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Abstract: Atrial fibrillation (AF) is the most common cardiac arrhythmia. At present, cardiac
ablation is the main treatment procedure for AF. To guide and plan this procedure, it is essential for
clinicians to obtain patient-specific 3D geometrical models of the atria. For this, there is an interest
in automatic image segmentation algorithms, such as deep learning (DL) methods, as opposed
to manual segmentation, an error-prone and time-consuming method. However, to optimize DL
algorithms, many annotated examples are required, increasing acquisition costs. The aim of this work
is to develop automatic and high-performance computational models for left and right atrium (LA
and RA) segmentation from a few labelled MRI volumetric images with a 3D Dual U-Net algorithm.
For this, a supervised domain adaptation (SDA) method is introduced to infer knowledge from
late gadolinium enhanced (LGE) MRI volumetric training samples (80 LA annotated samples) to a
network trained with balanced steady-state free precession (bSSFP) MR images of limited number of
annotations (19 RA and LA annotated samples). The resulting knowledge-transferred model SDA
outperformed the same network trained from scratch in both RA (Dice equals 0.9160) and LA (Dice
equals 0.8813) segmentation tasks.

Keywords: supervised domain adaptation; MRI sequences; atrial geometry; semantic segmentation

1. Introduction

Atrial fibrillation (AF) is the most common sustained cardiac arrythmia. It has been es-
timated that 6–12 million people will suffer this condition in the US by 2050 and 17.9 million
people in Europe by 2060. Furthermore, this pathology is highly associated with morbidity
and mortality factors such as heart failure, ischemic and hemorrhagic strokes and provokes
important economic burden [1]. As in-depth knowledge of the physiopathology of the
disease remains lacking, the treatment of AF is a complex area.

At this moment, the most common method for treating AF patients is catheter ablation
to produce scars and electrically isolate the pulmonary veins (PV) [2]. The success rate of
this procedure is significantly higher in patients with paroxysmal AF than in patients with
persistent AF which develops fibrotic tissue areas that contribute to the maintenance of
AF. To improve the success rate in these patients, clinicians attempt to eliminate the AF
driver’s areas guided by complex navigating systems such as Carto or Navex [3].

Accurate segmentation of LA is highly desirable for patient specific scar character-
ization to select the most appropriate ablation strategy. Furthermore, to plan or guide
the procedure in patients with persistent or paroxysmal AF, patient specific 3D electro-
anatomical models of both the left and right atrium (LA and RA) are required. These
models are obtained by integrating the electro-anatomical information provided by the
navigating systems with a 3D geometrical reconstruction of the atria [4].
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Notably, 3D patient-specific reconstructions are obtained from the segmentation of
MRI and CT images. Cardiac MRI is considered the gold standard for cardiac chamber
evaluation including LA and RA. Different image modalities include the balanced steady-
state free precession (bSSFP) sequences and late gadolinium enhanced MRI (LGE-MRI). In
clinical practice, bSSFP sequences are widely used for LA size characterization due to their
excellent blood to myocardium contrast and high spatial resolution [5]. On the other hand,
LGE-MRI techniques provide enhanced brightness in fibrotic or infarcted regions, and
they are currently used to study the extent of fibrotic tissue in the atria [6]. Furthermore,
recent LGE-MRI studies of the atria have led to important advances in understanding and
reversing AF [7,8].

In clinical practice, cardiac MRI segmentation is performed manually by experts which
is a time-consuming, labor-intensive and error-prone method. Therefore, there is a need for
computational methods for automatic image segmentation. However, high segmentation
accuracy remains a challenging task, especially for LA due to its complex geometry [9].
Furthermore, given the diversity of MRI sequences used in the clinical environment, the
heterogeneous domain shift is a hot-topic research field [10]. For example, as shown in
Figure 1, cardiac regions appear significantly different visually in images acquired using
bSSFP and LGE-MRI cardiac acquisitions.
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to the enhanced brightness of infarcted regions obtained in LGE-MRI. Atrial cavities are labelled as
LA (left atrium) and RA (right atrium).

Deep learning (DL) techniques have recently gained popularity in atrial segmenta-
tion applications. However, the need for model re-training each time that an external
database is provided supposes a significant limitation for their adoption in the clinical
practice. Furthermore, it must be remarked upon that although most works focus on the
LA segmentation task [11–13] due to its complex geometry and PV ablation strategies, the
segmentation and reconstruction of the RA has an equally important role for the generation
of electro-anatomical models that help to guide and plan ablation procedures, especially
in patients with persistent AF [4]. Therefore, there is a growing importance in obtaining
models that accurately segment both atrial cavities.

In this work, we present a novel supervised domain adaptation (SDA) framework for
LA and RA segmentation tasks. Our approach transfers the knowledge acquired from an
LGE-MRI source domain, in which a large, labelled database is available to a b-SSFP-MRI
target domain characterized by just a few labelled samples.

The aim is to introduce feature transfer learning techniques in a two-stage 3D U-
Net [14] to obtain high accuracy 3D MRI segmentation models capable of segmenting
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the LA and RA in a target domain composed of few labelled examples. To accomplish
this, the supervised domain adaptation technique is formulated in two different scenarios:
“different domain, same task” and “different domain, different task” occurrences. Note that
this paper extends the preliminary results obtained in [15]. Compared to [15], in this work,
we formally formulate the proposed SDA framework, and we extend the validation of our
methodology, including an external bSSFP composed of 19 patients with RA annotations.
These annotations were manually carried out by the radiologists involved in this work (see
Data Availability statement).

The remainder of the paper is organized as follows: In Section 2, we provide an
overview of automatic medical image segmentation methods and supervised domain adap-
tation techniques. In Section 3, the proposed atrial segmentation framework is presented
by describing the materials and methodology used. In Section 4, the extensive experiments
to validate the proposed approach are described, and results are presented. In Section 5,
we provide a discussion of our results, summarize the contributions of this paper and
provide some future research directions.

2. Related Work
2.1. Automatic Medical Image Segmentation

In the field of medical image segmentation, early automated algorithms consisting
of thresholding methods and region growing approaches, such as watershed methods,
have been widely used. For example, Huang et al. [16] applied watershed algorithms for
automatic contouring of breast tumors in US images, and more recently, Masoumi et al. [17]
applied watershed algorithms in MRI images with artificial neural networks for liver
segmentation. However, the performance of these methods is highly sensitive to boundary
contrast and image noise.

By contrast, other region-based methods such as active contours have demonstrated
good performance in challenging segmentation problems [18]. For example, Zhao et al. [18]
applied active contours with different types of region information for blood vessel seg-
mentation achieving promising results. Ciecholewski et al. [19] used active contours for
semi-automatic segmentation of corpus callosum in MR images.

More recently, superpixel-based methods have been proposed to improve the efficiency
and robustness of the segmentation procedures. For example, Tian et al. [20] presented a
superpixel-based graph-cut model which is iteratively used along with an active contour
model to obtain smoother segmentations in prostate MR images. Nguyen et al. [21] applied
superpixel methods with multi-atlas segmentation to optimize the image registration
process. The above methods are characterized for providing an alternative to machine
learning (ML)-based segmentation techniques.

Furthermore, multi-atlas-based segmentation and, more recently, ML algorithms such
as support vector machines as statistical classifiers, have also gained interest in the field
of cardiac image segmentation and classification. Despite the promising results shown by
both the non-ML and ML methods mentioned above, their ad hoc nature and reliability on
good initialization have limited their widespread adoption in clinical practice [22].

In recent years, the development of hardware for higher computational power and the
growth of clinical databases has enabled the expansion of machine learning (ML) methods
into deep learning (DL) algorithms, capable of automatic feature learning and extraction, in
the field of image classification and segmentation. Convolutional neural networks (CNNs)
with encoder-decoder architectures such as U-Net [23] are widely used in medical image
segmentation. Furthermore, 3D extensions of the U-Net [24] have gained popularity as
they provide better spatial representation, fully exploiting inter-slice continuity during
training [14]. In atrial segmentation tasks, several 3D U-Net variants have been proposed
achieving very promising results. The authors of [11] extended 3D U-Net with hierarchical
aggregation to obtain better spatial fusion information. The authors of [12] proposed a 3D U-
Net with dilated convolutions in the lowest level of the network to extract features spanning
a wider spatial range. Furthermore, they cropped the input images around the region of
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interest as a pre-processing step. For the STACOM 2018 Atrial Segmentation Challenge [25],
the authors of [26,27] proposed a 3D U-Net with a dual strategy for localization and
segmentation of LA cavity achieving high-accuracy results. More recently, the authors
of [13] extended the 3D Dual U-Net strategy by predicting density maps for LA localization
with promising results. However, the aforementioned methods [13,26,27] were trained
with a large and labelled dataset (the STACOM 2018 challenge dataset), and the authors
of [26,27] do not validate their results with an external dataset.

2.2. Supervised Domain Adaptation

Given a source domain DS with a corresponding source task TS and a target domain
DT with a corresponding task TT, transfer learning is the process of improving the target
predictive function fT(·) by using the related information from DS and TS, where DS 6= DT
or TS 6= TT [28]. Image domains are expressed with a feature space S and a probability
distribution P(x) where X = {x1,x2, . . . ,xn} ∈ S. In this context, domain adaptation (DA)
refers to the “different domain, same or related task” scenario where DS 6= DT due to
differences in the samples distribution P(x), for example, when data are acquired from
different scanning protocols [29]. The aim of DA is to leverage knowledge learned on a
source domain normally consisting of large amounts of data and apply it to a different
but related target domain with few labelled data [30]. This work falls in the category of
supervised domain adaptation (SDA). Given a source training dataset with pairs DS = {(xS

i,
yS

i)}N
i=1 with random variable xS

i ∈ XS and label yS
i ∈ YS and a target training dataset

DT = {(xT
i, yT

i)}M
i=1 with xT

i ∈ XT and label yT
i ∈ YT, the goal of SDA is to improve fT(·)

where M� N and DS 6= DT [31].
Many DL applications require large amount of labelled data representative of the target

task for their optimization. In medical image segmentation, large amounts of labelled target
data are often not available or come with high-acquisition and labelling costs. In this case,
the typical approach is to use the available datasets (source data) representative of a closely
related task but often of different domain due to different scanners or acquisition protocols.
SDA techniques were developed to improve the performance of this approach [31].

DA is a widely used technique in transfer-learning scenarios for medical image applica-
tions due to its ability to transfer knowledge from different image domains. A comparison
of DA approaches for medical image classification and segmentation application can be
observed in Table 1. Existing DA approaches include instance transfer and weighting DA
strategies where the goal is to align the source and target domains by a transformation
of the feature space [32–34]. However, these strategies are limited to the “same task” sce-
nario application. With the development of deep-learning methods, feature transfer DA
approaches have become increasingly popular due to their ability to transfer information
from different domains and different tasks. This is achieved by pre-training a network
with a large and available source dataset and fine-tuning the network for a target task [29].
Several works used this approach for image classification tasks [35,36].

More recently, DA approaches have been also applied to medical image segmentation
(pixel-wise classification) tasks achieving promising results. The authors of [37] explored
unsupervised DA (UDA) with adversarial networks for brain segmentation achieving
promising results; however, adversarial training requires subtle parameter tuning. Fur-
thermore, UDA approaches are consistently outperformed with SDA methods which take
advantage of a few labelled target samples. Existing works focusing on feature transfer-
SDA for medical image segmentation are limited and mostly focus on brain segmentation.
For example, Reference [38] explores SDA methods for sub-cortical brain structure seg-
mentation by comparing pre-trained networks fine-tuned with small target samples with
fully trained networks and achieving similar accuracy results. Reference [39] compares the
performance for brain lesion segmentation in a domain-adapted network and a network
trained with the same examples “from scratch” achieving significantly higher accuracy
results in the domain adapted network. In the field of cardiac MRI segmentation, the
authors of [10] pre-trained a network with bSSFP MR images and fine-tuned the resulting
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models for LGE-MRI target domain with a few target samples for ventricular segmentation
task outperforming the same network without DA. However, in this work, the multi-class
segmentation task is kept the same across the different domain instances. As can be ob-
served in Table 1, previous segmentation works focusing on feature transfer with network
pre-training have limited their application to same source and target task scenario.

Table 1. Overview of DA applications. UDA: unsupervised domain adaptation, SDA: supervised domain adaptation.
Transfer type column refers to DA transfer technique, i.e., feature adaptation, instance transfer (weighting or aligning
samples), or feature transfer (pre-training on same or different auxiliary task).

First Author Application Task Transfer Type Pros/Cons

UDA

Kamnistas et al. [37] Segmentation of
abnormalities Same Feature

adaptation No labels/subtle parameter tuning

SDA

Conjeti et al. [32] Tissue
classification Same Instance transfer, align Considers local and global domain/only

align similar features

Wachinger et al. [34] AD classification Same Instance transfer,
weights

Good accuracy with small target
labels/weight selection

Menegola et al. [35] Melanoma
classification Different Feature transfer,

pre-training
Fine-tuned outperforms baseline

models/relies on size of source dataset

Ribeiro et al. [36] Polyp
classification Different Feature transfer,

pre-training
Comparative study/conclusions not

always hold

Kushibar et al. [38] Brain
segmentation Same Feature transfer,

pre-training
Fine-tune with small target sample/only

applied to same task

Ghafoorian et al. [39] Brain lesion
segmentation Same Feature transfer,

pre-training
Last dense layers fine-tuning/only

applied to same task

Vesal et al. [10] Ventricle
segmentation Same Feature transfer,

pre-training
Good results in multi-class

segmentation/only applied to same task

To the best of the authors’ knowledge, no previous works have explored the field
of SDA for both LA (TS) and RA (TT) atrial segmentation tasks. Inspired by this, our
purpose here is to formulate and give a solution to the two-fold SDA scenarios, i.e., DS 6=
DT and TS = TT and DS = DT and TS 6= TT, improving the ability of generalization of atrial
segmentation models making steps forward in the adoption of computer-aided diagnosis
systems based on deep learning in the clinical practice.

3. Materials and Methodology
3.1. Materials

Three public databases coming from different sources were used to develop and
evaluate the proposed SDA framework for LA and RA segmentation.

Database 1 was a result of the STACOM 2018 Atrial Segmentation Challenge. It
contains 100 3D LGE-MRIs images from patients with AF and their corresponding LA
binary segmentations. The data resolution is 0.625 × 0.625 × 0.625 mm3. All volumes are
characterized by the same number of slices (88), and there is little variation in terms of
image contrast among samples [25].

Database 2 was publicly released by the Multi-Modality Whole Heart Segmentation
(MM-WHS) challenge, in conjunction with MICCAI 2017 [40]. It contains 20 volumetric
MRI images from human patients with a data resolution of 0.8–1 × 0.81 × 1–1.6 mm3

and the corresponding binary segmentation masks of both RA and LA. All volumes had
between 256 and 512 slices each. In this work 19 volumetric images were used due to
quality controls. This dataset was acquired with a navigator-gated 3D b-SSFP sequence;
therefore, it is considered as a dataset of different domain to Database 1 [41].
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Database 3 was provided by STACOM 2013 Left Atrial Segmentation Challenge in
collaboration with MICCAI13 [42]. It contains 30 volumetric MRI images also acquired
using 3D bSSFP sequence with a voxel resolution of 1.25 × 1.25 × 2.7 mm3 and the
corresponding ground-truth binary segmentation of the LA cavity. All volumes had
between 300 and 400 slices each. This dataset contains a variety of quality levels in the
following proportions: 19 high and moderate quality and 11 with local artefacts and high
noise [43]. In this work, a quality control protocol was applied selecting the 19 patients
with good and moderate quality.

In addition, to further extend the validation of the RA segmentation models, a RA
ground-truth was generated from this database. The RA ground-truth was obtained by
manual segmentation performed by a radiologist (CF) (see Data Availability statement).

3.2. Methodology
3.2.1. Domain Adaptation

The scarcity of large and pixel-wise labelled datasets is one of the main problems of
deep-learning applications in the field of medical image segmentation. Domain adaptation
paradigm enables the transfer of knowledge from a large and labelled source dataset to a
target dataset of few examples and different domain [29]. In this work, an SDA technique
is formulated for two different scenarios. On the one hand, the segmentation of LA cavity
in the sample-constrained bSSFP domain (i.e., Database 2) is faced by transferring the
knowledge acquired on the 100 labelled LA instances from the source LGE-MRI domain
(i.e., Database 1) under a “different domain, same task” premise. On the other hand, a “different
domain, different task” scheme is proposed taking profit from the knowledge encoded during
the LA segmentation task on the source LGE-MRI domain (i.e., Database 1) and transferring
it to solve a RA segmentation task in a different bSSFP target domain (i.e., Database 2).

Let θLGE
LA be a source model associated with DS ≡ DLGE = {SS, P(XS)} as LGE-MRI

image domain with feature space SS and probability distribution of P(XS) where XS = {xS
1,

xS
2, . . . , xS

n} ∈ SS, TS a LA segmentation learning task and YS label space of binary LA
segmentation masks. In supervised learning, θLGE

LA can be optimized by using a pair of
samples {xS

i, yS
i}N

i=1 where xS
i ∈ XS and yS

i ∈ YS. After the learning process, the model
can be used for solving the TS task in DLGE domain.

Inspired by the domain adaptation paradigm, we can define two target models, each
responsible of solving different associated learning tasks (TT), under DT ≡ DbSSFP = {ST,
P(XT)} image domain and a small label space YT with both RA and LA segmentation
masks available. One model is tasked with LA segmentation (ψbSSFP

LA) and the other with
RA segmentation (ψbSSFP

RA). The idea is to transfer the learned weights from θLGE
LA to

improve the predictive function of θbSSFP
LA and θbSSFP

RA making use of the {xT
i, yT

i}M
i=1

set of samples, where M� N. Note that in the first case we have defined an SDA scenario
in which DS 6=DT and TS = TT, whilst in the second, DS 6= DT and TS 6= TT.

In this work, the proposed SDA framework was built upon the dual 3D U-Net pro-
posed by [14] (see Section 3.2.2 for more details). First, this encoder–decoder CNN was
pre-trained on the large, labelled source LGE-MRI dataset giving place to the θLGE

LA model.
The knowledge acquired on the source domain during the learning procedure was

transferred, in a second training stage, to the target domain via weight initialization. In
particular, the target encoder, bottleneck and decoder of the dual 3D U-Net were initialized
to the resulting θLGE

LA weights. Then, the network was fine-tuned using the target bSSFP
dataset of different domain and few labelled samples for both LA and RA tasks individually.
The proposed SDA pipeline is illustrated in Figure 2, where the final bSSFP adapted models
are denoted as ψbSSFP

LA and ψbSSFP
RA for LA and RA segmentation tasks, respectively.

Note that for both segmentation tasks, the loss function, data augmentation scheme and
hyperparameters were kept the same.
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3.2.2. Dual 3D U-Net

As we mentioned in Section 3.2.1, the proposed SDA framework is built upon the
dual 3D U-Net architecture proposed by [14] and illustrated in Figure 3. The 3D U-Net is a
specialization of the net proposed by [24] and the implementation follows the work of [44].
It consists of a two-stage network. In the first stage, the network is tasked with locating
the region of interest (in this work LA/RA). This preliminary segmentation output is then
passed through a processing function that computes the spatial location of the atria and
crops the image and masks with a cuboid centered around the region of interest. In the
second stage, the training is performed with the cropped images at full resolution. This two-
stage approach removes background noise and enables for a more precise segmentation.

The 3D U-Net is a five-level depth encoder–decoder architecture. Each level in the
encoder consists of a context module. Each context module is a pre-activation residual
block with two 3 × 3 × 3 convolutional layers with a dropout layer (p = 0.3) in between.
Context modules are connected by 3 × 3 × 3 convolutions with a stride = 2 to reduce
the dimensions of the feature maps. In the decoder the low-resolution feature maps are
up-sampled by repeating the feature voxels twice in the spatial dimension followed by
a 3 × 3 × 3 convolution that halves the number of feature maps. To reduce stochasticity
induced by small batch size, instance normalization layers are used instead of the more
traditional batch normalization. Skip connections propagate same level features from
encoder to decoder. In the decoder, segmentation layers at different levels are integrated
via concatenation to reduce the coarseness of the final segmentation output. The activation
function used throughout the network is the leaky ReLU with negative slope of 0.01 [44].
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4. Results
4.1. Experimental Configuration

The network was trained several times with fixed experimental settings. The input of
the network consisted of volumetric images resized to (224, 144, and 96) with a batch size
equal to 1. The number of base filters is 16, and at each level (0–4), the number of filters is
computed by (2level) × 16.

Training was performed using the Adam optimizer with an initial learning rate equal
to 5 × 10−4, which reduces by half after 10 epochs if the validation loss is not improving.
The convergence is defined as not improving after 50 epochs, and the maximum number of
epochs is 500 with 200 steps per epoch. The training–validation split ratio equals 0.8. In
addition, data augmentation techniques were used during training to reduce overfitting.
Geometric transformations such as image rotations (10 degrees of rotation range), image
shifts (in the range of 0.08) and zoom operations (with range equal to 0.2) were applied.
Furthermore, to avoid the issue of class imbalance a modified version the Dice loss function
introduced by [45] was used for training and validation. The binary class Dice coefficient
loss function is defined as follows:

LDC = − 2 ∑N
i pigi

∑N
i pi + ∑N

i gi + σ
(1)

where i refers to each voxel of the predicted (pi) and ground-truth (gi) binary segmentation
volumes of size N. The smoothness factor σ equals 0.00001 and was established to avoid
the division by 0.

The proposed framework was developed using TensorFlow and Keras, open-source
DL libraries for Python, and it was trained on a NVIDIA A100 Tensor with 40 GB RAM.
The training time of the network trained with Database 1 (100 LGE-MRI volumes) was 24 h,
whilst the network trained with Database 2 (19 bSSFP volumes) was comparatively faster,
with the learning process taking 6 h. The evaluation of the predicted segmentations was
performed via Dice coefficient and the average surface distance (ASD). The Dice coefficient
measures the degree of overlap between the prediction and ground-truth segmentations.
The ASD is defined as the average of the minimum distances (voxel-wise) between the
ground-truth and prediction object boundaries. The ASD is evaluated using the shortest
Euclidean distance of a voxel v to a point P, defined as:

d(v, P) = minp∈P||v− p|| (2)

4.2. Source Domain Model

Firstly, the dual 3D U-Net was trained and tested with a large number of labelled
images from LGE-MRI (source) domain. For this, Database 1 was employed which contains
100 volumes each of them composed of 88 slices. The aim of this experiment was to pre-
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train the network and obtain a high-performance model from which knowledge can be
inferred. The mean Dice coefficient and standard deviation obtained during evaluation
across the 20 testing volumes were 0.9155 ± 0.0270. The segmentation results for three
representative patients and slices of Database 1 can be observed in Figure 4.
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4.3. Supervised Domain Adaptation Models

In a second stage, the learned knowledge θLGE
LA in DLGE was transferred under the

proposed SDA framework via weight initialization. In this line, the dual 3D U-Net was
adapted for DbSSFP by retraining the network with few labelled samples of bSSFP. For
this purpose, Database 2 was employed which consists of 19 bSSFP volumetric samples.
The SDA was performed twice, once for LA segmentation task and the other for RA
segmentation task; thus, two domain-adapted networks were obtained.

Table 2 shows the Dice and ASD metrics of three LA segmentation models, each with
a different training strategy and evaluated with bSSFP test samples from Database 2. The
training strategies include the source model trained with LGE-MRI images and the models
trained with bSSFP samples (Database 2) with and without SDA. This table provides a
performance comparison of the domain-adapted network in the DS 6= DT and TS = TT
scenario. We use boldface to highlight the most important results in the tables.

Table 3 shows the Dice and ASD metrics for RA segmentation models with and
without SDA approach (DS 6= DT and TS 6= TT scenario).

Table 2. Dice coefficient and ASD for LA segmentation on bSSFP (Database 2) test data set.

Methods
Dice ASD [mm]

Patient 1 Patient 2 Patient 3 Mean ± σ Patient 1 Patient 2 Patient 3 Mean ± σ

LGE-MRI 0.7155 0.8030 0.7275 0.7487 ± 0.0474 2.3120 1.8907 4.5210 2.9079 ± 1.4128
w/o SDA 0.8693 0.8756 0.8736 0.8729 ± 0.0032 1.3614 1.2137 2.3517 1.6422 ± 0.6188
W-SDA 0.8781 0.8948 0.8707 0.8813 ± 0.0124 1.2522 0.9726 2.4132 1.5460 ± 0.7639

Table 3. Dice coefficient and ASD for RA segmentation on bSSFP (Database 2) test data set.

Methods
Dice ASD [mm]

Patient 1 Patient 2 Patient 3 Mean ± σ Patient 1 Patient 2 Patient 3 Mean ± σ

w/o SDA 0.9162 0.8773 0.8892 0.8942 ± 0.0199 0.9683 1.7313 2.1606 1.6201 ± 0.6039
W-SDA 0.9273 0.9043 0.9166 0.9160 ± 0.0115 0.7278 1.5357 1.6438 1.3024 ± 0.5006

4.4. External Database Validation

With the aim of providing an in-depth evaluation of the proposed SDA framework, an
external validation was carried out. The idea behind this experiment is to corroborate the
ability of generalization of the domain-adapted models. To this end, the trained models for
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bSSFP domain with and without adaptation were further validated with a testing database
of 19 volumetric bSSFP samples with 300–400 slices each (Database 3).

Tables 4 and 5 show the average inferred Dice coefficient and ASD metric for LA and
RA segmentation tasks, respectively. Note that in the case of LA segmentation the source
LGE-MRI trained model is included as baseline indicator (Table 3).

Table 4. Average Dice coefficient and ASD for LA prediction segmentation on bSSFP (Database 3)
test data set.

Methods Dice ASD [mm]

LGE-MRI 0.7552 ± 0.0640 2.9208± 1.6903
w/o SDA 0.8186 ± 0.0703 2.6311 ± 1.4620

w-SDA 0.8405 ± 0.0614 2.2574 ± 1.5047

Table 5. Average Dice coefficient and ASD for RA prediction segmentation on bSSFP (Database 3)
test data set.

Methods Dice ASD [mm]

w/o SDA 0.7724 ± 0.0996 3.2821 ± 1.8413
w-SDA 0.7993 ± 0.0928 2.8816 ± 1.6158

To further assess the evaluation performance of each model, qualitative results of the
segmentation predictions were obtained.

Figure 5 shows the axial view of predictions obtained for three representative patients
(and slices) of the testing cohort from Database 3 with the different trained models for
LA segmentation.
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Figure 6 shows the axial view of predictions obtained for three representative testing
patients (and slices) of Database 3 with the different trained models for RA segmentation.
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Figure 6. From left to right, axial slice of RA segmentations in networks w/o SDA (left) and w-SDA
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Furthermore, 3D reconstructions of the atrial cavities were obtained from the testing
patients of Database 3 to assess the geometry of the predicted segmentations.

Figure 7 illustrates the 3D reconstruction of the LA segmentation obtained by LGE-
MRI, bSSFP and bSSFP with SDA-trained models for two representative patients of
Database 3 as well as the ground-truth mask reconstruction for comparison.
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from Database 3.
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5. Discussion

In this section, we review the results obtained in the different experiments presented
in Section 4. Firstly, the source network was trained with a large number of annotated LGE-
MRI samples (Database 1). As can be observed, the model achieved very high accuracy
segmentation results. This is expected as Database 1 corresponds to the data provided by
the 2018 LA segmentation challenge [25], and the network proposed by [14] was specifically
designed to face this challenge. Therefore, by keeping the same learning parameters, the
Dice obtained coincides with the Dice reported in [14] (0.91–0.92). The segmentation masks
shown in Figure 5 further highlight the high-accuracy performance of this model.

As we can observe in Tables 2 and 3, for both LA and RA segmentation the domain
adaptation improved the segmentation performance in terms of Dice and ASD metrics.
Remarkably, with the proposed SDA methodology the RA segmentation average Dice
increased to 91%, and the ASD was reduced to 1.3024 mm. This is particularly interesting as
the knowledge was transferred from a source model pre-trained for a different segmentation
task (LA), which demonstrates the robustness of SDA approaches applied in a TS 6= TT
scenario. With this approach, models could be trained with a few labelled examples and
yield high-accuracy segmentation results regardless of the target segmentation task.

Furthermore, as we can observe in Table 2, the source LGE-MRI model obtained a
considerably lower Dice score (from 0.8813 to 0.7773) and higher ASD score (from 1.5460
to 2.9079 mm) when evaluated with Database 2. This illustrates how the performance of
a U-Net trained from a particular source domain, when transferred to a different target
domain, can drop unexpectedly, otherwise known as the domain shift problem. Compared
to the Dice average of evaluated methods presented in the Multi-Modality Whole Heart
Segmentation Challenge with the same database (0.815 for LA segmentation and 0.831
for RA segmentation) [41], the Dice obtained with our proposed method for both LA and
RA segmentation is considerably higher; note that in the RA segmentation task, the Dice
increment is almost 10%, which suggests that supervised DA and transfer learning is an
effective method for obtaining good quality LA and RA segmentation. Although each
testing volume contains between 100 and 200 image slices, to obtain more representative
results, an increased number of testing patients are needed. For this reason, the proposed
SDA framework is also assessed using an external database.



Entropy 2021, 23, 898 13 of 16

Tables 4 and 5 summarize the comparison results, in terms of Dice and ASD scores, of
the trained models evaluated with an external bSSFP database for LA and RA segmenta-
tion, respectively. As we can observe, the SDA models achieved superior segmentation
performance for both segmentation tasks, obtaining an average Dice and ASD score of
0.8405 and 2.2574 mm, respectively, for LA segmentation and an average Dice and ASD
score of 0.7993 and 2.8816 mm, respectively, for RA segmentation. These results suggest
that domain adaptation also improves the generalization capability of segmentation mod-
els. The results in Table 4 show that both bSSFP-trained models outperformed the source
LGE-MRI trained model, achieving a 10% of gain in Dice accuracy from the LGE-MRI
source model to the SDA-bSSFP model. This illustrates the importance of adapting the
domain of the models to the target segmentation. Furthermore, it should be noted that the
gain in Dice accuracy between bSSFP models with and without SDA is similar in both RA
and LA target segmentation tasks (2–3%), further proving the robustness of SDA methods.
Regarding the ASD metrics, an increased number of samples in the test set would be
needed to properly assess the statistical significance of the results.

Due to the absence of previous works that employ Database 3 solely as an external
validation dataset, we are not able to compare the generalization ability of our proposed
model. On the other hand, a visual representation of the increased performance of the
models with SDA can be seen in Figures 5 and 6 for LA and RA segmentation tasks,
respectively. As we can observe, the blood pool prediction segmentation of the LA and RA
performs best in the SDA model.

In addition, Figures 7 and 8 depict the 3D reconstruction of the prediction segmenta-
tion obtained by each trained model. Specifically, Figure 8 shows the increased performance
of LA segmentation from the source model to the SDA bSSFP model as the geometry of the
cavity becomes more similar in shape to the ground-truth reconstruction. Furthermore, the
domain shift problem can be qualitatively assessed as the LGE-MRI source model clearly
fails to generate an atrial geometry anatomically similar to the ground-truth. Figure 7
shows the combined reconstruction of LA and RA predictions in bSSFP models with and
without SDA. As we can observe with SDA, the overall geometry of the atrial cavities is
closer to the ground-truth.

In light of the results, transfer learning with a supervised DA approach enables that a
model trained with a few labelled samples could yield improved segmentation accuracy by
successfully leveraging knowledge from different image domains and segmentation tasks.
Furthermore, SDA models demonstrate a greater generalization capacity when evaluated
with external databases without retraining.

The limitations of this work remain similar to those presented in the previous work [15].
Specifically, more testing image data would be required to further validate the generaliza-
tion capability of the obtained model and to adequately evaluate the statistical significance
of the results. Given that the results promisingly show that the SDA-adapted models show
good performance in a bSSFP image domain without the need for retraining, image datasets
of more different domains would be needed to test if the improved generalization ability
can be extended to other domains. Due to the limited amount of public cardiac datasets
with LA and RA annotations, this constraint remains challenging to resolve; nevertheless,
since the last presented work [15], a dataset with RA annotations performed manually by a
radiologist has been generated as an attempt to reduce this main limitation.

6. Conclusions and Future Work

In conclusion, supervised DA approaches enable deep neural networks to be trained
with a few labelled examples to improve segmentation accuracy results by leveraging the
knowledge of a larger source dataset of a different domain. Furthermore, our proposed
framework has demonstrated that leveraging knowledge from different segmentation tasks
(LA to RA) could be useful for improving segmentation accuracy.

These results are the first step toward the integration of automatic segmentation algo-
rithms in the clinical practice for AF management where accurate segmentation models of
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both atrial cavities are needed to ensure the success of AF ablation procedures. Further-
more, the amount of manually labelled samples to train automatic computational models
is limited in clinical practice, especially for the RA. Therefore, it is extremely useful to
be able to leverage knowledge from models trained on LA segmentation tasks for RA
segmentation. In addition, as acquisition protocols vary in different centers, there is a
need to take advantage of the available clinical datasets even from a different domain for
computation learning. Our proposed method has proven to have greater generalization
capacity when trained with an external testing database, thus potentially eliminating the
need for retraining for each acquisition protocol employed.

The trained models should be further evaluated with external databases of differ-
ent domains and a large sample size to explore the role of SDA approach in increasing
segmentation accuracy and the generalization ability of the network. Furthermore, it
would be interesting to evaluate the obtained SDA models with RA segmentations manu-
ally generated by other trained experts to assess the effect of inter-user variability on the
results obtained.

As a future line of research and given the promising results obtained by SDA tech-
niques, we propose extending this framework to generate multi-organ segmentation mod-
els. Finally, the extent of the differences between source and image domains and source
and image tasks for SDA to remain effective should be further investigated (i.e., the effect
of introducing noise to the source domain, also known as adversarial attacks).
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