzy model

comparison to extrapolate rainfall data,” J. Environmental Science and
Technology, vol. 1, pp. 214-224, 2008.

[9] E.H. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller,” Int. J. Man-Machine Studies, vol. 7, no.

1, pp. 1-13, 1975.

[10] M. Sugeno and G. Kang, “Structure identification of fuzzy model,”
Fuzzy Sets and Systems, vol. 28, pp.329-346, 1986.

[11] J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor:
Univ. of Michigan Press, 1975.

[12] J. R. Koza, Genetic Programming – on the Programming of Computers
by means of Natural Selection. Cambridge MA, USA: The MIT Press.

1992.

[13] A. Bastian, “Identifying fuzzy models utilizing genetic programming,”

Fuzzy Sets and Systems, vol. 113, no. 3, pp. 333-350, 2000.

[14] J. Madár, J. Abonyi and F. Szeifert, “Genetic programming for the
identification of nonlinear input−output models,” Industrial &

Engineering Chemistry Research, vol. 44, no. 9, pp. 3178-3186, 2005.

[15] J.S.R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,”
IEEE Trans. Systems, Man and Cybernetics, vol. 23, no. 3, pp. 665–

685, 1993.

[16] Y. Zhang, M. Martinez-Garcia and A. Latimer, “Estimating gas turbine

compressor discharge temperature using Bayesian neuro-fuzzy
modelling,” In Proc. IEEE Int. Conf. Systems, Man and Cybernetics,

Banff, Canada, 2017.

[17] A. Corduneanu and C.M. Bishop, “Variational Bayesian model
selection for mixture distributions,” In Proc. 8th Int. Conf. Artificial

Intelligence and Statistics, pp. 27-34, 2001.

[18] A. Chaibakhsh and S. Amirkhani, “A simulation model for transient

behaviour of heavy-duty gas turbines,” Applied Thermal Engineering,

vol. 132, pp. 115-127, 2018.

[19] M. Zagorowska and N. F. Thornhill, “Compressor map approximation

using Chebyshev polynomials,” In Proc. IEEE 25th Mediter. Conf.
Control and Automation, pp. 864-869, Malta, 2017.

[20] E. Tsoutsanis, N. Meskin, M. Benammar and K. Khorasani, “A
component map tuning method for performance prediction and

diagnostics of gas turbine compressors,” Applied Energy, vol. 135, pp.

572-585, 2014.

[21] F. K. Moore and E. M. Greitzer, “A theory of post-stall transients in

axial compression systems: Part I—development of equations,” J. Eng.

Gas Turbines Power, vol. 108, pp. 68–76, 1986.

[22] C. D. Kong, S. Kho and J. Y. Ki, “Component map generation of a gas

turbine using genetic algorithms,” J. Eng. Gas Turbines Power, vol.
128, no. 1, pp. 92–96, 2006.

[23] K. Ghorbanian and M. Gholamrezaei, “An artificial neural network
approach to compressor performance prediction,” J. Appl. Energy, vol.

86, no. 7, pp. 1210–1221, 2009.

[24] G. L. Converse, and R. G. Giffin, “Extended parametric representation
of compressor fans and turbines,” CMGEN User’s Manual, NASA–CR–

174645, vol. 1, 1984.

[25] H. Tu and H. Chen, “Modeling of a compressor's performance map by

fitting function methodology,” Advanced Materials Research, vol. 779-

780, pp. 1194-1198, 2013.

