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Abstract The spherical harmonics method is applied to the angular dependence of the neu-

tron transport equation, obtaining a finite approximation known as the PL equations, that are

rewritten as a vector-valued second order differential equation. Marshak vacuum boundary

conditions are also considered. We have developed a nodal collocation method to spatially dis-

cretize the multi-dimensional PL equations, for arbitrary odd order L, on a rectilinear mesh,

based on the expansion of the neutronic fluxes in terms of orthonormal Legendre polynomials.

In this work, the capability of the method to treat advanced reactor problems is verified with

the 2D C5G7 MOX Fuel Assembly Benchmark, that is a criticality calculation proposed by

NEA/NSC for testing the ability of modern deterministic transport methods and codes to treat

heterogeneous reactor core problems without spatial homogenization. The large sparse gen-

eralized eigenvalue problem that arises is numerically solved on parallel computers using the

software library SLEPc. The solution of this problem is obtained for different types of spatial

meshes, for various PL expansion orders and for different Legendre polynomial orders. We

show that our results are consistent with the reference Monte Carlo solution.
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1 INTRODUCTION

The physical phenomena of neutron transport arises in a wide variety of fields in physics and en-

gineering, such as nuclear reactors, nuclear medicine, radiological protection, etc. The neutron

transport equation, which is a balance equation in a space of seven dimensions, mathematically

describes these processes. Modern numerical approaches to this equation use Monte Carlo

methods [1] or discrete-ordinates methods [2].

Monte Carlo methods model the nuclear system (almost) exactly and then solve the exact model

statistically (approximately) anywhere in the modeled system. Because of its statistical nature,

Monte Carlo core calculations usually involve a considerable computer time to attain reliable

converged results. Discrete-ordinate methods are based on considering a finite set of angular

directions and their corresponding weights that define an appropriate quadrature set in the unit

sphere [3]. The main drawback of this kind of methods is that they suffer of ray effects, that is,

they provide non-physical solutions for certain configurations.

Both kind of methods are very expensive from the computational point of view. To solve this

problem, several approximations have been introduced to simplify the neutron transport equa-

tion. The usual approximation of the diffusion theory model allows a simple treatment of neu-

tron transport in many realistic problems. With the advent of more complicated reactor core

designs and the analysis of complex fuel assemblies in fine mesh applications, the diffusion

equation does not provide good results.

A classical approach to solve the neutron transport equation is to apply the spherical harmonics

method to the angular dependence of the equation, obtaining a finite approximation known as

the PL equations [4]. An advantage of the spherical harmonics method is that the equations are

invariant under rotation of the coordinates and do not depend on the direction of the coordinates

that should give no ray effects. The PL equations are complicated and need a particular treat-

ment. Simplified PL approximations have been proposed [5], which can be easily implemented

using essentially the same numerical methods as the ones used for the diffusion equation.

In Section 2, the spherical harmonics method, when applied to criticality calculations of the

neutron transport equation, is briefly reviewed. The angular dependence of the equation is

approximated by a finite set of equations known as the PL equation, for arbitrary odd order L,

that are then rewritten in a diffusive form as a vector-valued second order differential equation.

Vacuum and reflective boundary conditions are also approximated using the spherical harmonics

method. The spatial dependence of the multi-dimensional PL equations is then discretized on

a rectilinear mesh using a nodal collocation method, previously developed in [6, 7, 8], and

based on the expansion of the neutronic fluxes in terms of orthonormal Legendre polynomials.

In previous works [6, 7, 8] the method was validated for some 2D and 3D neutron transport

benchmark problems. This procedure replaces the transport equation eigenvalue problem by an

algebraic generalized eigenvalue problem.

To test the capability of the nodal collocation method to treat advanced reactor problems, in

Section 3, we consider the 2D C5G7 MOX Fuel Assembly Benchmark, proposed in [9], for

testing the ability of modern deterministic transport methods and codes to treat reactor het-

erogeneous core problems without spatial homogenization. Direct whole-core calculations are

450



Ma Teresa Capilla, César Talavera, Damián Ginestar and Gumersindo Verdú

computationally expensive and require massively parallel computing platforms and vast mem-

ory and disk space capabilities. The eigenvalue problem that arises from the application of the

nodal collocation method to the C5G7 benchmark problem is numerically solved using SLEPc,

a software library [10] for the solution of large scale sparse eigenvalue problems on parallel

computers, that is based on the PETSc [11] data structures. We study the convergence of the

solution of this problem with the order of the PL approximation, and also with the Legendre

polynomial order. We also analyze the results obtained with different types of spatial meshes.

2 THE TRANSPORT EQUATION AND THE PL EQUATIONS

The physical phenomena of the neutron transport and interactions in the reactor core are mod-

elled by the Boltzmann transport equation [12], that is a balance equation between neutrons

lost by transport and absorption, produced or lost by scattering and produced by fission. Of

particular relevance are criticality calculations. Physically, a system containing fissionable ma-

terial is said to be critical if there is a self-sustaining time-independent chain reaction in the

absence of external source of neutrons. Criticality calculations are normally cast into the form

of eigenvalue problems:

~Ω ~∇Φ(~r, ~Ω, E) + Σt(~r, E) Φ(~r, ~Ω, E) = Qs(~r, ~Ω, E) +
1

λ
Qf (~r, ~Ω, E) , ~r ∈ V , (1)

with appropriate boundary conditions, for example, vacuum boundary conditions

Φ(~r, ~Ω, E) = 0 , for all ~Ω~r ≤ 0, when ~r ∈ ∂V , (2)

where ∂V is the boundary of the reactor volume V . Here Φ(~r, ~Ω, E) is the neutron angular flux

at location ~r in the direction ~Ω at time t; the position vector ~r = (x1, x2, x3) is given in Cartesian

coordinates; ~Ω = (cosϕ sin θ , sinϕ sin θ , cos θ) is the direction, 0 < ϕ < 2π, 0 < θ < π; E

is the neutron energy; Σt is the total macroscopic cross-section and Qs and Qf are the scattering

source term and the source of neutrons by fission term respectively, given by

Qs(~r, ~Ω, E, t) =

∫
dE ′

∫
d~Ω′ Σs(~r; ~Ω

′, E ′
→ ~Ω, E) Φ(~r, ~Ω′, E ′) ,

Qf (~r, ~Ω, E, t) =
χp(E)

4π

∫
dE ′ νΣf (~r, E

′)

∫
d~Ω′ Φ(~r, ~Ω′, E ′) ,

where Σs is the scattering cross-section from (~Ω′, E ′) to (~Ω, E); Σf is the fission cross-section;

ν is the average number of neutrons per fission and χp is the spectrum. A criticality calculation

finds the largest value of λ for which a nonnegative fundamental mode solution exists, so keff =
λmax.

The first approximation to numerically solve Eq. (1) is to replace the continuous variable E by

a discretization into a finite number of energy groups g ∈ G, where group g spans the range of

energies from Eg to Eg+1. This is known as the energy multi-group approximation. In order to

facilitate the notation we will consider only the monoenergetic version of these equations, that

is, one energy group.
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2.1 The spherical harmonics method

In the spherical harmonics method the angular dependence of the neutronic flux Φ(~r, ~Ω) is

expanded in terms of the (complex) spherical harmonics Y m
l (~Ω) = Hm

l Pm
l (cos θ)eimϕ, where

Pm
l (cos θ) are the associated Legendre polynomials and Hm

l =
√

(2l+1)
4π

(l−m)!
(l+m)!

, that form a

complete set of orthonormal functions. Thus,

Φ(~r, ~Ω) =
∞
∑

l=0

+l
∑

m=−l

φlm(~r)Y
m
l (~Ω) , (3)

where φlm(~r) are the (spherical harmonics) moments. We observe that the transport equation (1)

is a real equation and, as we are interested (for physical reasons) on real solutions, then Φ = Φ∗,
that is, φlm

∗ = (−1)mφl,−m so there are only 2l + 1 real independent moments for each l > 0,

that is, {φl0,Reφlm, Imφlm,m = 1, . . . , l}.
It will also be assumed that scattering depends only on the relative angle between the incident

and the scattered neutrons, ~Ω ~Ω′, and that the scattering cross-section may be expanded as the

following series of Legendre polynomials:

Σs(~r, ~Ω ~Ω′) =
∞
∑

l=0

2l + 1

4π
Σs,l(~r)Pl(~Ω ~Ω′) . (4)

Expansions (3) and (4) and the orthogonality properties of Y m
l are then used into Eq. (1). From

these expressions it can be obtained the following (infinite) set of (complex) equations for the

spherical harmonics moments φlm [8]:

1

2

(

−C1(l + 1,m+ 1)
∂φl+1,m+1

∂x1

+ C2(l,m)
∂φl−1,m+1

∂x1

− C1(l,m)
∂φl−1,m−1

∂x1

+ C2(l + 1,m− 1)
∂φl+1,m−1

∂x1

)

+
1

2i

(

−C1(l + 1,m+ 1)
∂φl+1,m+1

∂x2

+ C2(l,m)
∂φl−1,m+1

∂x2

− C1(l,m)
∂φl−1,m−1

∂x2

+ C2(l + 1,m− 1)
∂φl+1,m−1

∂x2

)

+ C3(l + 1,m)
∂φl+1,m

∂x3

+ C3(l,m)
∂φl−1,m

∂x3

+ Σt φlm

= Σs,l φlm + δl0δm0
1

λ
νΣf φ00 , l = 0, 1, . . . , m = −l, . . . ,+l ,

(5)

(Cj(l,m) are numerical coefficients). It is understood that terms involving moments φlm with

invalid indices l and m are zero. To obtain a finite approximation, the series in expansions (3)

and (4) are truncated at some finite order l = L and the resulting Eqs. (5) are known as the

(complex) PL equations. In the following, we will only consider L to be an odd integer.
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If we take real and imaginary part in Eqs. (5) and define the real moments

ξlm = Reφlm =
1

2
(φlm + (−1)mφl,−m) ,

ηlm = Imφlm =
1

2i
(φlm − (−1)mφl,−m) ,

(6)

we can easily obtain the real form of PL equations.

From the index structure of Eqs. (5) it is convenient to gather even l moments into vectors

X = (ξl,m≥0, ηl,m>0)l=even, with ne = L(L+1)/2 components, and odd l moments into vectors

X̄ = (ξl,m≥0, ηl,m>0)l=odd, with no = (L+1)(L+2)/2 components (for example, if L = 1 then

X = (ξ00) and X̄ = (ξ10, ξ11, η11)
T ). Then the real form of PL equations (5) can be rewritten as

3
∑

j=1

Mj

∂X̄

∂xj

+ Σa X =
1

λ
diag(δl0 νΣf )l=even X , (7)

X̄ = −D
3

∑

j=1

M̄j

∂X

∂xj

, (8)

where Σa = diag(Σt − Σsl)l=even, Σ̄a = diag(Σt − Σsl)l=odd, D = Σ̄−1a = diag(Σt − Σsl)
−1
l=odd

is a square matrix, and Mj and M̄j are rectangular matrices (of dimension ne× no and no× ne,

respectively) defined from the coefficients of Eqs. (5). Eq. (8) corresponds to a generalization

of Fick’s law. Replacing Eq. (8) into Eq. (7) we obtain the diffusive form of PL equations

−

3
∑

i,j=1

∂

∂xi

(

MiDM̄j

∂X

∂xj

)

+ ΣaX =
1

λ
diag(δl0 νΣf )l=evenX . (9)

The (square) effective diffusion matrices MiDM̄j generalize the diffusion coefficient 1/(3(Σt−

Σs1)) of P1 equation to PL equations for L > 1.

Finally, Eq. (9) corresponds to 3D geometry. Lower dimensional geometries are obtained by

imposing restrictions to the angular neutronic flux. The XY (2D) geometry describes a medium

with cross-sections and source independent of Z direction and can be obtained by imposing that

the angular neutronic flux does not depend on the third coordinate, Φ = Φ(x, y, ~Ω), so ∂Φ
∂z

= 0,

and also must satisfy the symmetry relation Φ(θ) = Φ(π − θ), so the moments φlm = 0 if

l +m is odd. The planar (1D) geometry describes a medium that is transversely infinite (in the

XY plane) with cross-section and source variation only in the Z direction; this case is obtained

imposing that the neutronic flux Φ = Φ(z, θ) so the only nonzero moments are φl,m=0 = ξl0
and they are real.

2.2 Interface conditions

At points where the source or any cross-section is discontinuous, Eqs. (7) and (8) are undefined,

and we will require some sort of interface conditions for these regions [13]. Let us replace

the interface with a very thin transition region, where the physical properties of the medium
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change rapidly, but continuously. If, for example, the discontinuity occurs at a YZ plane with

coordinate x1 = x1,0, the transition region extends from x1,0 − ∆ to x1,0 + ∆. On integrating

the PL equations (7) and (8) over the transition region, we arrive at the following interface

conditions

lim
∆→0+

M1 X̄(x1,0 +∆) = lim
∆→0+

M1 X̄(x1,0 −∆) , (10)

lim
∆→0+

M̄1 X(x1,0 +∆) = lim
∆→0+

M̄1 X(x1,0 −∆) . (11)

But matrix M̄1, of dimension no × ne (with no > ne for odd L approximation) has rank ne, so

the second equation implies continuity of even order moments X at the interface,

lim
∆→0+

X(x1,0 +∆) = lim
∆→0+

X(x1,0 −∆) . (12)

On the other hand, as dim(M1) = ne × no, the first equation gives ne linear relations between

the no (> ne) odd moments X̄ , so it is not possible to impose continuity of all the moments.

2.3 Boundary conditions

Vacuum boundary conditions as given by Eq. (2) can be approximated by setting Marshak’s

conditions [12]
∫

~Ω~n≤0

d~Ω Y m
l
∗(~Ω)Φ(~r, ~Ω) = 0 , (13)

for l = 1, 3, 5, . . . , L (odd) and m = 0, 1, . . . , l. Notice that (13) is complex so there are 2l + 1
real conditions for each odd index l.

We will only consider regions with prismatic geometry where we can use the symmetry Y m
l (−~Ω) =

(−1)lY m
l (~Ω). Inserting the expansion given by the equation (3) into Marshak’s conditions (13),

it results into the conditions

1

2
φlm +

L−1
∑

l′ even
−l′≤m′≤l′

(

∫

~Ω~n≤0

d~Ω Y m
l
∗(~Ω)Y m′

l′ (~Ω)
)

φl′m′ = 0 , (14)

for l = 1, 3, 5, . . . , L and m = 0, 1, . . . , l. Taking real and imaginary part in (14), Marshak’s

conditions can be written as

X̄ +N X = 0 , (15)

where real vectors X and X̄ were previously defined and N is a real rectangular matrix (of

dimensions no × ne) with elements

N(lm),(l′m′) = 2

∫

~Ω~n≤0

d~Ω Y m
l
∗(~Ω)Y m′

l′ (~Ω)

((lm), l odd, are row indices; (l′m′), l′ even, are column indices, with appropriate ordering),

whose numerical values depend on the geometry of the boundary surface, that is, the spatial

axis normal to the boundary surface.
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Notice that Marshak’s conditions (15) depend on the order L of the angular approximation and

form a system of no linear equations. We treat the discontinuity between the external surface

and the interior region by inserting a very thin transition region. If, for example, the boundary

surface has normal vector ~n pointing to X axis and is located at x1 = x1,0, the transition region

covers the interval [x1,0, x1,0 +∆]. We obtain the following interface conditions:

lim
∆→0+

M1 X̄(x1,0 +∆) = M1 X̄(x1,0) and lim
∆→0+

X(x1,0 +∆) = X(x1,0) , (16)

so X is continuous at the interface but, using Eq. (15), X̄ satisfies the interface condition

lim
∆→0+

M1 X̄(x1,0 +∆) = −M1 N X(x1,0) , (17)

that is, a system of ne linear conditions.

Reflective boundary conditions are applied at planes of symmetry. If physical conditions are

equal at both sides, the neutronic flux must satisfy, at the symmetry plane, Φ(~r, ~Ω) = Φ(~r,
~̃
Ω),

where
~̃
Ω is the reflected angular direction with respect to the symmetry plane. For example, if

the normal vector ~n to the symmetry plane points to the negative Z axis, the symmetry condition

is

Φ(~r, ϕ, θ) = Φ(~r, ϕ, π − θ) , for 0 < ϕ < 2π , 0 < θ < π/2 . (18)

Inserting expansion (3), this equation is equivalent to the following

∞∑

l=0

+l∑

m=−l

(1− (−1)l+m)φlm(~r)Y
m
l (~Ω) = 0 ,

that is,

φlm = 0 , whenever l +m odd (l = 0, 1, . . . ; m = 0, 1, . . . , l) . (19)

2.4 The nodal collocation method

Since PL equations (9) have a diffusive form, their spatial discretization can be done using

a nodal collocation method, previously used for the neutron diffusion equation [14, 15] and

generalized for eigenvalue problems in multi-dimensional rectangular geometries in [6, 7, 8].

Given a rectilinear mesh with vertex coordinates {x1,i1 , x2,i2 , x3,i3}, where ij = 0, 1, . . . ,mj

(j = 1, 2, 3) are vertex indices, the spatial domain is discretized into N (≤ m1 × m2 × m3)

adjacent rectangular prisms, or nodes, of the form N e = [x1,i1 , x1,i1+1] × [x2,i2 , x2,i2+1] ×
[x3,i3 , x3,i3+1], being e = 1, . . . , N the index that enumerates the nodes, once an appropriate

node ordering has been chosen, see Fig. 1. The nodal collocation method assumes that on each

node N e the cross-sections in Eq. (1) are constant.

The change of variables uj =
1

∆xe
j

(
xj −

1

2
(xj,ij + xj,ij+1)

)
, j = 1, 2, 3, where ∆xe

j = xj,ij+1 −

xj,ij , transforms the node N e into the cubic node of volume one N e
u = [−1

2
,+1

2
]3. For each

node N e
u, it is assumed that the spatial dependence of vector Xe(u1, u2, u3) of l even moments
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Figure 1: Sample rectilinear mesh covering the domain for 2D geometry. A natural ordering for spatial nodes Ne

has been chosen.

(defined in Eq. (9)) can be expanded in terms of (orthonormal) Legendre polynomials Pk(u) [6]

up to a certain finite order M ,

Xe(u1, u2, u3) =
M
∑

k1,k2,k3=0

xe
k1k2k3

Pk1(u1)Pk2(u2)Pk2(u3) , (20)

where the Legendre coefficients xe
k1k2k3

are the unknowns to be determined. The series (20) is

then inserted into Eqs. (9) and equations for the Legendre moments xe
k1k2k3

are derived multi-

plying by the weight function Wr1r2r3 = Pr1(u1)Pr2(u2)Pr3(u3), r1, r2, r3 = 0, 1, . . . ,M , and

integrating over the cube N e
u.

In performing this process, integration of “diagonal terms” in Eqs. (9), that is, Σa X
e and

diag(δl0 νΣf )l=evenX
e, is straightforward using the orthonormality properties of Pk(u).

Double derivative terms in Eqs. (9) involve coupling with neighbouring nodes using interface

conditions. If node N e
u is an interior node and, for example, the boundary between two adjacent

nodes falls in the YZ plane, with normal vector to the surface pointing to the negative X axis,

adjacent nodes are then related imposing (2 × ne) interface conditions given by Eqs. (10) and

(12),

Xe(u1 = −
1

2
, u2, u3) = Xe1(u1 = +

1

2
, u2, u3) , (21)

M1 X̄
e(u1 = −

1

2
, u2, u3) = M1 X̄

e1(u1 = +
1

2
, u2, u3) . (22)

In the case that the node N e
u is adjacent to the vacuum boundary as, for example, when the

vacuum boundary falls in the XY plane and the normal vector to the surface points to the

negative Z axis, then Marshak vacuum boundary conditions and interface conditions (17) are

used,

M3 X̄
e
(

u1, u2,−
1

2

)

= −M3 N
−

3
Xe

(

u1, u2,−
1

2

)

. (23)
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Finally, once an appropriate ordering of the indices is chosen, the previous procedure approxi-

mates Eqs. (9) by a generalized eigenvalue problem

AV =
1

λ
B V , (24)

where V is a real vector of components (ξm;e
l;k1k2k3

, ηm;e
l;k1k2k3

) and A, B are matrices of dimension

N ×G×NLeg × ne , (25)

where N is the number of nodes; G is the number of energy groups; NLeg = Md is the number

of Legendre moments, with M the order in Legendre series (20) and d the spatial dimension

and finally ne = L(L+1)/2 is the number of components of vector X (i.e. the number of even

l moments), being L the order of the PL approximation.

3 CALCULATION OF THE SEVEN-GROUP 2D C5G7 BENCHMARK

The spherical harmonics-nodal collocation method described in the previous sections has been

implemented into the multi-group multi-dimensional code SHNC (Spherical Harmonic-Nodal

Collocation) written in FORTRAN 90. The SHNC code computes and solves the discretized

generalized real non-symmetric eigenvalue problem (24), that is formulated as B V = λAV ,

where A, B are large and sparse matrices, for an arbitrary PL approximation, with odd L.

The largest eigenvalue λ ∈ R is effectively computed on parallel computers using the soft-

ware library SLEPc [10], that is based on the PETSc [11] data structures and employs the MPI

standard. The perfomance of the code and the accuracy and convergence of the method have

been already tested in previous works [6, 7, 8], with several eigenvalue problems in multi-

dimensional geometries.

In this work, we analize the application of the SHNC code to calculate the two-dimensional

C5G7 fuel assembly benchmark. The Nuclear Energy Agency (NEA) of the Organization for

Economic Cooperation and Development (OECD) proposed the C5G7 benchmark to test the

ability of modern deterministic transport methods to treat reactor heterogeneous core problems

without spatial homogenization [9]. This benchmark problem has been analyzed with various

code packages [9], and a reference solution was obtained using the Monte Carlo code, providing

the keff eigenvalue solution, and also the core pin power predictions.

Now we present the PL results of the 2D C5G7 benchmark obtained with SHNC, in order to

study the convergence and accuracy of the SHNC PL solutions. The PL results will be com-

pared with the reference MCNP solutions [9]. For all computations, a Krylov-Schur method was

chosen as eigensolver and linear systems were iterative solved with the biconjugate gradient sta-

bilized (BCGs) method using HYPRE BoomerAMG as parallel preconditioner. Computational

times vary from some hours to a few days on a Xeon CPU E5-2650 using 8 cores.

The configuration of the 2D C5G7 MOX benchmark consists of a core with two MOX and

two UO2 fuel assemblies surrounded by a moderator region, as it is shown in Fig. 2(a) for the

quarter core. Vacuum boundary conditions are applied to the right and to the bottom boundaries,

and reflective conditions to the top and to the left boundaries. Each fuel assembly consists of
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17 × 17 lattice of square fuel pin cells, the geometry and composition of a fuel pin cell can be

seen Fig. 2(b). Every fuel pin cell consists of a single moderator region outside a circular region

(fuel-clad mix) representing a fuel pin, a fission chamber or a guide tube. The same moderator

composition is used in all the fuel pin cells and in the water reflector (moderator) surrounding

the assemblies (see Fig. 2(a))

21.42 cm

21.42 cm

21.42 cm

Vacuum B.C.

Reflected B.C.

V
a

c
u

u
m

 B
.C

.

R
e
fl

e
c
t
e
d

 B
.C

.

Moderator

UO2

UO2

MOX

MOX

(a)

0.54 cm

1
.2

6
 c

m

Fuel−Clad Mix

Moderator

(b)

Figure 2: (a) The core configuration for the 2D C5G7 benchmark problem, and (b) a fuel pin cell geometry

showing regions of fuel and moderator.

More details about the fuel pin cell compositions and the seven-group isotropic scattering cross-

sections for UO2, MOX, the guide tubes, fission chamber and the moderator are provided in [9].

To calculate the solution of the C5G7 benchmark with SHNC, two different types of mesh

discretizations of the pin cells were used, both preserving the circular region area. Fig. 3(a)

shows the rectangular mesh type A, with 6 × 6 cartesian nodes per lattice pin cell. Fig. 3(b)

shows a finer level of spatial resolution, the mesh type B, with the pin cell divided into 7 × 7

nodes.

Also, for each type of mesh discretization, A and B, we have used two different models corre-

sponding to different levels of spatial resolution for the moderator region extended to the right

and bellow the outer assemblies.

The discretization with meshes type A and B for the pin cells, were continued for every cell

in the moderator region, giving a calculation with a total of 306 × 306 = 93636 2D spatial

nodes for mesh A and 357 × 357 = 127449 nodes for mesh B, named as meshes A1 and B1,

respectively.

Another spatial discretization was then considered for the moderator region, that is schemati-

cally described in Fig. 4 for mesh type B, and taken in a similar way for mesh type A. These
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Figure 3: (a) Mesh A: SHNC spatial discretization by a 6 × 6 nodes, and (b) Mesh B: spatial discretization by a

7× 7 nodes.

models are named as A2 and B2. The highly anisotropic behavior of the flux is localized in

the vicinities of MOX assemblies. Then, in order to obtain a smooth transition, the fuel region

nodalisation was continued for the first 6 neighbouring cells in the moderator (see Fig. 4). Then,

meshes A1 and A2 allow us to obtain a reference PL solution. As meshes A2 and B2 give about

a 34% reduction in the number of nodes, we will check if there is loss of precision in the results

with this reduction.

cells

34 x 6

6 x 34

cells

34 x 34

pin cells

MODERATOR

CORE

Figure 4: Schematic description of B2 mesh, showing the grid of the moderator region.
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The numerical PL results using each type of mesh were calculated with different Legendre

polynomial order (Eq. (20), M = 3 and M = 4). Table 1 shows the keff eigenvalue solutions

obtained with the PL approximations and percent relative errors with respect to the reference

MCNP solution, defined as 100(kSHNC

eff
−kMCNP

eff
)/kMCNP

eff
. The statistical error for the reference

MCNP solution in the Table is associated to the 98% confidence interval.

MCNP: keff = 1.186550 (±0.008)

SHNC M keff and percent error SHNC M keff and percent error

Mesh A1 Mesh A2

P1 3 1.183922 (−0.221) P1 3 1.183700 (−0.240)

4 1.183813 (−0.231) 4 1.183818 (−0.230)

P3 3 1.180198 (−0.535) P3 3 1.180140 (−0.540)

4 1.177268 (−0.782) 4 1.176693 (−0.830)

Mesh B1 Mesh B2

P1 3 1.183433 (−0.263) P1 3 1.183244 (−0.279)

4 1.183056 (−0.294) 4 1.182943 (−0.304)

P3 3 1.187656 (+0.093) P3 3 1.186949 (+0.034)

4 1.183001 (−0.299) 4 1.181710 (−0.408)

Table 1: keff eigenvalue solutions and percent errors for the C5G7 benchmark, computed with different spatial

meshes and values of M .

As there are a total of 1056 fuel pins in the four assemblies type MOX and UO2, a direct

comparison of the pin power results against the reference solution in each individual pin would

be difficult. Therefore, several error measures were used in the form of average pin power

percent error (AVG), root mean square (RMS) of the pin power percent error distribution and

mean relative pin power percent error (MRE) [9]. In Table 2 we show the pin power distribution

error measures for the P1 and P3 solutions obtained with the four types of meshes described

above, for different values of the Legendre polynomial order M , together with the reference

MCNP solution. We observe that the error measures of the PL solutions decrease as the angular

order L increases and in general, the decrease of the P3 errors is greater when the order M is

increased from 3 to 4.

Table 3 gives the values of the maximum and the minimum pin power obtained with SHNC,

along with the percent errors with respect to the reference MCNP solutions.

The P1, P3 solutions for the MOX and UO2 assembly powers, and the reference MCNP are

shown in Table 4. The results shown in Tables 3 and 4 where calculated using the mesh A1,

with 6× 6 nodes per pin cell and Legendre polynomial order M = 4.

Figs. 5(a) and 5(b) display the contour maps of the P3 fast (group 1) and thermal (group 2) scalar

fluxes, respectively. For this calculation we used the B1 reference mesh and order M = 4.
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AVG RMS MRE

MCNP 0.32 0.34 0.27

SHNC M Mesh A1

P1 3 1.47 1.78 1.27

4 1.48 1.78 1.28

P3 3 0.89 1.04 0.88

4 0.63 0.74 0.61

SHNC M Mesh B1

P1 3 1.44 1.75 1.22

4 1.43 1.77 1.18

P3 3 1.14 1.34 1.15

4 0.85 1.00 0.84

Table 2: Pin power error measures for the 2D C5G7 benchmark.

Maximum Percent Minimum Percent Maximum

pin power error pin power error percent error

MCNP 2.498 ±0.16 0.232 ±0.58

SHNC P1 2.525 1.09 0.240 3.77 5.92

SHNC P3 2.521 0.93 0.234 1.24 1.85

Table 3: Specific pin powers and percent error results for 2D C5G7 benchmark.

Inner Percent MOX Percent Outer Percent

UO2 error error UO2 error

MCNP 492.8 ±0.10 211.7 ±0.18 139.8 ±0.20

SHNC P1 496.0 0.65 210.6 −0.52 138.8 −0.72

SHNC P3 495.5 0.54 210.5 −0.59 139.6 −0.10

Table 4: Assembly power and percent error results for 2D C5G7 benchmark.

4 CONCLUSIONS

We have studied the validity of the spherical harmonics-nodal collocation method to treat reac-

tor heterogeneous core problems as the 2D C5G7 MOX Fuel Assembly Benchmark. Although

the results are consistent with the reference solution, our eigenvalue results show oscillatory be-

haviour. Like any spectral method, PL equations may suffer from highly oscillatory behaviour.

This issue will be addressed in future works.

We also observe that the spatial approximation of the pin cell has less impact on the quality

of the calculations than the angular modeling. There are no significant differences between

the P1 results with meshes type A and B, but results for keff with the P3 approximation show
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Figure 5: Contour plot of the P3 fast (a) and thermal (b) flux distribution for C5G7 benchmark.

smaller errors when the spatial resolution is increased (meshes type B). We can conclude that

the PL keff eigenvalue solutions for mesh B are within the 98% confidence interval of the MCNP

eigenvalue. Better computational efficiency is obtained with meshes A2 and B2, that maintain

almost the same accuracy as the calculations with meshes A1 and B1, while the computational

time and memory required for the calculations is about a 34% lower.

A decrease of the pin power and assembly power error measures with respect to MCNP is

observed when the order L is increased. An advantadge of our method is that the pin power

maximum percent error is lower than in classical deterministic methods; this error usually rep-

resents the largest deviations between Monte Carlo calculations.

From the above results, we conclude that the SHNC PL approximation reproduces the power

distribution and the scalar flux reasonably well, being able to obtain consistent solutions for

typical reactor calculations, where P1 and P3 are practical approximations. The remaining

errors can be attributed to the high-order space-angle approximation necessary to solve this

particular benchmark problem.
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[14] A. Hébert, “Development of the nodal collocation method for solving the neutron diffusion

equation”, Ann. Nucl. Energ., Vol. 14(10), pp. 527-541, (1987).
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