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Abstract The simplified spherical harmonics approximation to the neutron transport equation

defines the neutron distribution inside a nuclear reactor core more accurately than the widely

used neutron diffusion equation. To solve this equation, a goal oriented h-adaptable finite ele-

ment method is employed. The proposed adaptive mesh refinement (AMR) method splits mesh

cells whose errors are large and whose importance towards the computational goal is high. In

this work, the computational goal is set as the maximum averaged power in an assembly of the

reactor as this usually is a design constraint. The goal oriented error estimator is compared

with the usual Kelly error indicator and also with a uniform global refinement. The goal ori-

ented error estimator demonstrates to be the most accurate strategy in order to minimise the

error in the defined quantity of interest and it is as much efficient as standard error estimators

to compute the fundamental eigenvalue.

1 INTRODUCTION

The neutron transport equation describes the distribution of neutrons and rate of fissions inside
a nuclear reactor core. The steady-state neutron distribution satisfies an eigenvalue problem and
its solution is used as initial condition for time dependent problems. The steady-state problem
is also important because it gives a measure of the criticality of the reactor. To solve the neutron
transport equation many angular discretizations have been used to approximate this equation
as the diffusion approximation, spherical harmonics or discrete ordinates [1]. Because of the
size of the problem, for full core calculations the standard method is to use the diffusion ap-
proximation. This theory states that the neutron current is proportional to the gradient in the
neutron flux, in a similar way to diffusion of species or the heat equation. But the accuracy of
the diffusion theory solution for describing the neutron population in a nuclear reactor is limited
for a variety of situations: (a) near boundaries or where material properties change suddenly,
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(b) near localised sources and (c) in strong absorbing media. In fact strong angular dependence
can be associated with strong spatial variation in the neutron flux.
To improve the results of diffusion theory for these situations, a computational method that
incorporates higher-order approximations for the angular dependence of the neutron flux must
be employed. The simplified spherical harmonics method (SPN ) has been investigated for this
purpose. Theoretical basis for the SPN equations were provided by Brantley and Larsen [2],
showing that these equations are high-order asymptotic solutions of the transport equation when
diffusion theory is the leading-order approximation.
Unlike the standard spherical harmonics approximation (PN ), the SPN solution does not con-
verge to the exact transport solution as N → ∞. However it is accurate for usual reactor
configurations within acceptable computing times. The main advantage of the simplified spher-
ical harmonics approximation is the reduced number of equation to be solved when compared
with PN approximation. The number of equations increases quadratically as (N+1)2 for spher-
ical harmonics, while it shows increases linearly as (N +1) for SPN . Also the resulting system
of elliptic equations is readily solvable with existing diffusion solvers. In addition the SPN

approximation does not suffer from the ray effects [3] that can adversely affect the discrete
ordinates method, SN .
In this work, to solve the simplified spherical harmonics method an h-adaptable finite element
method (FEM) is used as it was done for the multigroup diffusion equation in [4]. Adaptive
mesh refinement (AMR) techniques aim to locally refine a grid in order to obtain accurate so-
lutions with the minimum computational cost. Standard AMR techniques are based on error
estimators in order to indicate which cells have the majority of the error and refine them. While
such methods have been demonstrated to be efficient and accurate compared to globally uni-
form refined meshes, this traditional approach is not optimal for computing the solution in a
particular region or determining a quantity of interest. In nuclear engineering, we are interested
in accurately solving the neutronic power in the hottest assembly as this temperature is a design
restriction.
To address this kind of problem, goal oriented adaptivity has been developed during the last
decades [5]. This method derives error estimates for the goal of the computation, rather than for
the global error in the solution. Goal oriented error indicators are composed of both the local
error, i.e. how well the exact solution is approximated, as well as a quantity that describes how
important the accuracy of this solution on a given cell is toward the goal of the computation [6].
In this work, we solve the multigroup SPN equations with a goal oriented adaptable mesh to
accurately solve for the neutron power in the hottest cell of a nuclear reactor core.
The rest of the paper is organised as follows. The simplified PN equations are reviewed in
Section 2. Next, we introduce the h-adaptable finite element discretization in Section 3. Section
4 describes how to compute the goal oriented error estimator and the gradient recovery based
error estimator. Numerical results for a two-dimensional nuclear reactor benchmark are studied
in Section 5. Finally, the main conclusions of the work are summarised in Section 6.
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2 SIMPLIFIED PN EQUATIONS

We consider the eigenvalue problem associated with the multi-group, steady-state, neutron
transport equation in slab geometry [3],

(
µ
d

dx
+ Σg

t (x)

)
ψg(x, µ) =

G∑
g′=1

1∫

−1

Σgg′

s (x, µ0)ψ
g′(x, µ′)dµ′

+
1

keff

G∑
g′=1

χg(x)

2
νΣg′

f (x)

1∫

−1

ψg′(x, µ′)dµ′, (1)

g = 1, . . . , G, x ∈ [0, Lt]

where G is the number of energy groups considered, θ is the angle between the direction of
travel of the neutron and the x axis, µ = cos(θ), θ0 is the change of directions due to scattering
collisions, µ0 = cos(θ0). Σg

t (x), νΣ
g
f (x), Σ

gg′

s (x, µ0) are the total, production and scattering
cross sections for energy group g, and χg(x) is the fission spectrum. The dominant eigenvalue
of the problem (1), keff, is the multiplicative factor of the system and measures the reactor
criticality. The corresponding eigenvector, ψg(x, µ), is the stationary angular flux distribution
in the reactor.
The spherical harmonics approximation to the neutron transport equation in slab geometry as-
sumes that the angular dependence of both the neutron flux distribution and the scattering cross-
section can be expanded in terms of N + 1 Legendre polynomials,

ψg(x, µ) =
N∑

n=0

2n+ 1

2
φg
n (x)Pn (µ) , (2)

Σgg′

s (x, µ0) =
N∑

n=0

2n+ 1

2
Σgg′

sn (x)Pn (µ0) . (3)

Inserting equations (2) and (3) in equation (1) and using the Legendre polynomials orthogonal-
ity, the one dimensional PN equations are obtained, which can be expressed in matrix notation
[7] as

dΦ1

dx
+Σ0Φ0 =

1

keff
FΦ0 , (4)

d

dx

(
n

2n+ 1
Φn−1 +

n+ 1

2n+ 1
Φn+1

)
+ΣnΦn = 0 , (5)

for n = 1, .... , N ,

3

210
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where,

Σn =



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sn . . . −Σ1G
sn

...
... . . . ...
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
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
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f

...
... . . . ...

χGνΣ1
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f . . . χGνΣG
f


 , Φn =



φ1
n

...

φG
n


 .

It must be noted that in many nuclear applications, as usual steady-state reactor calculations, the
scattering cross section, Σs, is supposed isotropic [7]. Thus, Σn is a diagonal matrix for n > 0.

For multidimensional problems the simplified PN approximation is obtained substituting the x

derivatives by the corresponding two- or three-dimensional gradient operator in equation (9).
The resulting equations are,

�∇Φ1 +Σ0Φ0 =
1

keff
FΦ0 , (6)

�∇

�
n

2n+ 1
Φn−1 +

n+ 1

2n+ 1
Φn+1

�
+ΣnΦn = 0 , (7)

for n = 1, .... , N . (8)

This approximation may seem a bit ad-hoc but its theoretical basis is explained in [2]. Equations
(8 are much simpler than the multidimensional PN equations and can be easily implemented
using numerical methods suited for diffusive equations.
Using a linear change of variables, equations (6) and (7) can be expressed as a system of sec-
ond order elliptic diffusive-like equation for the even moments. In the simplified spherical
harmonics method, odd order approximations have found a broader acceptance than even-order
approximations because nuclear cross sections are usually available for odd order approxima-
tions [2].
Thus, we focus our study in diffusion theory (SP1) and the SP3 approximation. For example,
the set of SP3 equations is expressed as

−�∇
�
D �∇U

�
+AU =

1

keff
MU , (9)

where the effective diffusion matrix, D, the absorption matrix, A, and the fission matrix, M,
are given by

D =

�
1
3
Σ1

−1 0
0 1

5
Σ3

−1

�
=

�
D0 0
0 D1

�
,

Aij =
3�

n=1

c
(n)
ij Σn , Mij = c

(1)
ij F ,
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and the following linear change of variables has been applied,

U =

(
u0

u2

)
=

(
Φ0 + 2Φ2

3Φ0 + 4Φ2

)
. (10)

Finally, the coefficients matrix, c(m) is defined as,

c(1) =

(
1 −2

3

−2
3

4
9

)
, c(2) =

(
0 0

0 5
9

)
. (11)

In order to find how to implement vacuum boundary condition and other boundary conditions
in the simplified spherical harmonics equation the reader is referred to [7].

3 FINITE ELEMENT DISCRETIZATION

As it was reviewed in the last section the SPN approximation consist of a set of diffusion-like
equations for which simultaneous solution for the unknown fluxes moments is required. Thus,
the finite element discretization (FEM) that were developed for the diffusion equation in [4] can
be applied without major changes. In this work the deal.II library [13] has been used to
implement the FEM code.
A Galerkin finite element discretization has been applied to equation (9) leading to an algebraic
generalized eigenvalue problem. To discretize the problem the reactor domain, Ω, has been
partitioned into cells Ωk, k = 1, 2, . . . , K, where the nuclear cross sections are assumed to be
constant. In the same way, Γk is the set of the corresponding cell surfaces which are part or the
external reactor boundary, Γ.
In order to simplify the notation, in this Section only one group of energy is considered. Thus,
the discretization of SP3 equations can be written as the generalized algebraic eigenvalue prob-
lem, (

L00 L01

L10 L11

)(
ũ0

ũ2

)
=

1

keff

(
S00 S01

S10 S11

)(
ũ0

ũ2

)
, (12)

where ũ0 and ũ2 are the algebraic vectors representing u0 and u2 and the matrix blocks are
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constructed as,

(L00)ij =
K∑
k=1

D0(�∇Ni, �∇Nj)Ωk
−D0(�∇Ni, Nj)Γk

+ A00(Ni, Nj)Ωk
,

(L01)ij =
K∑
k=1

A01(Ni, Nj)Ωk
, (L10)ij =

K∑
k=1

A10(Ni, Nj)Ωk
,

(L11)ij =
K∑
k=1

D1(�∇Ni, �∇Nj)Ωk
−D1(�∇Ni, Nj)Γk

+ Σ1(Ni, Nj)Ωk
,

(S00)ij =
K∑
k=1

M00(Ni, Nj)Ωk
, (S01)ij =

K∑
k=1

M01(Ni, Nj)Ωk
,

(S10)ij =
K∑
k=1

M10(Ni, Nj)Ωk
, (S11)ij =

K∑
k=1

M11(Ni, Nj)Ωk
,

where the common notation for the scalar product, (a, b)Ω =
∫
Ω
a b dV has been used. Ni is

the prescribed shape function associated with the i-th degree of freedom or support point. The
shape functions used are part of the Lagrange finite elements [4].
To solve the algebraic eigenvalue problem (12) for the dominant eigenvalue keff and its corre-
sponding eigenvector, the power iteration method is used. As initial guess of the solution in
refined meshes the method uses keff, u0 and u2 obtained in the coarser meshes.
Finally, the solution fluxes must be normalized using some arbitrary criteria as all eigenvalue
problems. Usually, it is forced that the average neutronic power, P , is equal to 1 in the whole
reactor core,

1 =
1

V

∫

Ω

P dV =
1

V

G∑
g=1

∫

Ω

Σfgφ
g
0 dV. (13)

4 ERROR ESTIMATORS

After the problem is solved, it is convenient to estimate if the obtained solution has enough
accuracy and if this is not the case, to refine the mesh accordingly. In this way, three types of
refinement strategies are considered, a uniform refinement, where all cells are refined, and two
adaptive mesh refinements (AMR), where only a part of the cells are refined. To choose which
cells are refined two error indicators are used, a gradient recovery based method proposed by
Kelly et al. [11] and a goal oriented error estimator to reduce the error in the desired assembly.
Even though, these error estimator were developed for linear problems of the form

a(b, U) = s(b) ∀ b ∈ V , (14)

where a(·, ·) is the bilinear form and s(·) is the linear form associated with the right hand
side, these estimators are good refinement indicators for generalized eigenvalue problems [4].

6
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However, [12] describes techniques how to extend goal-oriented methodology to eigenvalue
problems. Such methods could be used to efficiently and accurately compute the eigenvalue of
the problem keff.

4.1 Kelly Error Estimator

A modified version of the error estimator proposed by Kelly et al. [11] is used. This error
indicator tries to approximate the error per cell by integration of the jump of the gradient of
the solution along the faces of each cell. It can be understood as a gradient recovery estimator,
see the book [9] for a complete discussion. This estimator, ηk, is extended for non-constant
diffusion coefficients and generalized for a multigroup approximation as

ηk =

√
he

24

G∑
g=1

N∑
n=0, 2, ...

(
Σfg

∫

Te

(
Dg

�∇φg
n

)
d�S

)
=

G∑
g=1

N∑
n=0, 2, ...

Σfg κ(φ
g
n), (15)

where Tk denotes all interior boundaries of the element k and hk is the adimensional cell size. In
other words, we are using the jump in the net current weighted by the fission cross sections as the
error estimator in the neutronic power. The operation of adding the jump of the gradient through
the cell boundary is defined as κ(φ). Even though, this is an error estimator for the Poisson’s
equation, i.e. ∇2ϕ = f , this indicator is widely used as a heuristic refinement indicator and it
is considered a good choice in the absence of actual estimators for a particular equation.

4.2 Goal Oriented Error Estimator

Goal oriented error estimators are used because they indicate which cells have the majority
of error in order to compute a functional derived from the solution. This kind of refinement
indicators are composed of both the local error as well as a quantity that describes how important
the accuracy of the solution on a given cell is toward the goal of the computation [6]. In this
way a large error can be tolerated on a cell far away from the region of interest, and conversely,
a cell with a relatively small error may still require further refinement if this cell is important
for the goal.
Let us assume that we are not interested in the solution U of a given problem but in a functional
I(U) of this solution. For simplicity, it is assumed that I is a linear functional though the
methodology can be extended to non linear goal functionals as well [10].
Our main objective is the to accurately compute I(U) but all we have is available is I(Uh),
computed from the finite element discretization on our current mesh. Therefore, the error in the
quantity of interest |I(U)− I(Uh)| = |I(e)| where the error is defined as e = U − Uh. In order
to estimate this error in the quantity of interest, let Û be the solution of the adjoint problem
defined by

a(Û , b) = â(b, Û) = I(b), ∀ b ∈ V , (16)

where a(·, ·) is the primal formulation of the L matrix of equation (12) and â(·, ·) is the adjoint
source operator of this matrix. Using the Galerkin orthogonality property it can be seen that,

I(U)− I(Uh) = a(Û , e)− a(Ûh, e) = a(ê, e), (17)

7
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where the dual error is defined as ê = Û − Ûh.
Similarly to [6], the refinement indicator is defined as the product of the primal and dual errors.

η̃k =
G∑

g=1

�∇e�k�∇ê�k ≈

G∑
g=1

κ(ug
0h)κ(û

g
0h), (18)

where the exact primal and dual error are approximated by the widely used Kelly estimator[11].
Û

g
0 is the solution of the adjoint problem.

L
g
00 û

g
0 = I(U) , (19)

A practical goal used in nuclear engineering is to describe accurately the power in the hottest
assembly denoted by ΩH . Thus, each component i of the function of interest is defined as

(I(U))i =
δH(xi)

VH

∫

ΩH

φ0 dV , δH(x) =

{
1 if x ∈ ΩH

0 if x �∈ ΩH

, (20)

where VH is the volume of the assembly of interest.

5 NUMERICAL RESULTS

To compare the performance of the described error estimators the two-dimensional BIBLIS
benchmark has been used. This benchmark is a realistic and highly non-separable two en-
ergy group problem representative of an actual operating pressurised water reactor (PWR). This
problem is characterized by a chequerboard effect caused by fuel reloading. It presents one
quarter symmetry that is used to compute efficiently the critical eigenvalue of the reactor em-
ploying zero current boundary conditions to model symmetry. The definitions of the 8 different
materials and their cross sections are given in [14].

BIBLIS benchmark has been solved recursively employing three different refinement strategies:
a uniform global refinement, the modified version of the Kelly error estimator exposed in equa-
tion (15) and the goal oriented error estimator trying to reduce the error in the maximum power
cell. For adaptive mesh refinement cases 60% of the cells are refined each step. All meshes
are computed using quadratic polynomials in the finite element discretization. Figure 1 shows
the grid employed during the first 6 steps of adaptive local refinement using the Kelly error
estimator. Similarly, Figure 2 shows the grid employed during the first 6 steps of adaptive local
using the goal oriented error estimator. In the last case, the assembly of interest where the error
indicator leads the AMR to accurately compute the neutronic power is shown with a red cross.
It can be seen that around this cross the cells are refined repeatedly while far from this cell the
mesh is coarser.

Figure 3a shows the convergence graph of the eigenvalue for the diffusion approximation or
SP1 calculation using the mentioned refinement strategies. The convergence graph compares

8
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the number of the degrees of freedom (DoFs) against the eigenvalue error ×105 because it is
know that the CPU time to solve this type of eigenvalue problems is dependent of the size of the
matrices as the computation of the error estimator is not relevant against the time employed by
the eigenvalue solver. Figure 3b displays the convergence of the neutron power in the assembly
of interest, also known as the error in the power peaking factor (PPF). From these results it can
be seen that the best refinement strategy is the goal oriented because it presents a minimum
error for a fixed number of degree of freedom. However, the differences are not relevant for
error around 10 pcm for the eigenvalue and 1 % for the PPF, usual accuracy limits for the SP1

equations.

Similarly, Figures 4a and 4b show the eigenvalue convergence and PPF convergence during
several cycles of refinements using SP3 equations. As before, the best refinement strategy to
accurately solve the PPF of the reactor is to use the proposed goal oriented strategy. However,
the eigenvalue error is converged analogously with the Kelly error estimator and the proposed
goal estimator as both error estimator try to reduce the global error.

9
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Figure 3: Eigenvalue and PPF convergence for SP1 computation.
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Figure 4: Eigenvalue and PPF convergence for SP3 computation.
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6 CONCLUSIONS

In this work, an h-adaptable finite element method for the simplified harmonics approximation
to the neutron transport equation is studied. To chose which cells have most of the error in order
to refine them a goal oriented error estimator is presented. The goal oriented or duality based
error estimator need to solve an adjoint problem with the a quantity of interest in the right hand
side. Goal oriented adaptivity combines the benefits of the standard AMR methods with the
knowledge of the end goal of the computation. Hence the AMR method proceeds by refining
mesh cells whose errors are large and whose importance towards the computational goal is
high. In this work, the quantity of interest is set as the maximum averaged power assembly
of the reactor as this is a design constraint. To compare the proposed refinement strategy, goal
oriented error estimator is compared with an usual error gradient recovery error estimator and a
uniform global refinement. The proposed goal oriented error estimator has been demonstrated
to be the most accurate strategy in order to minimize the error in the defined quantity of interest
and as much as efficient as standard error estimators to compute the eigenvalue.
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