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ABSTRACT   

This paper combines such powerful non-destructive technique as ground penetrating radar (GPR) with intelligent data 

analysis in order to acquire new knowledge on mapping/monitoring/verification systems aimed at initially facilitating the 

evaluation of the health of the buried assets of water distribution system (WDS) infrastructures in urban areas. Pre-

processing techniques based on a multi-agent approach coupled with a suitable analysis of the properties of the obtained 

groups of objects found, as well as a classification supported by machine learning techniques, are presented in this work. 

The work is based on GPR image studies conducted under controlled laboratory conditions using a commercial antenna. 

The buried objects correspond to pipes of various materials commonly used in WDSs. Furthermore, GPR images of various 

pipes either empty or full of water, as well as leaking water, are also included in the dataset of the study. The dataset is 

divided into two subsets that pursue: 1) the development of the methodology; i.e. capturing objects in GPR images to 

favour the feature extraction process, and 2) the evaluation of the feasibility of implementation of the proposed 

classification, as well as the response of the methodology to various environmental interactions recorded in the images. 

The results of this work are promising in the sense of promoting the inclusion of powerful tools such as GPR towards the 

provision of smarter tools that adequately support technical management in WDSs, and, eventually, that of other 

surrounding infrastructure(s). 

Keywords: Ground penetrating radar, semi-autonomous/autonomous GPR image interpretation, intelligent data analysis, 

water distribution systems, water leakage. 

 

1. INTRODUCTION  

Water leaks are a major concern in water distribution systems (WDSs). This comes from the fact that appropriate 

control/monitoring of those undesired events can ensure sustainability and efficient use of water resources in the system. 

Accordingly, there is an urgent need to improve effective detection of water leaks in WDSs. Three aspects are essential in 

the detection of water leaks in the urban infrastructure of a WDS: 1) the detection of the leak itself, 2) the assessment of 

the pipe leaking, and 3) the evaluation of the surrounding infrastructure(s). These three aspects are essential for an adequate 

knowledge of the urban infrastructure assets that allows actions to be undertaken in order to remedy water losses. This is 

possible because non-destructive methods are powerful tools that may provide WDSs with reliable and affordable 

information about the health of their assets.  

The ground penetrating radar (GPR) is of particular interest for this work due to its demonstrated capacity for effective 

data collection of buried assets not only in water infrastructures but also in the health evaluation of other related 

infrastructures e.g. transport infrastructures[1],[2]. This derives from the versatility of the GPR for subsoil inspection, and 

identification/monitoring of buried assets with varied characteristics, compared to other non-destructive methods (for 

example, identification of plastic pipes in WDSs). The use of GPR for leak detection is well established in the literature 

(e.g. De Coster et al.[3]; Amran et al.[4]; Ocaña-Levario et al.[5]; Ayala-Cabrera et al.[6]), and is motivated by its 

characteristics as a non-destructive geophysical method that allows to evaluate both non-metallic and metallic objects and 

soil materials. 
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Hyperbolas are the most common shapes obtained in GPR images from subsurface surveying[7]. Consequently, hyperbola 

characterization is among the most common object identification strategies in GPR studies. However, the first reflector 

eventually provides limited information about the target object[8]. This is due to the fact that sometimes more than one pair 

of reflections may appear for the same initial reflector, from which multiple interpretations for the same image may be 

obtained[9]. The interpretation of the GPR images is commonly conducted by expert personnel, thus limiting its potential 

for use. The difficulty in interpreting GPR images, added to human error, and the huge amount of information generated 

hinder the extensibility of the use of this type of tools. In this context, an appropriate interpretation of the data obtained by 

non-destructive methods seems to be an essential requirement. This work tackles, as a key factor, some interpretability 

enhancement of GPR images to evaluate WDS assets. The aim is to advance towards the generation of semi-

autonomous/autonomous identification and characterization tools ready to be used by non-expert operators in GPR image 

interpretation. To this end, the methodology proposed in this paper analyses images from subsoil surveys obtained by using 

GPR methods, and generates a classification of the objects embedded into the GPR images. The proposed classification 

uses pre-processing techniques based on a multi-agent-based approach and is complemented by the analysis of the 

properties of the obtained groups (e.g. area, centroid, perimeter). Afterwards, a classification of the selected property via 

machine learning techniques is carried out. The work is based on GPR image studies conducted under controlled laboratory 

conditions using a commercial antenna. The buried objects correspond to pipes of various materials commonly used in 

WDSs. Furthermore, GPR images from various pipes, either empty or full of water, as well as leaking water, are also 

included in the dataset of the study. The dataset is divided into two subsets that pursue: 1) the development of the 

methodology; i.e. capturing objects in GPR images to favour the feature extraction process, and 2) the evaluation of the 

feasibility of implementation of the proposed classification; as well as the response of the methodology to various 

environmental interactions recorded in the images.  

 

2. METHODS 

Let us understand the GPR radargram (𝐴) as a set 𝐴𝑓 formed by the triple {𝑔, 𝑓𝑙, 𝑟} of groups (families) as in Ayala-

Cabrera[10]. Where 𝑔 corresponds to the families of objects embedded into the images, 𝑓𝑙 to the medium and 𝑟 represents 

the noise. In GPR object detection, 𝑓𝑙 and r are commonly predominant families that make successfully identification of 

𝑔 families difficult. To cope with this situation, this work is focused on removal of both families (i.e. 𝑓𝑙 and 𝑟), while the 

𝑔 families are preserved in the final output. The removal of these families supports further processes for successful 

detection of GPR objects by means of reducing the dimensionality of the problem, as we can see throughout the document. 

This analysis approach was first proposed in Ayala-Cabrera et al.[11] and is improved here with the inclusion of new data 

for the training of the classifier, and their results are also extended for the water leakage problem.  

2.1 GPR image pre-processing 

Remotion of straight horizontal lines – Agent race pre-process. The 𝐴 matrix (size of 𝑚 × 𝑛) that represents the initial 

raw GPR image in this paper, is a stack of sequential 𝑛 traces captured (represented as 𝑚-vectors, 𝑋𝑗 with 𝑗 = 1, … , 𝑛) in 

depth which contains the electromagnetic properties of the underground prospected: 𝐴 = [𝑋1, … , 𝑋𝑛]. The analysis of each 

𝑛 trace may be conducted either in a vertical (i.e. through the columns) or in a horizontal manner (i.e. trough the rows) of 

matrix 𝐴. The selection of the direction of the analysis can provide different perspectives of the problem that can be useful 

for its solution. 

Breaking the space. To break the image space in order to form the families, the algorithm agent race[12] was used and the 

analysis was conducted horizontally. The output of this algorithm, which is an array (𝑚1 × 𝑛; with 𝑚1 the total 

movements for the competition) that contains either the vertical position of the peaks (output 1) or the wave amplitude 

value (output 2) for each agent movements is used herein to build the matrix, of size (𝑚 × 𝑛), that we denoted as 𝐴𝑝𝑟𝑒 

(when the competition was developed in the columns as parallel tracks to run). 

The rules applied to build 𝐴𝑝𝑟𝑒 are: for positions from output 1 (for each column) whose respective values in output 2 

follow the relationships: output 2previous < output 2current are labelled as 1, if output 2previous > output 2current as -1, and 

otherwise as 0 in 𝐴𝑝𝑟𝑒. The "previous" and "current" subscripts represent the position in each column of output (output 1 

or output 2), and lies from 1 to 𝑚1 − 1 and from 2 to 𝑚1; respectively. In such a manner, 𝐴𝑝𝑟𝑒 presents each trace 

characterised when the monotonically tendency is increasing as 1, is decreasing as -1 and, for the proper peaks and errors 

(e.g. clipped waves) as 0.  
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As mentioned above, the analysis in this paper was developed in a horizontal manner. To do this, before applying the agent 

race algorithm, matrix 𝐴 is transposed, so that the described rules to build 𝐴𝑝𝑟𝑒 are applied to the new columns. After the 

agent competition, 𝐴𝑝𝑟𝑒 is transposed again with which the matrix 𝐴𝑝𝑟𝑒𝑟𝑜𝑤 is obtained. In this matrix the agents perform 

the competition through rows, as parallel tracks, instead of through columns, as usual. 

GPR pre-processing – Generation of families.  

In order to generate the families for two different points of view, two matrices (both with size 𝑚 × 𝑛) are generated from 

𝐴𝑝𝑟𝑒𝑟𝑜𝑤 that contain the monotonic tendency to increase (denoted as 𝑈) and decrease (denoted as 𝐷) of the wave amplitude 

value with respect to the traces of the neighbors. Each element of 𝑈 and 𝐷 matrices is labeled as 1, if its corresponding 

value in 𝐴𝑝𝑟𝑒𝑟𝑜𝑤 is 1 or 0 for 𝑈 matrix, and -1 or 0 for 𝐷 matrix. In both matrices the label 0 for each element corresponds 

to the remaining value of 𝐴𝑝𝑟𝑒𝑟𝑜𝑤 (i.e. 𝐴𝑝𝑟𝑒𝑟𝑜𝑤 = -1 for 𝑈, and 𝐴𝑝𝑟𝑒𝑟𝑜𝑤 = 1 for 𝐷). 

For families’ extraction from 𝑈 and 𝐷 matrices the Matlab’s bwboundaries function was used. In-depth details of the 

algorithm Moore-Neighbour tracing algorithm modified with the Jacob’s stopping criteria that supports this function can 

be find in Gonzales et al.[13]. It is possible to obtain the properties of the groups found (e.g. area, centroid, perimeter, 

eccentricity, among others) in a vector 𝑉, e.g. 𝑉(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑋𝑐, 𝑌𝑐), and it is in the analysis of these properties for each 

group that the GPR image cleaning process (classification and removal of the families 𝑔) is based. 

Dataset and data labelling. The dataset used in this document for the training purposes consists of GPR tests of the pipes 

commonly used in WDSs (asbestos cement, cast iron, polyethylene and polyvinyl chloride (PVC)) of different materials 

and at different depths (from 10.5cm to 62cm) buried in a laboratory setup. The central antenna frequency corresponds to 

1.5GHz.  

In this paper we use a thresholding for the value for the area property of the groups in order to efficiently label some 

families of objects as 1 and others as 0: specifically, when the value of the area of the group obtained is below the threshold, 

the group is labelled as 0, and 1 otherwise. The threshold used corresponds to the value of 2568 (samples × trace) and was 

obtained by the average values for the groups formed by the GPR test without embedded objects (56308 groups in total). 

A total of 424271 groups were obtained with these tests, of which 1259 were labelled as object families and used for the 

classification. In addition, it should be mentioned that the number of traces obtained varies from 214 to 294 samples/image. 

However, additional criteria to refine the initial classification for the training of the removal process (and eventually for 

further classification) in order to extract and/or characterise the families of objects could be the uses or contrast images as 

in Ayala-Cabrera et al.[14] or Ocaña-Levario et al.[5] or even manual classifications as previously conducted. 

Based in the observations Ayala-Cabrera et al.[11] proposed a change of space for the 𝑋𝑐 component of the group property 

of the centroid. 

This variant in the variable proposes the generation of a vector denoted as 𝑋𝑚𝑢𝑙 that is constructed from the values of 𝑋𝑐. 

Based in the positions for 𝑋𝑐 for this property in 𝑉, and with the help of the agent race algorithm a comparison vector with 

𝑋𝑐 is constructed, that is, {𝑋𝑐 −  𝑋𝑚𝑢𝑙}. This variation not only facilitates the extraction of the patterns but also increases 

their quality by considering the peaks obtained in the data series; and, as a result, 𝑋𝑐 goes from being a value to being a 

value compared to a trend. 

2.2 GPR image cleaning process – Features extraction 

For the cleaning process and in order to extract the families of objects, in this section we use a classification performed by 

a perceptron neural network. The perceptron is the simplest structure for neural networks in pattern classification 

problems[15].  

The formulation for the perceptron in this paper (Equation 1) takes the initial values of the properties of the groups obtained 

(or a pre-processed values of them i.e. {𝑋𝑐 − 𝑋𝑚𝑢𝑙}), as a set of predictors (in a vector form) 𝑉𝑖, with 𝑖 = 1, … , 𝑛𝑝𝑟𝑜, in 

order to provide the prediction in a vector of classes (𝐶𝑙𝑎𝑠𝑃𝑅). 

The total number of predictors (𝑛𝑝𝑟𝑜) used may vary according to the complexity of the patterns into the predictors used, 

in this case we have used as a predictor the change of the space proposed in Section 2.1., for 𝑋𝑐, i.e. {𝑋𝑐 − 𝑋𝑚𝑢𝑙}; 𝑤0 y 

𝑤𝑖  represents the bias and weights obtained in the train process in order to make the prediction, respectively. 
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 𝐶𝑙𝑎𝑠𝑃𝑅 = 𝑤0 + ∑ 𝑉𝑖𝑤𝑖

𝑛𝑝𝑟𝑜

𝑖=1

  , (1) 

The mean square error (MSE) function (Equation 2) is used to compare the classes obtained in the prediction (𝐶𝑙𝑎𝑠𝑃𝑅) and 

the expected classes (𝐶𝑙𝑎𝑠𝐸𝑋) for each group (𝑘 = 1, … , 𝑛𝑝) for all the groups used (𝑛𝑝). This function allows to obtain a 

unique value (𝑒𝑟𝑟𝑜𝑟) in order to estimate the success in the prediction performed (quality of prediction). 

 
𝑒𝑟𝑟𝑜𝑟 ≡ ∑[𝑒(𝑘)]

2

𝑛𝑝

𝑘=1

= ∑[𝐶𝑙𝑎𝑠𝑃𝑅
(𝑘)

− 𝐶𝑙𝑎𝑠𝐸𝑋
(𝑘)

]
2

𝑛𝑝

𝑘=1

  . 

 

(2) 

 

3. CASE STUDY – WATER LEAKAGE EXAMPLE  

In this section we have used the data from a simulated leak presented in Ayala-Cabrera et al.[6] in order to compare the 

results of the prediction. The database consists of captures of GPR images of a plastic pipe buried in a laboratory tank 

(Figure 1) while leaking water. One of the analysis conducted in that work consisted of the image-by-image contrast 

between the configuration when the system is not leaking (initial state) and leaking (final state), i.e. contrast method. Based 

on the results of the contrasts obtained, this section evaluates the effectiveness of the cleaning process described above in 

water leakage.  

It should be mentioned that this dataset has not been used in the training of the neural network perceptron. Furthermore, 

the parameters of the equipment differ from the data used for training. Here we have used a parameter setting of 

512samples/trace and 20𝜂s/512 samples, instead of 2048 samples / trace and 10𝜂s/2048samples for the training. 

 

Figure 1. Setup for water leak capture using GPR in a laboratory tank. 

Figure 2 and Figure 4 present the results of the image cleaning process, for profiles from P1 to P11 and from P12 to P22; 

respectively. Figure 3 and Figure 5 shows the results of the contrast method for the profiles between P1 to P11 and P12 to 

P22; respectively. In the images presented in Figure 2 and Figure 4, a resizing of each image in distance (i.e. abscissa axis) 

was not carried out. This is in order to evaluate the effectiveness of the method described in this paper on images without 

any previous treatment. Nevertheless, on the abscissa axes for each image an orientation distance is presented based on the 

identification of the tank walls for the initial and final abscissae (0.0m and 1.0m, respectively) for both Figure 2 and Figure 

4. Similarly, an intermediate point has been set for the images in both Figure 2 (based on the centre of the pipe i.e. 0.6m) 

and Figure 4 (based on the crossing of the reflections of the tank walls i.e. 0.5m).  
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Figure 2. Image cleaning process. (a-k) Profiles P1 to P11 of the classes predicted using perceptron neural network for GPR 

images when the system is leaking. 

 

Figure 3. Contrast method. (a-k) Profiles P1 to P11 of the contrast for GPR images when the system is leaking and not 

leaking. Adapted from Ayala-Cabrera et al.[6].  
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After the application of the cleaning process described in this work, Figure 2 and Figure 4 show a successful tendency to 

remove both the families 𝑓𝑙 (in particular straight horizontal lines) and the families 𝑟 (noise) from the initial GPR image. 

An example of these families’ removal can be observed by comparing the red arrow located in Figure 2(b) and Figure 3(b). 

In Figure 3(b), despite the image is the result of a comparison between states of the system (initial and final state of the 

system), the horizontal lines still persist in the result. 

In the case of reflections generated by the tank walls (see examples in Figure 2g and Figure 3g, red arrows), the removal 

is carried out more effectively in Figure 3 and Figure 5. This is due to the existence of these same reflections both in the 

image without leakage and with leakage cases. However, by considering that these reflections are properties of the wooden 

tank wall object (even if they are not the target object), it could be considered as successful the prediction obtained. The 

classification in such cases, could be referred to further and more specific classification processes, e.g. material 

classification, among others. The analysis of this type of vertical objects can be of interest in WDS due to the existence in 

real systems of components, that need to be characterised[16] (such as manholes, electrical boxes, basement walls, among 

others), which can be affected by the failure of the pipe through leaks of water. 

Based on the results obtained in Figure 3, we present in a red box the pipe that conducts the water for Figure 2 and Figure 

3. This box shows us the components of the system (with water) such as the vertical pipe inlet (inset a), the drilled pipe 

(insets from b to j), and the vertical pipe outlet (inset k) for both Figures. The prediction for these objects was considerably 

successful (Figure 2), since that it collects a number of the characteristics of the water pipe system obtained by means of 

the contrast method (Figure 3). In this sense, it should be noted the variety of shapes obtained with the prediction (and 

even with the contrast method), which go beyond the hyperbolas on which a considerable number of studies are based for 

the identification of pipes or subsurface components (e.g. Lei et al.[17]; Feng et al.[18]). The consideration of these 

characteristics may lead to more information regarding the health of the water pipes. 

In Figure 4e, f, g (see red box), the footprint of the water leaked from the pipe have been detected in a very similar way to 

that obtained by the contrast method (Figure 5e, f, g; see red box). The groups that make up the water leaks present a more 

defined structure, being more distinguishable than their respective results for the contrast method. Two additional groups 

are observed in profiles P12 and P22 which correspond to an unknown element are observed in Figure 4a and b (green 

box). These elements are not reflected in their respective images in the figure of the contrast method, therefore they are 

not attributed to the water footprint. 

 

Figure 4. Image cleaning process. (a-k) Profiles P12 to P22 of the classes predicted using perceptron neural network for 

GPR images when the system is leaking. 
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Figure 5. Contrast method. (a-k) Profiles P12 to P22 of the contrast for GPR images when the system is leaking and not 

leaking. Adapted from Ayala-Cabrera et al.[6].  

 

4. CONCLUSIONS  

This work presents a methodology based on multi-agent systems and classification using perceptron neural networks for 

the generation of the groups and their extraction from GPR images. The methodology is an easy-to-apply procedure that 

derives in the cleaning of the image, while the relevant characteristics of the target objects are preserved (in our case water 

leakage and pipe objects). The cleaning process was applied on a water leak dataset collected with a commercial GPR 

antenna in a laboratory setting. The results obtained for the objects extraction were also compared with a contrast method 

in order to validate de results. The validation showed promising results as similar results were obtained in terms of the 

quality of the extracted patterns for the analysed objects, without the need to use a reference image. In the same way, the 

patterns obtained are purer in terms of noise reduction, thus facilitating a more robust analysis process. The results of this 

study are promising in the sense that the classification of areas in GPR images allows the extraction of relevant 

characteristics of WDSs’ components, what enables to advance towards semi-autonomous/autonomous interpretation of 

those datasets, while reducing experts’ dependence in the interpretation of this information.  
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