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Abstract: The Baranyi–Roberts model describes the dynamics of the volumetric densities of two
interacting cell populations. We randomize this model by considering that the initial conditions
are random variables whose distributions are determined by using sample data and the principle
of maximum entropy. Subsequenly, we obtain the Liouville–Gibbs partial differential equation
for the probability density function of the two-dimensional solution stochastic process. Because
the exact solution of this equation is unaffordable, we use a finite volume scheme to numerically
approximate the aforementioned probability density function. From this key information, we design
an optimization procedure in order to determine the best growth rates of the Baranyi–Roberts model,
so that the expectation of the numerical solution is as close as possible to the sample data. The results
evidence good fitting that allows for performing reliable predictions.

Keywords: uncertainty quantification; competitive stochastic model; model simulation; model
prediction; principle of maximum entropy; optimization

1. Introduction

Uncertainty is ubiquitous in almost all branches of Science, with particular emphasis
on biological problems, where complex factors, such as genetics, environment, resources,
etc., determine the characteristics of a population and its growth. This fact has motivated
many recent contributions to propose mathematical models that incorporate uncertainty to
describe the dynamics of populations via differential equations. One mainly distinguishes
two types of differential equations with uncertainty, namely stochastic differential equa-
tions (SDEs) and random differential equations (RDEs) [1]. The former term is reserved for
differential equations driven by white noise (the formal derivative of the Wiener process)
while the latter term refers to those differential equations that are driven by other types of
random inputs, such as colored noise. SDEs have been demonstrated to be particularly use-
ful when modeling phenomena whose dynamics are affected by very irregular fluctuations,
such as stocks in Finances, vibrations in Mechanics, or thermal noise in Thermodynam-
ics [2] (Ch. 5). However, the application of SDEs to biology seems to be more limited, since
random fluctuations describing, for example, the growth of a population or the weight
of a species, barely follows highly irregular fluctuations, as it is implicitly assumed when
using the Wiener process whose paths are continuous, but have unbounded variations [3].
To deal with this drawback, one must add the fact that the Wiener process is Gaussian
and, therefore, unbounded. The application of this type of driving perturbation in the
differential equation may entail, for instance, the positiveness of the corresponding solution
not being necessarily preserved [4]. Parametric RDEs allow more flexibility when modeling
uncertainties, since they permit assigning appropriate probability distributions to each
model parameter (initial/boundary conditions, external source and/or coefficients) in such
a way that they better reflect the intrinsic random features of the models. For example,
if the source term is a random quantity varying in the interval [0, 1], one can assign a Beta
distribution to it; if the initial condition is a positive random quantity, the Gamma distribu-
tion could a flexible choice to model it, and so on. The rigorous analysis of RDEs, and in
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particular of parametric RDEs, can be performed by means of the so-called mean square
calculus, which relies upon the properties of the correlation function that is associated to
the solution stochastic process [5–8].

Similarly as it happens in the deterministic setting, the study of fundamental ques-
tions, such as existence, uniqueness, stability, etc., are important points in dealing with
both SDEs and RDEs. However, other important issues, which naturally arise in the
stochastic/random context, include the computation of the main probabilistic properties
of the solution, which is a stochastic process. Specifically, the computation of the mean
and variance functions of the solution are of prime interest, since these functions provide
the expected behavior of the solution together with its variability. Nevertheless, a more
desirable goal is to determine the so-called first probability density function (1-PDF) of
the solution, since it allows for calculating any one-dimensional moment (which includes
the mean and the variance as particular cases) and confidence intervals, as well as the
probability that the solution lies in a specific interval of interest.

In the setting of SDEs, the computation of the 1-PDF is usually tackled by means of the
Fokker–Planck partial differential equation, which includes the well-known Klein–Kramers
and Smoluchowski equations [2] (Ch. 5), [9]. Unfortunately, as it has been extensively
reported, solving the Fokker–Planck in its general form is still an open problem [10], and
its solution has been only obtained in many but particular cases using different approaches,
such as analytical techniques [11], numerical schemes [1,12], or computing the stationary
distribution [13], just to cite a few contributions.

In the context of RDEs, the computation of the 1-PDF has been successfully approached
by applying the Random Variable Transformation (RVT) method [14]. This technique is
particularly useful when an explicit solution to the corresponding RDE is available [15].
However, it is evident that, for most of the differential equations, a closed-form solution
is not obtainable. Other alternative approaches to the RVT method are the well-known
Monte Carlo methods [16,17] and generalized Polynomial Chaos (gPC) [18,19] expansions.
Although they do not directly focus on the computation of the 1-PDF, but on simulations
and statistical moments, respectively, the information that is provided by these methods
can be used to approximate the 1-PDF. However, we do not consider these methods
because of the slow rate of convergence of Monte Carlo simulations, on the one hand; and,
because the application of gPC entails solving many deterministic ODEs (one per statistical
moment, and many moments are required to obtain reliable approximations of the PDF),
on the other hand. Because the 1-PDF of a RDE satisfies the so-called Liouville–Gibbs [7]
(Th. 6.2.2), or Continuity [20] (Th. 4.4) PDE, an alternative to calculate the 1-PDF consists
in numerically solving this equation. The following theorem states this important result.

Theorem 1. (see [7] (Th. 6.2.2) or [20] (Th. 4.4).) Let X0(ω) =: X0 be a random vector that
is defined in a complete probability space (Ω,F ,P), ω ∈ Ω. Consider the following random
dynamical system

dX
dt

(t) = g(X(t), t), t > 0, (1)

X(0) = X0, (2)

where g : Rn × [0, ∞) → Rn is a C1 vector field with Lipschitz-continuous first order partial
derivatives, and the derivative d/dt is interpreted in the stochastic mean square sense [7]. Let
{Φ(t; X0)}t≥0 denote its mean square solution stochastic process. Let f0 be the PDF of X0.
Subsequently, the 1-PDF of {Φ(t; X0)}t≥0 verifies

∂ f
∂t

(x, t) + g(x, t) · ∇x f (x, t) + f (x, t)Divx g(x, t) = 0, x ∈ Rn, t > 0, (3)

f (x, 0) = f0(x), x ∈ Rn, (4)

where∇x and Divx denote the gradient and divergence operators in the spatial variables, respectively.
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Under the conditions of the previous theorem, the Liouville–Gibbs equation will be
verified in the weak or strong sense, depending on the regularity of the initial density
f0. It can be explicitly solved if and only if we know the explicit solution of the random
dynamical system (1) and (2)—which is generally not the case—and we can also find its
inverse function with respect to the initial condition at every time instant (see [21]). This
is known as the Method of Characteristics (see [22] (Ch. 3)). This method provides the
exact solution along the characteristic curves of the PDE (3), which are the solutions of
System (1) and (2). The solution along a certain characteristic Φ(t; x0) is given by

f (Φ(t; x0), t) = f0(x0) exp
{
−
∫ t

0
Divx g(Φ(s; x0), s)ds

}
. (5)

That is, for every realization of the random initial condition X0, which we denote
by x0, we can calculate its probability density by following its trajectory or characteristic
curve. This fact can be useful when studying the asymptotic state, or long-time behavior,
of the 1-PDF given by the Liouville-Gibbs PDE (3) and (4). Another useful point, which
will be used in Section 2, is that Equation (5) defines a change of variables between the
characteristic variables (Φ(s; x0), s) and the Cartesian variables (x, t). Therefore, we have∫

Rn
f (x, t)dx =

∫
Rn

f0(x) exp
{
−
∫ t

0
Divx g(Φ(s; x), s)ds

}
dx = 1, (6)

for all t ≥ 0.
We say that a bounded set D ⊂ Rn, with a piece-wise continuously differentiable

boundary, is a positively invariant set for the random dynamical system (1) and (2) if
X0 ∈ D implies Φ(t; X0) ∈ D almost surely for all t ≥ 0. This condition is equivalent to
saying that

∫
D f0(x)dx = 1 implies

∫
D f (x, t)dx = 1 for all t > 0. This means that there is

no inflow or outflow of the probability density through the boundary of D, ∂D, which can
be written as the condition

∇x f (x, t) · n(x) = 0, x ∈ ∂D,

where n(x) is the normal vector to the boundary of D, ∂D, pointing in the outward direction.
This boundary condition is known as a Neumann boundary condition.

As it is well-known, finding the explicit solution of a PDE problem with prescribed
initial and boundary conditions, such as (3) and (4), can sometimes be unaffordable. There-
fore, finding reliable, accurate, and computationally efficient schemes that approximate the
numerical values of the solution in a given domain has become a vital tool and a subject of
intense research in modern applied mathematics (see [23]). Finite Volume Methods are a
family of numerical schemes that are particularly useful when numerically approximating
the particular kind of PDEs known as conservation laws [24–26]. Because the Liouville
equation can be stated in the form of a conservation law (see [21] and [7] (Ch. 6)), a finite
volume scheme can be used to approximate its solution in a given domain. Particularly,
in this paper, the classical Donor Cell Upwind (DCU) finite volume scheme is used [26]
(Ch. 20). This scheme is particularly useful in illustrating how the Liouville–Gibbs IVP
(3) and (4) can be used when studying RDEs with no known explicit solution [27]. This
will permit the numerical computation of some moments of the solution stochastic process,
such as the mean and the variance for each component, as:

Ei(t) =
∫
Rn

xi f (x, t)dx i = 1, . . . , n, t ≥ 0, (7)

Vari(t) =
∫
Rn
(xi −Ei(t))2 f (x, t)dx, i = 1, . . . , n, t ≥ 0, (8)

where x = (x1, . . . , xn).
In this contribution, we introduce a procedure to quantify uncertainty in random IVPs

with real data, as shall be presented in the next section. In particular, we calculate the
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1-PDF of a biological model known as the Baranyi-Roberts model, which is formulated
via a nonlinear system of coupled differential equations that describes the dynamics of
densities of two cell populations. The 1-PDF is approximated by numerically solving
the corresponding Liouville-Gibbs PDE assuming that the initial conditions are random
variables. As we shall see, the study is conducted using real test data taken from [28].
As it is detailed later on, the assignment of suitable parametric probability distributions
for the random initial conditions is performed via the Principle of Maximum Entropy
(PME) [29]. These distributional parameters, together with the other model parameters,
will be calculated using a tailor-made procedure based on the application of an optimization
algorithm named Particle Swarm Optimization (PSO) [30–33]. Afterwards, we calculate
predictions of the expectation of the aforementioned biological model at different time
instants. These predictions are constructed thanks to the previous approximation of the
1-PDF of the solution.

This paper is organized as follows. In Section 2 we present the biological model to
be studied and some interesting dynamic and asymptotic information about it, as well as
the PDF of its solution. Afterwards, in Section 3, we review the mathematical background
of the PME and how it is applied to the present study. In Sections 4–6 we introduce the
procedure and the numerical results obtained in our study. Finally, we draw our main
conclusions as well as some remarks on future work in Section 7.

2. Model Description and Dynamical Analysis

As described in [28], the Baranyi–Roberts model can be used to describe growth that
comprises several phases: lag phase, exponential phase, deceleration phase, and stationary
phase. The model assumes that cell growth accelerates as cells adjust to new growth
conditions, and then decelerates as resources are depleted. When modeling growth in
a mixed culture, we assume that interactions between strains are density-dependent,
for example, due to resource competition. The Baranyi–Roberts model is given by the
following non-autonomous and nonlinear system of differential equations

dN1

dt
= α1(t) r1 N1

(
1−

Nν1
1

Kν1
1
− c2

Nν2
2

Kν1
1

)
, N1(0) = N0

1 , (9)

dN2

dt
= α2(t) r2 N2

(
1−

Nν2
2

Kν2
2
− c1

Nν1
1

Kν2
2

)
, N2(0) = N0

2 , (10)

where N0
1 > 0 and N0

2 > 0 are the initial densities of cell populations 1 and 2, respectively;
ri > 0 are the respective specific growth rates, Ki > 0 are the maximum densities, and νi > 0
are the deceleration parameters. The parameters ci > 0 are the competition coefficients,
and the adjustment functions, α1, α2 : [0,+∞)→ (0, 1], which describe the fraction of the
population that has adjusted to the new growth conditions by time t, may be chosen as
constant functions or may be chosen to be the ones that are given by Baranyi and Roberts
(see [28] and references therein) αi(t) = q0,i/(q0,i + e−mi t), where q0,i characterizes the
physiological states of the initial populations and mi are the rates at which the physiological
states adjust to the new growth conditions. We shall assume that α1(t) = α2(t) = 1 for
all t ≥ 0 for the sake of simplicity, as the aim of the present contribution is to introduce
randomness in the foregoing model.

The Baranyi–Roberts system can be seen as a generalization of a family of multi-
species Lotka–Volterra type interaction systems (see [34]). These systems can be classified
as competition, mutualism, and predation systems (see [35,36]). Despite the classical and
well-studied nature of these systems, finding the stability properties of (9) and (10) is
tremendously complicated. We have been able to obtain an asymptotic stability result
through linearization of system (9) and (10). However, numerical simulations show that
the unique interior equilibrium point for the system (9) and (10) is a globally asymptotically
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stable point, and its attraction region is the entire initial set D := [0, 1]× [0, 1], except for
the other three trivial equilibrium points (see Figures 1 and 2). In particular,

0 = r1 N1

(
1−

Nν1
1

Kν1
1
− c2

Nν2
2

Kν1
1

)
, (11)

0 = r2 N2

(
1−

Nν2
2

Kν2
2
− c1

Nν1
1

Kν2
2

)
(12)

has three trivial solutions, (0, 0), (K1, 0) and (0, K2). But there is another one in the interior
of D, which can be found through a numerical root finder. Figures 1 and 2 show the vector
field and how the parameters affect the dynamics of the system.

Let us analyze the asymptotic behavior of the Baranyi–Roberts system (9) and (10).
Let x∞ be its unique interior equilibrium point. Let the flow function g = (g1, g2) : D → R2

be defined as

g(x1, x2) =

r1 x1

(
1− x

ν1
1

K
ν1
1
− c2

xν2
2

K
ν1
1

)
r2 x2

(
1− xν2

2
Kν2

2
− c1

x
ν1
1

Kν2
2

)
 (13)

whose differential matrix at x∞ = (x∞,1, x∞,2) is

Dg(x∞) =

 − r1 ν1
x

ν1
∞,1

K
ν1
1

− r1 c2 ν2
x∞,1xν2−1

∞,2

K
ν1
1

− r2 c1 ν1
x∞,2x

ν1−1
∞,1

Kν2
2

− r2 ν2
xν2

∞,2

Kν2
2

. (14)

Notice that, to calculate the matrix Dg(x∞), we have first computed ∇g1 and ∇g2 at
x∞, and we have then applied the equilibrium condition that is given by Equations (11)
and (12).
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(a) Growth parameters: r1 = 0.82, r2 = 0.55. There is faster
growth for N1. Therefore, we can see a more horizontally-
aligned vector field.
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(b) Growth parameters: r1 = 0.2, r2 = 0.55. There is faster
growth for N2. Therefore, we can see a more vertically-aligned
vector field.

Figure 1. Comparison of the flow function g(·) and its log-magnitude, log(‖g(·)‖2), given by the Baranyi–Roberts system (9)
and (10) with the set of parameters described in each figure, and K1 = 0.9, K2 = 0.95, ν1 = 0.3, ν2 = 0.15, c1 = 0.01, c2 = 0.015
in both figures. In darker color, the four equilibrium points that are given by the solutions of the nonlinear system (11) and (12).
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(a) Competition parameters: c1 = 0.25, c2 = 0.35. There is
greater competition between N1 and N2. Therefore, the equi-
librium is obtained closer to the origin than in the case of the
previous Figure.
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(b) Growth parameters: c1 = 0.5, c2 = 0.5. There is a very high
competition between N1 and N2. Therefore, the equilibrium is
obtained very close to the origin.

Figure 2. Comparison of the flow function g(·) and its log-magnitude, log(‖g(·)‖2), given by the Baranyi–Roberts system (9)
and (10) with the set of parameters described in each figure, and K1 = 0.9, K2 = 0.95, ν1 = 0.3, ν2 = 0.15, r1 = 0.2, r2 = 0.55
in both figures. In darker color, the four equilibrium points given by the solutions of the nonlinear system (11) and (12).

Lyapunov’s indirect method [37] (Section 3.3) consists of studying the asymptotic
behavior of a system by analyzing the asymptotic behavior of its linearized counterpart. It
is widely used when studying highly nonlinear systems, where using Lyapunov functions
may not provide enough information to discuss the stability of an equilibrium point
(see [37] and references therein). The result may be stated in our case, as follows:

Theorem 2. ([37] (Th. 3.7)). Let x∞ be an equilibrium point for the nonlinear system

ẋ = g(x),

where g : D → Rn and D is a neighborhood of the equilibrium point. Let

A = Dg(x∞).

Subsequently, denoting < as the real part of a complex number, the following statements
are verified.

1. The equilibrium point is stable if <(βi) < 0 for all eigenvalues βi of A.
2. The equilibrium point is unstable if <(βi) > 0 for one or more eigenvalues of A.

In our case, the eigenvalues for the matrix Dg(x∞) are obtained as the roots of the
characteristic polynomial Det (λI2 −Dg(x∞)), where I2 is the two-dimensional identity
matrix. They can be determined by the following expression

β =
Tr (Dg(x∞))±

√
(Tr (Dg(x∞)))2 − 4 Det(Dg(x∞))

2
,
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where Tr denotes the trace of the matrix and Det denotes the determinant of the matrix. It
can be easily seen by using Equation (14), Tr (Dg(x∞)) is negative for any set of admissible
parameters. However, we can prove that the determinant is positive in certain cases. Indeed,

Det(Dg(x∞)) = r1 r2 ν1 ν2
xν1

∞,1xν2
∞,2

Kν1
1 Kν2

2
− r1 r2 c1 c2 ν1 ν2

xν1
∞,1xν2

∞,2

Kν1
1 Kν2

2

= r1 r2 ν1 ν2
xν1

∞,1xν2
∞,2

Kν1
1 Kν2

2
(1− c1 c2).

It is obvious that the sign of the determinant will only depend on the sign of 1− c1 c2.
Therefore, if c1 c2 < 1, then Theorem 2 assures that x∞ is a stable equilibrium point. It can
be checked that all cases seen in Figures 1a and 2b verify this last inequality (particular
values of the parameters can be seen in the captions).

Now, let us consider the Baranyi–Roberts system (9) and (10) in the mean square
sense with random initial conditions; that is, X0 := (N0

1 , N0
2 ) is a random vector that is

defined in a common complete probability space. Local asymptotic stability sheds light
upon the long-time behavior of the 1-PDF of the solution stochastic process {Φ(t; X0)}t≥0.
Theorem 1 states that the 1-PDF verifies the IVP (3) and (4) along with the Neumann
boundary condition; that is

∂ f
∂t

(x, t) + g(x, t) · ∇x f (x, t) + f (x, t)Divx g(x, t) = 0, x ∈ D, t > 0,

f (x, 0) = f0(x), x ∈ D,

∇x f (x, t) · n(x) = 0, x ∈ ∂D, t ≥ 0,

where g is the vector flow function that is defined by (13).
Now, let U ⊆ D be the local region of attraction of x∞ that is given by Theorem 2.

Numerical computations show that the interior equilibrium point is actually globally
stable so an attempt to compute the exact attraction region will not be made. The fact
that Theorem 2 assures the existence of an attraction region will allow to obtain the 1-PDF
asymptotic state. If the entire initial density is concentrated inside U,

∫
U f0(x)dx = 1, then

the asymptotic state of f (·, t) will be the Dirac delta function centered at x∞; that is, δx∞
(see [38] (Lesson 27)). Let ψ be a smooth function with compact support vanishing outside
D; that is, ψ ∈ C∞

c (D). Subsequently,

( f (·, t), ψ)L2 − ψ(x∞) =
∫

U
f (x, t)ψ(x)dx− ψ(x∞)

∫
U

f (x, t)dx

=
∫

U
f0(x) exp{−

∫ t

0
Divx g(Φ(s; x), s)ds}(ψ(Φ(t; x))− ψ(x∞))dx

≤
∥∥∥∥ f0(·) exp{−

∫ t

0
Divx g(Φ(s; ·), s)ds}

∥∥∥∥
L1(U)

‖ψ(Φ(t; ·))− ψ(x∞)‖L∞(U)

= sup
x0∈U

|ψ(Φ(t; x0))− ψ(x∞)| −−−→
t→∞

0,

because it has been assumed that the initial condition almost surely has realizations inside
U. We have also used the fact that the exact solution along the characteristics is known,
that all characteristic curves starting inside U will converge monotonically to x∞, and that
the total density inside the region of attraction is conserved (see Equation (6)). Later on, we
will see that this is verified by the numerical simulations.

3. Assigning Reliable Probability Distributions to the Initial Conditions

The Principle of Maximum Entropy (PME) (see [29]) allows for assigning statistical
distributions to some variables. It is based on maximizing the informational concept of
differential entropy (see [39]), which is a measure defining the lack of knowledge of a
random variable.
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Given a random variable Y, with its associated PDF fY, the differential entropy or
Shannon’s entropy (see [40]) is given by

SY( f ) = −
∫
D(Y)

f (y) log f (y)dy,

where D(Y) is the domain of the random variable Y (see [39] (Section 2.2)). This value
quantifies the loss of information of a random variable; the less the information, the higher
the entropy. In the extant literature, several contributions have applied PME to assign
reliable statistical distributions for random variables (see [41–43]).

In order to assign reliable probabilistic distributions to a random variable, Y, the PME
seeks for a PDF, fY, by maximizing the functional SY( f ) subject to the available information
for the unknown random variable, such as the domainD(Y), its integral is the unit (m0 = 1),
the mean m1, and other available higher moments mk, k = 2, . . . , K. Specifically, one solves
the following optimization problem

maximizing −
∫
D(Y)

fY(y) log fY(y)dy,

subject to
∫
D(Y)

yk fY(y)dy = mk, k = 0, 1, . . . , K,

where mk are the k-order moments, which are usually computed by metadata, samples, etc.
The general form of the density, fY, maximizing SY( f ) given {mi}K

i=0, is given by

fY(y) = exp

{
−1−

K

∑
k=1

λkyk

}
, y ∈ D(Y), (15)

where the set {λk}K
k=0 is formed by the so-called Lagrange multipliers of the optimization

problem (see [44] (Th. 1, Ch.8) and [29]).
In the setting of this contribution, the PME will be applied to assign a reliable PDF to

the 2D sample data at time t = 0, i.e., the two-dimensional vector of initial conditions. Cell
densities grow in separate cultures before being introduced in the same culture, according
to the experimental procedure described in [28]. Therefore, it is logical to assume that the
two initial random variables in system (9) and (10), which model the time evolution of the
joint PDF in mixed culture, have statistically independent densities. Therefore, the joint
PDF, as represented by f0 in (3) and (4), can be expressed by f0(x1, x2) = f0,1(x1) f0,2(x2)
for all (x1, x2) ∈ D. In our application, we will determine both f0,1 and f0,2 by separately
using the PME in each cell culture population.

4. Application to Study Microbial Growth in a Competitive Environment

This section is devoted to apply the theoretical findings that are described above to
study the growth of two microbial strains who compete for the same resources and space.
It is important to remark that, to measure volumes and densities of microbial strains, it is
necessary to use electronic devices that may have certain measurement errors. In order
to account for this error, multiple measurements of the densities have been carried out
(see [28] (Sec. Materials and Methods) for more details). Table 1 collects the mean and the
standard deviation of all volumetric density measurements for the two microbial strains
(denoted by Green Strain and Red Strain) at several time instants.

Using the Baranyi–Roberts dynamical system described in (9) and (10), we study
how the Green Strain and Red Strain compete in the same culture medium. Because the
objective of this contribution is to illustrate the applicability of the proposed method in a
real scenario, we will assume that the data collected in Table 1 show data from cells in a
competitive mixed-culture, despite not being the case. Our data has intrinsic uncertainty
given by measurement errors (epistemic uncertainty), so it seems reasonable to consider a
randomized model, as it can be observed in Table 1. To do so, some of the model parameters
are treated as random variables instead of deterministic values.
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Table 1. Mean and variance of the optical densities (OD) at different time instants of the two E. coli strains in mono-culture
growth [28] (Experiment B).

Time (ti) Hours Mean (m1,i) Standard Deviation (σ1,i) Mean (m2,i) Standard Deviation (σ2,i)
Green Strain Green Strain Red Strain Red Strain

t0 = 0 0.2864 0.0088 0.2298 0.0054
t1 = 0.2325 0.3078 0.0094 0.2456 0.0060
t2 = 0.46503 0.3310 0.0100 0.2699 0.0058
t3 = 0.6975 0.3544 0.0098 0.2982 0.0057
t4 = 1.014 0.3827 0.0093 0.3276 0.0066

In this contribution, we perform a first step in the spirit of introducing uncertainties
in the Baranyi–Roberts model by considering that the initial conditions, N0

1 and N0
2 , of the

IVP (9) and (10) are independent random variables. They represent, respectively, the initial
volumetric density of the Green Strain and Red Strain, which have been introduced in
the culture medium. Then, taking into account the values of the means, m1,i and m2,i
and of the standard deviations, σ1,i and σ2,i, i = 0, . . . , 4 (equivalently of the first and
second moments) of N0

1 and N0
2 (see Table 1), we have applied the PME method to assign

probability distributions, fN0
1

and fN0
2
, to N0

1 and N0
2 , respectively. This yields

fN0
1
(x) = e−1−λ

N0
1

0 −λ
N0

1
1 x−λ

N0
1

2 x2
, x ∈ [0, 1], (16)

fN0
2
(y) = e−1−λ

N0
2

0 −λ
N0

2
1 y−λ

N0
2

2 y2
, y ∈ [0, 1], (17)

where the values for the coefficients are given in Table 2. Therefore, the joint PDF, f0(x, y),
of the initial condition of the Baranyi-Roberts system (9) and (10) is f0(x, y) = fN0

1
(x) fN0

2
(y).

Table 2. Lagrange multipliers for the Principle of Maximum Entropy (PME) problem. Optimization
has been performed by using the fsolve built-in algorithm in MATLAB ® and following the steps
described in Section 3. Data used to perform the optimization is located in Table A1 (see Appendix A).

Parameter Value Parameter Value

λ
N0

1
0 440.89 λ

N0
2

0 471.01

λ
N0

1
1 −3112.29 λ

N0
2

1 −4142.74

λ
N0

1
2 5434.25 λ

N0
2

2 9014.1

Now that the joint PDF of the initial condition of IVP (9) and (10) has been deter-
mined, we can apply Theorem 1, which asserts that the solution of the PDE that is given
in (3) and (4) defines the 1-PDF of the solution stochastic process of the Baranyi–Roberts
system. Unfortunately, a closed form of the solution of the Liouville–Gibbs PDE is not
affordable in our case and, consequently, we have used the DCU numerical scheme to
approximate the solution of the Liouville–Gibbs PDE for every fixed time instant t. This
numerical scheme is given by

f n+1
i,j = f n

i,j −
∆t
∆x

(g1(xi, yj, tn)
+ ( f n

i,j − f n
i−1,j) + g1(xi, yj, tn)

− ( f n
i+1,j − f n

i,j)) (18)

− ∆t
∆y

(g2(xi, yj, tn)
+ ( f n

i,j − f n
i,j−1) + g2(xi, yj, tn)

− ( f n
i,j+1 − f n

i,j)) (19)

+ f n
i,j Divx g(xi, yj, tn), (20)

where x = (x, y), f n
i,j = f (xi, yj, tn), u+ = max{u, 0}, and u− := min{u, 0}. The stability

and convergence properties of this numerical scheme are analyzed in [26] (Chap. 20). Most
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finite volume schemes developed for two-dimensional (2D) hyperbolic PDEs are modified
versions of the DCU, by adding correction terms, flux limiters and/or reconstruction
algorithms in order to control the dissipation loss or possible instabilities from such a
simple scheme and obtain very sharp and exact solutions in very few time-steps. The main
advantage of the DCU scheme (18) and (20) is that it easy implementation and that it is
very fast due to the fact that no extra terms are involved in the computation. The Courant–
Friedrichs–Lewy (CFL) conditions are the space and time discretization size conditions,
used in every PDE numerical solver, in order to assure stability and convergence of the
numerical method to the true solution of the problem. In the particular case of the DCU
scheme, the following CFL condition must be verified

∆t
∆x

+
∆t
∆y

< 1,

where ∆x, ∆y, and ∆t refer to the size of the space meshing in the x-direction, size of
the meshing in the y-direction, and the time meshing, respectively. In the computations
performed in this contribution, we have chosen ∆t

∆x = ∆t
∆y = 0.475, and ∆x = ∆y = 0.0067.

Once the numerical scheme to approximate the 1-PDF of the solution stochastic process
of the Baranyi-Roberts model has been constructed, the model parameter values which
best describe the data shown in Table 1 are searched through a specific optimization
procedure. As indicated in the Introduction section, this has been done by applying
the optimization technique known as PSO. In the next section, the entire computational
procedure is described.

5. Computational Procedure Design

The PSO is a bio-inspired optimization algorithm that operates using rules that are
similar to the behavior of swarms of birds that try to explore and exploit a certain region to
find food (see [30]). The PSO algorithm generates a family of possible solutions (swarm of
birds) in the given parametrical search space. It then updates, or evolves, the positions and
velocities of the swarm over every iteration to minimize the Fitness Function (FF). Observe
that the data in Table 1 correspond to the initial growth stage of both strains, therefore the
specific growth rates r1 and r2 have a greater influence in the dynamics than the rest of
the model parameters. Consequently, the PSO algorithm will be applied to determine the
specific growth rates r1 and r2, while the rest of model parameters (K1, K2, v1, v2, c1, and
c2) have been taken from [28] (see Table 3).

For a given pair of growth parameters r1 and r2, the FF (the error function to be
minimized) is defined by the following steps:

Step 1: Compute a discrete approximation of the 1-PDF at the time instants tn ∈ T =
{0, 0.2325, 0.4652, 0.6975, 1.0014} (in hours) by numerically solving the Liouville–
Gibbs PDE, in the region (0, 1)× (0, 1), using the DCU scheme (18)–(20). We take
the joint PDF given by the product of (16) and (17), with the parameters in Table 2,
as the initial condition. We also consider null Neumann boundary conditions
and the meshing parameters seen at the end of the previous section. This step
gives a set of discrete values for each time instant { f n

i, j}i, j, n. We use the notation
of (18)–(20).

Step 2: Compute the means at each time instant, E[N1(tn)] and E[N2(tn)], using the val-
ues of { f n

i, j}i, j and the composite 1/3 Simpson’s rule (see [45] (Chap. 25)) in
each integration dimension; that is, we compute an approximation of (7) at each
time instant.

Step 3: Once the means for tn ∈ T have been computed, which is E[N1(tn)] and E[N2(tn)],
we obtain the total error, denoted by FF, where each summand is the relative error
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between the aforementioned means and the sample data, m1,i and m2,i, as shown
in Table 1,

FF =
4

∑
i=0

ei, (21)

where

ei =
Err(ti)

‖(m1,i, m2,i)‖2
and Err(ti) = ‖(E[N1(ti)],E[N2(ti)])− (m1,i, m2,i)‖2. (22)

Once the fitness function FF has been defined, the PSO algorithm is applied to seek
suitable growth parameters r1 and r2.

Table 3. Parameters for the Baranyi–Roberts system after performing the optimization procedure.
Note that we have only determined the growth parameters r1 and r2, while the others have been
taken from [28] (Experiment B).

Ki ri νi ci

Green Strain (i = 1) 0.6280 0.5382 1.4610 0.2
Red Strain (i = 2) 0.6190 0.5113 2.4840 0.25

6. Results

This section is aimed at showing the results obtained by implementing the procedure
that is described in the previous section. Recall that the objective is to find the optimal
values of r1 and r2 so that the mean of the 1-PDF given by the numerical scheme and the
empirical mean of the data are as close as possible. To do so, the built-in MATLAB function
particleswarm (see [46–48]) has been used to minimize the FF, defined through the three
steps described in Section 5. Multiple different procedures have been executed at the same
time in order to avoid the effect of randomness coming from generating the initial positions
of the particles in PSO algorithm. The obtained results are close enough to guarantee that
we can neglect the above-mentioned effect of randomness.

The procedure with the best results took over 7 h to reach a suitable minimum for the
FF. The procedure has been carried out on an Ubuntu 16.04.7 LTS-based computer with a
quad-core, 16-thread, Intel Xeon E5-4620 processor with 512 GB of RAM. Table 3 shows
the values of the optimized parameters, r1 and r2.

Figure 3 shows the punctual and accumulative errors defined, respectively, by ei
and FF defined in expressions (22) and (21). We observe that the relative error decreases
as time goes on. Figures 4 and 5 show the vector field for the parameters in Table 3.
In Figure 6a,b, we have performed a graphical comparison between the sampled data
and the approximation obtained by our stochastic model for both Green and Red Strains.
Both of the plots provide evidence of a very good fitting. Furthermore, the time evolution
of the joint PDF of the solution stochastic process can be seen in Figure 7a–e. However,
the maximum height of the joint PDF decreases very rapidly (observe the magnitude of the
lateral colored bar), which means that the variance of the solution increases from diffusion,
probably due to the DCU numerical scheme’s nature, as it can be seen in Figure 7a–e.

Predicting or extrapolating the dynamics of complex and highly parameterizable
systems with randomness is a very difficult task. In our model setting, and after the
previous validation process, we are interested in predicting the volumetric density of both
strains of bacteria, since such future projections allow for the control of the biological
culture. In Figure 8a,b, we show the predictions for Green and Red Strains over the time
instants t6 = 1.234, t7 = 1.466, t8 = 1.839, and t9 = 2.0716 h. Comparing these figures
with the ones that were collected in [28] (Experiment B), we observe that the stochastic
model is able to capture the dynamics of volumetric density for the two strains of bacteria.
This result has been obtained by only considering randomness in the initial conditions and
adjusting the model parameters r1 and r2.
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Figure 3. Punctual and accumulative errors ei and FF that are defined by (22) and (21), respectively,
at the time instants t ∈ T = {0, 0.2325, 0.4652, 0.6975, 1.014}, measured in hours.
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Figure 4. Flow function, g(·), and its log-magnitude, log(‖g(·)‖2), given by the Baranyi–Roberts
system (9) and (10) and the optimized parameters in Table 3. In darker color the four equilibrium
points given by the solutions of the nonlinear system (11) and (12).
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Figure 5. Zoomed-up view of Figure 4 in a neighborhood of the interior equilibrium point
x∞ = (0.5820, 0.5366). We can see how it clearly attracts all of the points surrounding the equi-
librium point.
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Figure 6. Visual comparison of the sample mean of each Strain data set from Table 1 with the mean computed by the
procedure described in Section 5.
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(a) Initial time: 0 h. This function is the one obtained by the
Principle of Maximum Entropy (PME), as described in Section 3.
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(b) Second time instant: nearly 14 min. elapsed.
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(c) Third time instant: nearly 28 min. elapsed.
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(d) Fourth time instant: nearly 42 min. elapsed.
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(e) Fifth time instant: over 1 h elapsed.

Figure 7. Joint 1-PDF evolution of the solution stochastic process in every time instant given by data from Table 1. It can be
seen how variance, which is reflected by the width/height ratio, grows. Take into account that the color bar is not fixed and,
therefore, it re-scales itself at every time instant.
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(a) Mean path of the solution stochastic process for the green strain.
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(b) Mean path of the solution stochastic process for the red strain.

Figure 8. Optimization, as computed in Section 5, and prediction of the mean paths of the solution stochastic process.
The available data span over 2 h of measurements.

7. Conclusions

In this contribution, a procedure to quantify uncertainty in random dynamical systems
has been defined and applied to a biological model. Specifically, we have made use of a
result linking the first probability density function of the solution stochastic process of a
random dynamical system with the classical Liouville–Gibbs Partial Differential Equation,
whose solution, at every time instant, has been obtained using a finite volume numerical
scheme. Using real data from experiments that were performed in the literature and
the Principle of Maximum Entropy, a reliable probability density to the initial condition
of the dynamical system has been assigned. We have successfully optimized two key
model parameters, representing the growth rates of both types of strains of bacteria, so
that the mean of the solution stochastic process is as close as possible to the real sample
mean. The optimal values were obtained using the Particle Swarm Optimization algorithm.
Because the original system depends on more model parameters that are susceptible to
being randomized, in the forthcoming work we plan to address the full randomization
of the model as well as implement higher order numerical solvers to better calibrate
model parameters and perform more accurate predictions. We think that tackling this
generalization of the uncertainty quantification procedure presented in our contribution
will lead to challenging questions regarding the numerical solution of the corresponding
Liouville–Gibbs equation.
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Appendix A. Dataset for Parameter Optimization

Table A1. Density (OD) measurements of the Green Strain and Red Strain at initial time (t = 0 h).
This data is used to estimate the parameters in Table 2. Note that more measurements were taken for
the Green Strain than for the Red Strain. Complete data sources are available in [28].

Density (OD) of Green Strain Density (OD) of Red Strain

0.2803 0.2199
0.2902 0.2347
0.2778 0.2304
0.2768 0.2340
0.2860 0.2350
0.2996 0.2382
0.2833 0.2247
0.2968 0.2263
0.2972 0.2262
0.2778 0.2266
0.2945 0.2363
0.3017 0.2290
0.2791 0.2260
0.2873
0.2989
0.2772
0.2776
0.2832
0.2796
0.2852
0.2953
0.2707
0.2868
0.2898
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