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Abstract: In recent years, a significant increase in the number of extreme rains around the world
has been observed, which has caused an overpressure of urban drainage networks. The lack of
capacity to evacuate this excess water generates the need to rehabilitate drainage systems. There
are different rehabilitation methodologies that have proven their validity; one of the most used is
the heuristic approach. Within this approach, the use of genetic algorithms has stood out for its
robustness and effectiveness. However, the problem to be overcome by this approach is the large
space of solutions that algorithms must explore, affecting their efficiency. This work presents a
method of search space reduction applied to the rehabilitation of drainage networks. The method is
based on reducing the initially large search space to a smaller one that contains the optimal solution.
Through iterative processes, the search space is gradually reduced to define the final region. The
rehabilitation methodology contemplates the optimization of networks using the joint work of the
installation of storm tanks, replacement of pipes, and implementation of hydraulic control elements.
The optimization model presented uses a pseudo genetic algorithm connected to the SWMM model
through a toolkit. Optimization problems consider a large number of decision variables, and could
require a huge computational effort. For this reason, this work focuses on identifying the most
promising region of the search space to contain the optimal solution and to improve the efficiency of
the process. Finally, this method is applied in real networks to show its validity.

Keywords: genetic algorithm; search space reduction; rehabilitation; urban drainage networks; opti-
mization

1. Introduction

Drainage systems around the world have experienced an increase in operating pres-
sure in recent years. This is mainly due to the increase in the intensity of rains and urban
growth. According to many authors, extreme rains occur with increasing frequency around
the world, mainly due to climate change, and are the main factor of flooding in urban
basins [1–3]. On the other hand, anthropological action has altered the composition of the
world atmosphere; one of the most evident is produced by the development of urban space.
During the last few decades, cities have experienced a constant process of growth, which
has reduced the green areas that surround them, replacing them with highly impermeable
surfaces. These factors have led many cities to appreciate the increase in surface runoff,
and in many cases, the collapse of their drainage systems [4–6]. These problems make
it necessary to improve the functioning of the drainage networks to restore security to
the cities. Floods in urban areas generate significant economic impacts in cities. Concern
increases as cities are increasingly exposed to flood risk [7,8]. To face this problem, different
options for optimizing drainage networks have been developed.

One of the most prominent approaches is called low impact development (LID). LID
approaches have been widely used to minimize the flow of water produced by urban
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runoff, retaining the water and enhancing its infiltration. This type of approach also at-
tempts to improve water quality by removing pollutants in vegetation and restoring urban
ecosystems. Among the most used types of these systems are permeable paving, infiltration
trenches, vegetated swales, bio retention basins, and infiltration basins. However, although
LIDs are a valid solution to reduce runoff, these approaches do not have great resilience in
extreme rain events [9–12]. The use of storm tanks in an urban environment to reduce the
risk of flooding has been studied and proven as one of the most efficient methods to reduce
surface runoff [13–15]. Better results have been given by using the combination of storm
tank installation and pipe renewal [16,17]. The inclusion of hydraulic control elements [18]
appear as an improvement of these works, and turns out to be an alternative that improves
the results obtained.

To face the problem of floods, some authors improved the networks by taking as
a criterion the avoidance of floods in the study area [19], while other authors improved
the networks based on the flood volume [16,20]. Different methodologies have been
developed to address this problem. However, the need to find minimal cost designs has
led researchers to optimization algorithms. Different evolutionary techniques have been
tested for the optimization of drainage networks, highlighting an ant colony optimization
algorithm [21,22], simulated annealing [15,23], harmony search algorithm [24,25], and
taboo search algorithm [26]. All of these techniques show good results in different cases
studied. However, genetic algorithms that do not require continuity of the objective
function stand out in this field due to their robustness, and their use has gained popularity
in drainage network optimization work [10,16,17,27–30].

Genetic algorithms are stochastic search strategies based on natural selection mecha-
nisms, which involve aspects of biological evolution to solve optimization problems. One
characteristic of these types of algorithms is the way that they explore the space solution.
While other algorithms follow a single search direction, genetic algorithms perform par-
allel searches in different directions. This characteristic adds to their ability to explore
complex adaptive landscapes, and has made these algorithms a widely used tool in water
resources research.

However, one of the problems that most worries researchers is the difficulty that
genetic algorithms (GAs) can present in finding solutions close to the global optimum.
Kadu et al. [31] mentions that genetic algorithms are efficient and effective in finding low-
cost solutions in drainage system optimization problems. The efficiency and effectiveness
depend on several parameters, some that contemplate the parameters of the algorithm and
others of the space where the GA seeks the optimal solutions. The problem with the search
space (SS) occurs because of the large number of decision variables (DVs) that the algorithm
must analyze in a real-life problem. Handling a significant number of DVs causes the SS to
grow exponentially. This problem turns into a considerable computational demand to find
a satisfactory solution to the problem proposed. Although the computational advance can
compensate the time required in this operation, in reality, there are problems in which the
SS is so large that it becomes unapproachable. For this reason, the need arises to reduce
the SS. This reduction, however, must be done in such a way that the most promising
region that contains the best solutions is clearly identified. Maier et al. [32] mention that
a reduction in the size of the SS generally results in its approximation, either because a
series of DVs have to be fixed before optimization or because the nature of the interactions
between the DVs excludes the effective size reduction. This could potentially exclude the
region containing the global optimum, and thus reduce the quality of the solutions found.
For this reason, the reduction method must guarantee that the selected region is truly the
best, and that the best solutions to the problem are not excluded from it. To solve this
situation, different works have been carried out to effectively reduce the SS.

One of the first works was carried out by Schraudolph and Belew [33]. These authors
presented an approach based on dynamic parameter coding to adaptively control the
mapping of fixed-length chromosomes to real values, so that, at each iteration, the algorithm
searches a smaller SS. Ndiritu and T.M. Daniell [34] presented a modified GA combining
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a fine-tuning strategy to reduce the SS with a hill climbing strategy to move to more
promising regions. In recent research, Sophocleous, Savić, and Kapelan [35] presented a
model to detect and locate leaks in water distribution networks. The model employs two
stages: search space reduction, and leak detection and location. In the first stage, they
reduce the number of DVs and the range of values that they can take through an analysis of
the characteristics of the network. For the second stage, they used a GA to find the solution
to the problem. Simultaneously, Ngamalieu-Nengoue, Iglesias-Rey, and Martínez-Solano
presented a methodology to search space reduction (SSR) applied to a drainage network
rehabilitation model. The reduction of the SS is based on locating the possible nodes in
which storm tanks (STs) will be installed and subsequently identifying the possible pipes
that should be renewed. The process is carried out by reducing the number of DVs and
the range of values that they can adopt. In a later work Bayas-Jiménez et al. [18], they
used the same methodology to optimize drainage networks. The authors included in
the optimization process the use of hydraulic controls that certainly improved the results
obtained, but that considerably increased the SS. The proposed methodology continues
and complements these works with the aim of improving the efficiency of the optimization
process. Specifically, the method reduces the SS using the sectorization criteria to improve
calculation times and reduce the computational effort required. To achieve this, an SSR
method is applied in each hydraulic sector, decreasing the DVs and defining a final search
region. Once the region that is presumed to have the best solutions is delimited, a final
optimization is carried out to find the best possible solution. The method is applied to
different drainage networks to prove its benefits.

2. Materials and Methods
2.1. Problem Statement

This work consists of the rehabilitation of networks that present flood problems
due to lack of capacity. To improve the network, the renovation of pipes for others of
greater capacity, the installation of STs, and the installation of HCs were considered. In
the optimization model, the possible diameters of the pipes to be renewed, the volume of
the storage of the STs, and the degrees of opening of the control element were defined as
DVs. For use in the optimization model, they must be fully defined. The first type of DV
consists of all pipes in the network NC; each of these pipes can take a diameter value from
a previously defined list of options ND. If a DV takes the value of 0, it indicates that this
pipe does not need to increase its diameter, while a different value indicates that this pipe
was optimized by the optimization model. The group of optimized DVs is represented by
the notation ms. A second group of DVs consist of all nodes of the NN network where STs
can be installed. As these DVs represent the volume required by each ST, for the analysis,
the maximum height of the tank equal to the current height of the manhole is considered,
leaving the cross-sectional area of the tank as a variable. This DV can take values within an
options list NS defined in the discretization of the cross-sectional area of the tank. If, in the
optimization process, the value 0 is obtained for a DV, it must be understood that this node
does not require an ST to be installed. The set of nodes that requires STs to be installed
is represented by the notation ns. Finally, the third group of DVs consists of the decision
variables that determine the installation of HCs in the pipes. This group of DVs can take
values from a list of options Nθ that results from discretizing the degree of opening. The
value 0 indicates that the installation of an HC is not necessary. The group of optimized
DVs is represented by the notation ps.

2.2. Optimization Model

The optimization model in this article considered the methodology presented in a
previous work [18]. The model used as an optimization engine a modified genetic algorithm
called the pseudo genetic algorithm (PGA) [36]. Genetic algorithms are inspired by the
theory of evolution and natural selection. GAs work on a set of potential solutions called
the population. This population is composed of a series of solutions called individuals, and
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an individual is made up of a series of positions that represent each of the DVs involved in
the optimization processes, which are called chromosomes. These chromosomes are made
up of a string of numbers called coding. A traditional GA has a binary coding. In contrast,
the PGA used in this work has an integer coding. This coding has the advantage that each
gene represents a DV that gives good results in optimization of hydraulic problems. In a
GA, each individual is defined as a data structure that represents a possible solution of the
SS of the problem. Evolution strategies work on individuals, who represent solutions to
the problem, so they evolve through generations. Within the population, each individual
is differentiated according to their value of the objective function. To obtain the next
generations, new individuals are created using two basic evolution strategies, such as the
crossover operator and the mutation operator.

The PGA connects to the SWMM model [37] using a toolkit [38] to carry out a series
of simulations in order to find an optimal solution to the problem. To achieve this, the PGA
evaluates an objective function composed of four cost functions [18] that are determined
based on the results provided by the storm water management model (SWMM) in the
simulations carried out. This process is carried out iteratively until a defined stop criterion
is reached. Figure 1 summarizes the operation of the optimization model.
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This optimization process is iterative, and requires establishing an end point to the
process. GAs end the process when a high percentage of the population converges to a
value or a fixed number of evaluations that is determined by criteria, such as a maximum
number of generations or a maximum resolution time. In this work, the termination
criterion was based on the value of the objective function. When, after a certain number
of generations (Gmax), the OF does not decrease, the algorithm stops. At that time, it is
understood that the solution will not improve, and the process ends.

2.2.1. Objective Function

The optimization problem aims to minimize the costs associated with flood damage
with as little investment as possible. According to this, an objective function is established
that evaluates the problem in economic terms. This objective function consists of four cost
functions. The first function corresponds to the cost of the renewal of pipes that must be
replaced due to the lack of capacity. This function is established from actual cost data
provided by pipe manufacturers. The function relates the cost of the pipe to its diameter.
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In addition, it includes the coefficients α and β to adjust the cost according to the place
where the methodology is applied.

CD(Di) =
(

∝ Di + β Di
2
)

Li (1)

In Equation (1), Di is the diameter of the pipe, Li is the length of the pipe, and the
coefficients α and β are adjustment coefficients selected for a specific project.

The second term corresponds to the cost of installing STs that would be required
to temporarily store the water that the network is not able to evacuate in the event of
extreme rain.

CV(Vi) = Cmin + Cvar Vi
ω (2)

The first term of Equation (2) represents a minimum cost (Cmin) established for the
construction of the STs, while the second term is a variable as a function of the required
storage volume (Vi) affected by a constant Cvar and an exponentω.

The third term of the objective function represents the cost of installing HC elements
in certain pipes at the outlet of STs. This function is established from actual gate valve
cost data.

CC(Di) = γDi + µDi
2 (3)

In Equation (3), Di is the diameter of the pipe, and the coefficients γ and µ are used to
adjust the cost of the HC elements to the place where the methodology is applied.

Finally, an equation must be defined that presents the cost of flood damage; this
function depends on the level reached by the water yi. The definition of this cost is based
on the work done by Ngamalieu-Nengoue et al. [16]. The authors combined this curve
with the costs of flooding per square meter for different land uses. In Equation (4), from
1.40 m of flooding, the damage is considered irreparable and, therefore, the function stops
growing, and the cost will reach its maximum (Cmax). Then, a constant ymax equal to 1.40 m
is established.

Cy(yi) = Cmax

(
1 − e−λ

yi
ymax

)r
(4)

These four cost functions define the objective function (Equation (5)) that the opti-
mization model will seek to decrease to reach the best solution.

OF =
ms

∑
i=1

CD(Di) +
ns

∑
i=1

CV(Vi) +
ps

∑
i=1

CCv (Di) +
NN

∑
i=1

Cy(yi) (5)

2.2.2. PGA Parameters

For an adequate work of the algorithm, a suitable population size must be defined,
so that, on the one hand, the SS of the analyzed scenario is adequately covered and,
on the other hand, it does not demand excessive computational effort. An expression
(Equation (6)) is defined to face the problem efficiently. The equation was presented in a
work developed by Mora-Melia et al. [36].

N = ϕ NDV (6)

where N represents the population, NDV represents the number of DVs, and φ is a constant
with a value equal to 2. To give the model an element of diversity, a mutation probability is
defined, which is established in Equation (7) by Mora-Melia et al. in a previous work [36].

Pmut =
δ

NDV
(7)

where δ is a constant with a value equal to 1.
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The optimization model uses a stop criterion Gmax presented by Bayas-Jiménez et al. [18]
and shown in Equation (8).

Gmax =
log(1 − Pe)

log(1 − PO)
(8)

where Pe is called the probability of success, which is defined according to the requirement
of the calculation to be performed. After several runs, the authors have concluded that a
value of Pe of 80% is needed to guarantee a change due to mutation, however, in this work,
different percentages were used according to the different scenarios proposed. Finally, PO
is the probability of occurrence that is determined using Equation (9).

PO = Pmut (1 − Pmut)
NDV−1 1

Xmax
(9)

where NDV is the number of DVs that have been analyzed, Xmax is the maximum number
of discretization options for the DVs, and Pmut is the mutation probability.

2.3. Search Space Reduction Process

Transforming the SS from continuous to discrete inherently leads to a problem. If the
discretization is small, that is, the number of options that the DV can take is small, then the
space exploration may not be efficient, and the algorithm may not be able to identify an
optimal solution. On the other hand, if the discretization is very refined, the list of options
that the DV can take would notably increase the SS, and the computational effort required
would be considerable. The SS is defined considering the DVs and the values that these
can adopt; an expression is then defined (Equation (10)) that allows us to know the size of
SS that the algorithm must explore in each proposed scenario.

SS = ni (log ND) + mi (log NS) + pi (log Nθ) (10)

where ni represents the candidate pipes to be renewed, mi represents the candidate nodes
to install STs, and pi represents the candidate pipes to install HCs in a defined scenario.
The equation is presented in logarithmic form with the aim that the SS can be appreciated
in a better way.

2.3.1. Reduction by Hydraulic Sectors

Equations (6)–(9) show the importance of the problem size to define the genetic
operators. This is one of the main reasons why the SSR is a useful tool when facing
problems from a heuristic approach. In the case of large drainage networks, the large
number of DVs becomes an important problem. This high number of DVs demands
significant computational effort. The drainage networks consist of branches that serve
different sub-catchments, and their runoff flows are added to the network, discharging
their waters to a bigger pipe. In other words, the network can be seen as a set of hydraulic
sectors (HSs). If these sectors can be identified, a particular analysis of them can be
carried out to reduce the number of DVs within the sector and consequently reduce the
SS. The optimization process begins by identifying the HSs that composed the network.
The optimization model is configured to include the DVs that composed the HS to be
optimized. The SSR method is applied to each HS, thereby defining a smaller search region
in each HS. Once the SSR process has been carried out for every HS, a new scenario of
the network is assembled, where the least prominent regions containing the best solutions
have been eliminated. The SSR method is applied to this new scenario to eliminate the least
interesting sectors of the new network scenario. Figure 2 illustrates how the application of
the sectorized SSR method would work.
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2.3.2. Reduction in the Number of Options

This implies that the quality of a determined solution depends on the time available.
If the quality of the solution is not significant for a particular problem, calculation times
can be minimized by defining a short list of options. In contrast, a higher quality solution
requires a list of options where the separation interval in the discretization is short. It is
evident, then, that the value of this separation in the discretization has a preponderant
importance in obtaining the result. It can be said that, in an iterative process, such as
optimization with genetic algorithms, the quality of the solution will improve if the size of
separation used to discretize the DVs is progressively decreased. In this work, two lists
of discretization options were determined for each type of DV, one called coarse and the
other much refined (Figure 4). These two types of discretization have been determined
ensuring that the separation interval allows a good exploration of the SS. Certainly, the
coarse options list has a large separation, and it includes separate points, but these points
cover the entire SS.
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In the case of pipes, as it is a type of discrete variable, the refined options list NDmax
corresponded to all pipe diameters available on the market. On the other hand, the coarse
options list ND0 was set in such a way that it considered the diameters differentiated and
conveniently separated to cover different available ranges that allowed the PGA to make
the change of diameter values in the optimization process.

In the case of the DVs that analyzed the nodes where the installation of STs was
required, the discretization was performed by dividing the maximum surface into equal
intervals. The spacing fixed to discretize the area is called ∆S. Equation (11) was used to
calculated ∆S.

∆S =
Smax

NS
(11)

where Smax is the maximum area available. In this way, the refined options list N Smax
consisted of 40 values, and the coarse options list NS0 consisted of 10 values. The area of
each ST is calculated by Equation (12).

Si = ∆S · Xi (12)

where Si is the area of each ST and Xi is the value that the DV takes from the options list.
The volume of each ST is calculated by Equation (13).

Vi = hi· Si (13)

where Vi is the volume of the ST and hi is the invert elevation of the ST.
The discretization of the HC opening positions was set according to the valve travel

curve presented in Figure 5 and defined in a previous work [18].
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Figure 5. Valve travel of a gate valve and Nθ values for HCs.

To determine the separation interval in the discretization that covers the entire SS, the
head loss coefficients (k) are expressed on a logarithmic scale. Consequently, 10 opening
positions have been set that allow a good diversity of opening options that composed the
options list Nθ for this type of DV. HC is not part of the SSR process, so a coarse options
list was not defined for its analysis. Figure 4 shows the Nθ values with the value that each
gene represents.

Using a coarse options list obtained a lower quality solution, but the time spent
searching for the solution was less. If the chromosome obtained in a low-quality solution
is analyzed, it would be observed that it is composed of a chain of genes; each gene
represents a value designated to a DV. If a gene has the value 0, it indicates that, in the
optimization process, this DV does not require changing its initial condition. If this scenario
is repeated in a new calculation, it may be thought that this decision variable does not
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need to be optimized, and excluding it from the analysis could be considered, reducing
the number of DVs and consequently reducing the SS. This procedure is the base of the SS
reduction methodology, where sequentially it is sought to eliminate DVs that do not require
optimization, keeping the DVs that compose the region that contains the best solutions.

2.3.3. Reduction in the Number of Decision Variables

The process of SSR has as a first step a mapping with the optimization model of
the entire SS and the decision variables of STs, and pipes are analyzed by the algorithm
using a list of options with coarse discretization. The use of a coarse options list allows
the identification of the DVs that may be included in the most promising region of the
algorithm’s exploration space. For this, a certain number of evaluations Nit is established,
and from the results obtained the fifth percentile (P5) of the solutions is selected. In the
selected P5, each chromosome is analyzed, quantifying how many genes different from
0, called valid genes, have been obtained for each DV. If a DV does not have at least 20%
valid genes, it is assumed that this DV is not part of the promising region of the SS, and it is
eliminated from the new SS. If, on the contrary, a DV presents a high repeatability of valid
genes, it is considered a candidate to be contained in the most promising search region.
The percentage of 20% is then established as the criterion for the selection of variables to
be considered in the SS. Figure 6 shows an example of how the selection criteria work in
the SSR.
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The process is repeated in the new defined region, eliminating the DVs that do not
meet the selection criteria. In each iteration of the process, the convergence of the results
towards certain DVs whose repeatability in the sampling increases, each time defining
the region with the best solutions. The process ends when all variables meet the selection
criteria, and the SS cannot be further reduced. In the SSR process, Pe is set at 20%. This
percentage is used to find solutions without demanding a lot of calculation time. The
reason why a Pe of 20% is used is because, in this process, it is not a goal to find the final
solution, but to eliminate DVs to reduce the SS.

2.4. Final Optimization

Once the final search region is defined, the final optimization is performed in this
new scenario. The refined options list for pipes, NDmax, and the refined options list for
STs, NSmax, are used in this optimization. At this stage, the HCs are also included in the
optimization model, so the options list Nθ is also used. With the optimization model
configured in this way, a much finer exploration of the reduced space is intended, since it
is assumed that the global optimum is found in this region. With this objective in addition,
a much more demanding stopping criterion is used with a Pe equal to 80%. It should also
be noted that the value of Xmax in Equation (8) increases because the refined discretization
is used. With the Gmax defined in this way, the model is expected to demand a higher
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computational effort. However, with the objective of finding the closest solution to the
optimal solution, this effort is justified. The proposed optimization process is summarized
in Figure 7.
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2.5. Application of the Model
2.5.1. E-Chico Network

To apply the methodology, the E-Chico network located in the city of Bogotá, Colom-
bia was selected. This network has 35 hydrological sub-basins that occupy an area of
51 hectares, 35 conduits, and 35 connection nodes. All pipes are circular, and their diam-
eters range from 300 mm to 1400 mm. The network is approximately 5000 m long. This
network has the particularity of being in the foothills of the Andes Mountain Range, which
makes it have steep slopes with a difference in level of 39 m between the lowest and high-
est point of the network; these characteristics make the operation of this network totally
dependent on gravity. The hydraulic model of the network was made by Saldarriaga et al.
in a previous work [30]. In an actual state and for a design storm with a return period
of 10 years, the urban basin generates a runoff of 20,123 m3, and has a flood volume of
3834 m3, which represents 19.07% of the runoff volume and concentrates in 11 nodes of
the network.

For the analysis of the network, a design storm was used based on an intensity-
duration-frequency curve, previously defined by Ngamalieu-Nengoue et al. [17]. This
design storm was calculated using the alternate block method with 5-min intervals from
an IDF curve for a return period of 10 years and a calculated duration of 55 min. The
maximum intensity was limited to 118 mm/h, corresponding to a duration of 10 min to
avoid very high intensities.

According to its configuration, two hydraulic sectors, HS-1 and HS-2, could be iden-
tified in the network (Figure 8). HS-1 composed the upper part of the network with
17 pipes and 17 nodes, while HS-2 composed the lower part of the network with 14 pipes
and 14 nodes. Although smaller sectors might be identified, the number of DVs of these
branches was too small to be interesting enough to analyze them separately. Therefore,
separating the network into two sectors was considered a more advantageous option. The
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nodes and pipes excluded from both sectors were added to the optimization process in the
assembly of the new scenario that was generated after reducing the SSR process of the SHs.
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The PGA parameters that were applied to the optimization model to start the SSR
process are those shown in Table 1. Once the SS was reduced, the final optimization was
applied to the resulting region. The parameters used in this stage are those shown in
Table 1. To carry out the optimization, Nit = 250 was defined for each proposed iteration.
With this value, it was expected to have enough iterations to achieve convergence towards
a satisfactory solution.

Table 1. Algorithm parameters for the SSR process.

Scenario NDV N Pmut Pe Xmax Gmax

SH-1 34 68 2.94% 20% 10 203
SH-2 28 56 3.57% 20% 10 167

New scenario 16 32 6.25% 20% 10 94
Final optimization 9 18 11.11% 80% 40 1486

For the calculation of the objective function, the coefficients of the cost functions
defined in Equations (1)–(4) were determined. These coefficients were defined for the case
study according to the costs of the Colombian economy. Table 2 shows the coefficients for
the infrastructure cost functions. Equation (14) shows the coefficients for calculating the
cost of flood damage.

Cy(yi) = 1268.09
(

1 − e−4.89 yi
1.4

)2
(14)

Table 2. Coefficients of the cost terms of pipes, STs, and HCs.

Cost of Pipes Cost of STs Cost of HC
α β Cmin Cvar ω Υ µ

40.69 208.06 169.23 318.4 0.65 4173.7 −210.82
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2.5.2. Ayurá Network

The method was applied to a second network of larger dimensions. This second
network corresponded to a neighborhood in the city of Medellín, Colombia called Ayurá.
The network crosses the city from south to north, and covers an area of 22.5 ha divided into
96 sub-basins. The network is composed of 86 nodes and 86 circular ducts, with a diameter
ranging from 200 mm to 1050 mm. The difference in levels between the highest point of the
network and the lowest is 14.61 m. These characteristics make the operation of the network
entirely dependent on gravity. The average slope of the pipes that compose the network
has a value of 1.81%.

For the analysis of the network, a design storm calculated by the method of alternate
blocks was used. The total runoff from the network in the scenario studied is 13,970 m3. The
flooding in different nodes of the network has a total value of 4012 m3, which represents
28.72% of the total runoff.

The network topology does not allow for differentiation of specific HSs. The network
is composed of different branches that are connected to a principal line. To face the
optimization problem, it was decided to divide the network into two sectors (Figure 9). A
sector called HS-1 considered the upper part of the network with 49 nodes and 49 pipes
where the SSR methodology was applied. Once the optimal region of HS-1 was defined,
a new scenario was formed in which the SSR process was applied again, defining a final
reduced region. Lastly, a final optimization was performed in the determined region to
find the best solution to the optimization problem. Table 3 shows the parameters initially
used by the PGA for each scenario proposed. To divide the network into two sectors, it was
considered that the network was composed of 258 DVs corresponding to pipes, STs, and
HCs, so analyzing it completely would increase the SS that the PGA must explore. For this
reason, optimizing the network by sectors would mean reducing the calculation times. On
the other hand, analyzing the network in sectors allows reducing the DVs considered in
the optimization process, which would determine a stop criterion defined by Equation (8)
to decrease considerably. Specifically, when analyzing HS-1 in the first part, the stopping
criterion was reduced by 24% when applying the SSR methodology compared to if it were
applied throughout the network.
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Table 3. PGA initial parameters for each scenario.

Scenario NDV N Pmut Pe Xmax Gmax

SH-1 98 196 1.02% 20% 10 294
New scenario 65 130 1.54% 20% 10 391

Final optimization 60 120 1.67% 80.00% 40 10,411

To determine the value of the objective function and its cost terms, the coefficients
shown in Tables 2 and 3 are used. As in the E-Chico network, for the Ayurá network,
Nit = 250 was established for each iteration in the SSR process and in the final optimization.

3. Results
3.1. E-Chico Network

Figure 10 summarizes the SSR process in the E-Chicó network. In the first step, HS-1
and HS-2 were processed separately. Once the number of variables was reduced, a new
scenario was set up with the remaining DV from HS-1, HS-2, and the elements not included
in any HS (conduits C18, C34, and C35, and the corresponding tanks ST18, ST34, and
ST35). The results showed that certain DVs had a higher repeatability. By applying the
selection criteria, the areas of the SS that were less interesting to explore were eliminated,
thus defining a new SS. While the SS was reduced, the repeatability increased in the most
promising DVs to be considered in the final analysis region. With the SS reduced in the
HSs, the new search scenario was assembled that included the nodes and pipes obtained in
the previous process and elements of the network that had not been analyzed. To perform
the final optimization, the DVs of the HCs must be added to this region.
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Figure 10. SSR process in the E-Chico network.

Table 4 shows the reduction of the SS in each iteration of the optimization model; the
SS was reduced from a magnitude of 140, which would be obtained when optimizing the
network without any type of SSR strategy, to a magnitude of 12 once the proposed method
was applied. In the final scenario, the DVs corresponding to the HCs were added.
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Table 4. Size of the SS in each resulting scenario.

Scenario DVs SS OFmin Nsim

HS-1 34 34 765,329.71 € 581
HS-1 iteration 1 11 11 750,980.89 € 178
HS-1 iteration 2 10 10 750,980.89 € 156
HS-1 iteration 3 6 6 750,980.89 € 87

HS-2 28 28 1,926,507.19 € 504
HS-2 iteration 1 6 6 3,199,277.55 € 83
New scenario 16 16 227,984.83 € 272

Final optimization 9 12 199,813.79 € 2634

Full network E Chico 105 140 251,711.79 € 1367

The final solution required the renewal of a pipe (C02) that increased its diameter
from 0.4 m to 0.5 m. The installation of STs was in nodes N04, N10, and N23 with volumes
of 1462 m3, 2300 m3, and 1958 m3, respectively. The installation of HCs in the pipes C04,
C10, and C23 had k values of 72.55, 14.73, and 14.73, respectively. Figure 11 illustrates
the elements to be installed in the network. The costs of the final solution found by
the optimization model are shown in Table 4. With these actions, we had the necessary
infrastructure costs to optimize the network as follows: cost of pipes = 6583.81 €, cost of
STs = 179,757.70 €, and cost of HCs = 7671.78 €. The cost of flood damage was 5700.66 €.
Thus, the objective function took the value of 199,713.95 €. This value contrasted with the
cost obtained when applying a standard GA optimization without SSR. In the latter case, the
optimal value found after 250 runs of the algorithm was 251,711.79 € (26% more expensive).
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Figure 12 shows the comparison between the different scenarios when reducing the
SS and optimizing the E-Chico network without the application of a previous SSR process.
The value of the minimum objective function in each simulation carried out is represented
on the x-axis, and the accumulated frequency with which this value appears in the Nsim is
on the y-axis. This figure is used to see the degree of dispersion of the results obtained in
the simulation. The optimization process is more efficient if the curve has a greater slope.
The final optimization curve shows the advantages of applying the SSR method in a first
stage. This figure also shows that the dispersion of the results obtained for the objective
function was reduced as the number of decision variables decreased.
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3.2. Ayurá Network

Figures 13 and 14 show the application of SSR to the tanks and conduits of the Ayurá
network, respectively. As it can be easily observed, the search region was noticeably
reduced in only two iterations in the HS-1, mainly in the case of tanks (Figure 13). After
reducing the number of DVs in HS-1, a new scenario was defined. The SSR process was
then applied to this new scenario. Finally, the DVs corresponding to the HCs were added
to this new scenario for the final optimization of the network.
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Table 5 summarizes the search space for the entire network and for each scenario in
the Ayurá network SSR process.

Table 5. Size of the SS in each resulting scenario of the Ayurá network.

Scenario DVs SS OFmin Nsim

HS-1 98 98 1,858,940.08 € 2576
HS-1 iteration 1 45 45 1,792,735.25 € 997
HS-1 iteration 2 36 36 1,790,516.01 € 723

New Scenario (NS) 110 110 413,071.97 € 3127
N S iteration 1 62 62 402,043.79 € 1435
N S iteration 2 58 58 386,612.41 € 1269
N S iteration 3 52 52 376,739.30 € 967

Final Optimization 60 82 328,049.63 € 21,068

Full network Ayurá 258 344 456,820.42 € 3553

The final solution required the renovation of 25 pipes, the installation of five STs, and
the inclusion of two elements of hydraulic controls at the outlet of the STs. Table 6 shows
the diameters of the network in an initial state and the optimized diameters of the pipes to
be installed. Table 7 shows the characteristics of the STs and HCs that must be installed
according to the results obtained. Figure 15 illustrates the elements to be installed in the
network. Specifically, the final solution has an objective function of 328,049.63 €. The cost
of the renewal of the pipes had a value of 112,297.59 €, the cost of the installation of STs
had a value of 201,454.17 €, and the cost of the installation of HCs had a value of 2768.62 €.
The cost of the damage caused by the floods had a value of 1529.25 €.
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Table 6. Results of the pipes in the final optimization.

Pipe Original Diameter (m) Optimized Diameter (m)

T004 0.375 0.45
T010 0.6 0.8
T012 0.4 0.5
T017 0.2 0.3
T020 0.3 0.35
T026 0.5 0.7
T028 0.2 0.3
T031 0.25 0.3
T032 0.5 1.6
T034 0.2 0.35
T040 0.25 0.35
T041 0.525 0.6
T042 0.525 0.7
T046 0.3 0.45
T048 0.3 0.5
T054 0.25 0.45
T057 0.3 0.4
T059 0.2 0.3
T064 0.375 0.6
T066 0.3 0.4
T068 0.25 0.3
T069 0.5 0.7
T076 0.2 0.3
T079 0.375 0.45
T083 1.05 1.3

Table 7. Results of STs and HCs in the final optimization.

Element ST Volume k in HC Diameter in HC

C032 428 - -
C044 507.5 - -
C050 600 - -
C051 2310 - -
C056 300 - -
T045 - 2.99 0.30
T055 - 6.64 0.375

Figure 16 compares the results when optimizing the full network without applying the
SSR method (blue line) and the different iterations carried out until optimization is achieved
with the proposed method (set of gray-scaled lines). Both methodologies were repeated
250 times. The figure shows on the x-axis the relationship of the objective function of each
result with the minimum objective function found. The y-axis represents the accumulated
frequency. The values represented correspond to the established Nsim (250 in this case). As
can be seen, the optimization process improved remarkably by applying the SSR method
iteratively. Finally, the curve corresponding to the final optimization was obtained with a
greater slope of the curve, which indicated that, in this scenario, the dispersion of solutions
was lower. To better appreciate how the dispersion of the results decreased with the
proposed methodology, the comparison of these results with the optimization without
previously applying the SSR process is shown in Figure 17.
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4. Discussion

The methodology presented in this work considers different types of decision variables:
pipes, storm tanks, and hydraulic controls. Consequently, there is a large search space.
To solve this problem, a process is presented to reduce this search space. The analysis of
this discretization has been made considering that the sampling points cover the entire
search space and that the process is applicable to any type of network. However, a previous
detailed study showed that the characteristics of the network, maximum and minimum
diameters installed, and available flood area can shorten the size of the options list for
each decision variable by reducing the initial search space and decreasing the definition
time of the final search region. This is one of the fields that can be explored in future work.
On the other hand, to discretize the continuous decision variables, two spacing values are
adopted that generate two lists of options, one called rough and the other called refined.
One limitation of the presented method is that the spacing has been established according
to the criteria of the authors, and although it is true that covering the search space in the
best way has been tried, future works should consider the establishment of this spacing by
analyzing the influence of the algorithm parameters.

Another aspect to discuss in this work is the different percentages used as the proba-
bility of success when establishing the stopping criteria. The use of a low probability of
success (Pe = 20%) in the SSR process aims to eliminate DVs. This elimination assumes that
if, with a loose value of Pe, the repeatability of a DV is low, it is assumed that this DV will
not be part of the region of best solutions. In the figures (repeatability figures), it can be
observed how the repeatability in the most promising DVs increases as the SS decreases,
while the DVs that present a low repeatability disappear in subsequent iterations. These
facts emphasize the value of the presented method to identify the region with the best
solutions within the SS. However, the use of more demanding values of Pe as the search
region is reduced is presented as an interesting option to improve the efficiency of the
process. This is undoubtedly an aspect that should be analyzed in depth in future work.
In this work, the concept of reducing the search space by hydraulic sectors has also been
introduced. This way of applying the search space reduction method is presented as an
interesting option that allows the optimization model to work in parallel, able to define
the search region faster than when analyzing the entire network, although it is true, in the
optimization of the Ayurá network, that the hydraulic sectors are not clearly differentiated.
Dividing the network into two parts allows us to have a manageable number of DVs by
optimizing the network. Applying the SSR process at the top of the network at first and
incorporating the selected DVs at the bottom part of the network reduces significantly
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the computational effort required. In the case of the E-Chico network, two sectors, called
HS-1 and HS-2, are clearly differentiated. In this network, it can be seen how the repeata-
bility increases in each iteration until presenting a repeatability of 100% in the selected
DVs. Additionally, Figure 17 compares the dispersion of the solutions of the results when
applying the proposed methodology in the studied networks and when optimizing the
networks without applying any SSR process. In Figure 17, it is clearly observed that, when
optimizing the complete network, the dispersion of the results is greater, having values
of the objective function up to 3.7 times greater than the minimum value, while, when
applying the proposed methodology, the dispersion of the results decreases significantly.
The curve obtained in the final optimization has a greater slope, and the variation of the
results found is reduced by about 1.50 times. In the Ayurá network (Figure 16), there are
similar results; the optimized network without any SSR process has a greater dispersion
of results, having objective function values of up to 1.90 times greater than the minimum
value found. This shows us that optimizing networks with a large number of DVs increases
the dispersion of the solutions. Therefore, applying the SSR process not only reduces
calculation time, but also improves efficiency in optimization. These particularities were
already observed by Ngamalieu et al. [16] in a previous work.

On the other hand, the results show that, when optimizing the network by sectors,
the values of N and Gmax decrease; this is because their value depends on the number
of DVs analyzed by the PGA. Therefore, the calculation times and the computational
effort are going to be much less than when optimizing the entire network. This shows
us that the methodology can be indicated to optimize large networks. In another order
of things, the results obtained from Nsim in Table 5 show that the number of iterations
that each simulation requires to find the solution decreases in each application of the
SSR process. These results are presented in the two networks studied, so it can be said
that the methodology presented improves the efficiency of the optimization. For the
final optimization, using a refined optimization and a more demanding Pe, the number
of simulations increases. Considering that the objective is to find the best solution in a
reduced SS, this increase is fully justified. In the Ayurá network (Table 6), it is observed
that, in each iteration, the iterations decrease, having a Nsim = 3127 in the new scenario
until Nsim = 967 in the third iteration. Optimizing the network by sectors has clear benefits.
The decrease in the objective function is clearly observed in Figure 17 when compared to
the optimization of the network without applying the SSR process. The figure shows that
the largest dispersion of the optimized network without an SSR process is found in the
first quartile. On the other hand, it can be observed that the best result of the optimized
network without applying the SSR process has a higher value than the worst value of
the final optimization of the proposed methodology. In the Ayurá network (Figure 17),
there are similar results, and it is observed that the highest number of results in the final
optimization is in the last quartile, which reflects the suitability of the methodology.

The final optimization shows the suitability of applying the optimization methodology
with the installation of STs, renewal of pipes, and installation of HCs. The use of a more
demanding stopping criterion can guarantee us that the search for the best solutions in the
final search region is carried out intensively. For these reasons, this form of optimization
should be investigated in greater depth, as it could provide interesting results in terms of
reducing calculation times in the face of this type of problem.

Lastly, technological advancement and limited resources have motivated the devel-
opment of new research strategies to optimize time and economic resources. Algorithms
have been consolidated as a valid tool to facilitate this task. Their use in different fields of
research has been popularized in recent years. In problems of water resources, GAs have
had a relevant use [32,39,40]. GAs have been applied in subjects such as water distribution
systems and closely related applications, urban drainage and sewer system applications,
water supply and wastewater treatment applications, applications in hydrologic and flu-
vial modeling, groundwater system applications, groundwater remediation, groundwater
monitoring, and evolutionary computation in hydrologic parameter identification. The
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proposed SSR methodology considers the iterative elimination of DVs from a problem,
and can be applied to other types of problems with a similar approach. This may be
a contribution of the present work for future developments in the field of optimization
through evolutionary strategies.

5. Conclusions

The increase in flood events in different cities of the world makes it necessary to
develop methodologies to face them, considering the improvement of the systems with the
lowest possible cost. The use of heuristic approaches is a good alternative to solve this type
of problem. The methodology based on the optimization of the network considering the
replacement of pipes, installation of storm tanks, and inclusion of hydraulic controls has
proven to be a valid alternative to solve these types of problems. To improve the efficiency
of the optimization model, this work focuses on presenting a methodology for reducing
the search space for solutions to improve the working efficiency of the optimization model.
The application of this methodology significantly reduces the number of total iterations
when compared to the initial scenario, that is, if it will perform the optimization with all of
the decision variables.

In the E-Chico network in particular, the SS is reduced from a magnitude of 140 to a
magnitude of 12, while, in the Ayurá network, much larger than E-Chico, the SS is reduced
from a magnitude of 344 to one of 82. If it is considered that the size of the SS is measured
in a logarithmic scale, it can be seen that a significant reduction has been made. These
results show that the search space reduction method is valid and advantageous to apply in
optimization problems with drainage networks. For the Ayurá network, the improvement
of the results can be observed more greatly when applying the proposed method than
in the complete network without any previous reduction of the SS. On the other hand, if
the results obtained from the E-Chico network are compared with the results obtained in
a previous study [18], it can be seen that the objective function of the problem has been
reduced, including the cost of flood damage. Therefore, it can be concluded that by using
the method of SSR based on the use of a coarse discretization of the decision variables and
a lax stop criterion in the first stage, as well as a refined discretization and a demanding
stop criterion in the second stage, the efficiency of the optimization model is improved.
The two cases presented have been applied to drainage networks located in Colombia,
and thus were expressed in terms of the local Colombian economy, the investment costs in
infrastructure, and the costs associated with flood damage. In this way, formulating cost
functions in monetary units is very useful for decision makers in the development of a
rehabilitation project.

New trends are focused on source control by means of LID techniques. Future works
must address the possibility of combining the strategy presented in this work with an-
other focused on the reduction of runoff using components such as green roofs, pervious
pavement, or infiltration structures.

Finally, the results obtained show a good solution for a previously defined rain. Differ-
ent results will be obtained for other design storms. Therefore, there is no single solution
to the problem, and the initial approaches to the problem will be made in accordance with
design criteria and local regulations.
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Abbreviations

The following abbreviations are used in this manuscript:

GA Genetic Algorithm
DV Decision Variable
HC Hydraulic Control
HS Hydraulic Sector
LID Low Impact Development
OF Objective Function
PGA Pseudo Genetic Algorithm
SS Search Space
SSR Search Space Reduction
ST Storm Tank
SWMM Storm Water Management Model

Notations

The following symbols are used in this paper:

CC(Di) cost of the installation of the hydraulic control
CD(Di) cost of the renovation of pipes
Cmax maximus cost per square meter that cause a flood
Cmin minimum cost established for the storm tank
CV(Vi) cost of installation of the storm tank
Cvar constant in the cost function of storm tanks
Cy(yi) damage costs caused by the flood
Di diameter of pipe (m)
Gmax stop criterion
hi invert elevation of storm tank
k head loss coefficient in valves
Li pipe length (m)
m pipes
mi pipes considered in a defined scenario
ms pipe selected to be replaced
N population size
NS options list for storm tanks
NS0 coarse options list for storm tanks
NSmax refined options list for storm tanks
n nodes
ni nodes considered in a defined scenario
NC number of pipes in the network
ND options list for pipes
ND0 coarse options list for pipes
NDmax refined options list for pipes
NDV number of decision variables
Nit number of evaluations
Nsim number of simulations in each evaluation
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NN number of nodes in the network
ns number of nodes selected to install storm tanks
Nθ options list for hydraulic controls
P5 fifth percentile
Pe success probability
pi pipes considered to install hydraulic controls in a defined scenario
Pmut mutation probability
PO occurrence probability
ps pipes selected to install hydraulic controls
r adjustment coefficient of the cost of flood.
Si area of storm tank (m2)
Smax maximum area available (m2)

Vi storage volume (m3)
Xi value of decision variable taken from the options list for storm tanks
Xmax maximum number of discretization options of the decision variables
yi water level of the node (m)
ymax maximus flood level (m3)
α adjustment coefficient of the cost of pipes
β adjustment coefficient of the cost of pipes
γ adjustment coefficient of the cost of hydraulic control
∆S spacing interval in the discretization of area of storm tank
λ adjustment coefficient of the cost of flood
δ constant for the calculation of the mutation probability
µ adjustment coefficient of the cost of hydraulic control
ω exponent in the cost function of storm tanks
φ constant for calculation of population
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