
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/180377

Xu, SZ.; Chen, JL.; Benítez López, J. (2021). Partial orders based on the CS decomposition.
Ukrainian Mathematical Journal. 72(8):1294-1313. https://doi.org/10.1007/s11253-020-
01851-5

https://doi.org/10.1007/s11253-020-01851-5

Springer



Partial orders base on the CS decomposition

Abstract: A new decomposition for square matrices was introduce by J. Beńıtez in
[2]. In this paper, we will use this decomposition to investigate the minus, star, sharp and
core partial orders in the setting of complex matrices.
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1 Introduction

Let Cm×n denote the set of all m × n complex matrices. Let A∗, R(A), N(A) and rk(A)
denote the conjugate transpose, column space, null space, and rank of A ∈ Cm×n, respec-
tively. For A ∈ Cm×n, if X ∈ Cn×m satisfies

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA, (?)

then X is called a Moore-Penrose inverse of A. If such a matrix X exists, then it is unique
and denoted by A†. Let I ⊆ {1, 2, 3, 4}. An element B ∈ Cn×m is called an I inverse of
A ∈ Cm×n if equalities i ∈ I of (?) hold. The set of all I inverses of A will be denoted by
AI , the element A is I invertible when AI 6= ∅.

Let A ∈ Cn×n. It can be easily proved that the set of elements X ∈ Cn×n such that

AXA = A, XAX = X and AX = XA

is empty or a singleton. If this set is a singleton, its unique element is called the group
inverse of A and denoted by A#.

The core inverse for a complex matrix was introduced by Baksalary and Trenkler [1].
Let A ∈ Cn×n. A matrix X ∈ Cn×n is called a core inverse of A, if it satisfies AX = PA and
R(X) ⊆ R(A). Here PA denotes the orthogonal projector onto R(A). And if such a matrix
exists, then it is unique (and denoted by A#©). A square complex matrix A is core invertible
if and only if rk(A) = rk(A2) (see [1]), and let CCM

n = {A ∈ Mn(C) | rk(A) = rk(A2)}.
The core partial order for complex matrices was also introduced in [1] and it is defined as
follows: given A ∈ CCM

n and B ∈Mn(C),

A
#©
≤ B ⇔ A#©A = A#©B and AA#© = BA#©.

In [1, Theorem 6], it is proved that the core partial order is a matrix partial order.
Baksalary and Trenkler [1] gave several characterizations and various relationships between
the matrix core partial order and other matrix partial orders by using the decomposition
of Hartwig and Spindelböck [8]. Let us recall some other well known partial orders in
Cn×n. For A,B ∈ Cn×n,

• The star partial order A
∗
≤ B: A∗A = A∗B and AA∗ = BA∗ [6];
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• The minus partial order A
−
≤ B: A−A = A−B and AA− = BA− [7], where A−

denotes any inner inverse of A;

• The sharp partial order A
#
≤ A: A#A = A#B and AA# = BA# [13].

In addition, 1n and 0n will denote the n× 1 column vectors all of whose components
are 1 and 0, respectively. 0m×n (abbr. 0) denotes the zero matrix of size m × n. If S is
a subspace of Cn, then PS stands for the orthogonal projector onto the subspace S. A
matrix A ∈ Cn×n is called an EP matrix if R(A) = R(A∗) and A is unitary if AA∗ = In,
where In denotes the identity matrix of size n.

2 Preliminaries

A related decomposition of the matrix decomposition of Hartwig and Spindelböck [8] was
given in [2, Theorem 2.1] by Beńıtez. In [3] it can be found a simpler proof of this
decomposition. Let us start this section with the concept of principal angles.

Definition 2.1. [19] Let S1 and S2 be two nontrivial subspaces of Cn. We define the
principal angles θ1, . . . , θr ∈ [0, π/2] between S1 and S2 by

cos θi = σi(PS1PS2),

for i = 1, . . . , r, where r = min{dim S1,dim S2}. The real numbers σi(PS1PS2) ≥ 0 are the
singular values of PS1PS2.

Lemma 2.2. [2, Theorem 2.1] Let A ∈ Cn×n, r = rk(A), and let θ1, . . . , θp be the principal
angles between R(A) and R(A∗) belonging to ]0, π/2[. Denote by x and y the multiplicities
of the angles 0 and π/2 as a canonical angle between R(A) and R(A∗), respectively. There
exists a unitary matrix Y ∈ Cn×n such that

A = Y

[
MC MS

0 0

]
Y ∗, (2.1)

where M ∈ Cr×r is nonsingular,

C = diag(0y, cos θ1, . . . , cos θp,1x),

S =

[
diag(1y, sin θ1, . . . , sin θp) 0p+y,n−(r+p+y)

0x,p+y 0x,n−(r+p+y)

]
,

and r = y + p + x. Furthermore, x and y + n − r are the multiplicities of the singular
values 1 and 0 in PR(A)PR(A∗), respectively.

In this decomposition, one has C2 + SS∗ = Ir. One has also

A† = Y

[
CM−1 0
S∗M−1 0

]
Y ∗, A# = Y

[
C−1M−1 C−1M−1C−1S

0 0

]
Y ∗.

Recall that A† always exists. We have that A# exists if and only if C is nonsingular [2,
Theorem 3.7]. In this case, we have

A#© = A#AA† = Y

[
C−1M−1 0

0 0

]
Y ∗,
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AA#© = Y

[
Ir 0
0 0

]
Y ∗ and A#©A = Y

[
Ir C−1S
0 0

]
Y ∗. (2.2)

We have

AA#© −A#©A = Y

[
Ir 0
0 0

]
Y ∗ − Y

[
Ir C−1S
0 0

]
Y ∗ = Y

[
0 C−1S
0 0

]
Y ∗ (2.3)

in view of (2.2). Now,

det(AA#© −A#©A) = det

(
Y

[
0 C−1S
0 0

]
Y ∗
)

= 0.

Thus, AA#© − A#©A is always singular and rk(AA#© − A#©A) = rk(C−1S) = rk(S) < n.
From (2.3), we have that A is an EP matrix if and only if S = 0, that is all the canonical
angles between R(A) and R(A∗) are 0. This result also can be found in [2, Theorem 3.7].

Proposition 2.3. If A ∈ Cn×n is core invertible and A has the form (2.1), then AA#© −
A#©A is always singular with rk(AA#© −A#©A) = rk(S) < n.

In [21, Theorem 3.1], the authors proved the following lemma for an element in a ring
with involution.

Lemma 2.4. Let A ∈ Cn×n. Then A is core invertible with A#© = X if and only if
(AX)∗ = AX, XA2 = A and AX2 = X.

Proposition 2.5. Let A,B,U ∈ Cn×n with A = UBU∗, where B is core invertible and
U is unitary. Then A is core invertible. In this case, one has A#© = UB#©U∗.

Proof. Let X = UB#©U∗, we have

AX = AUB#©U∗ = UBU∗UB#©U∗ = UBB#©U∗ is Hermitian,

XA2 = UB#©U∗(UBU∗)2 = UB#©(B)2U∗ = UBU∗ = A,

AX2 = UAU∗(UBU∗)2 = UB(B#©)2U∗ = UB#©U∗ = X.

Thus, A#© = UB#©U∗ in view of Lemma 2.4.

Recently, Wang introduced a new decomposition for square matrices, named Core-EP
decomposition in [18, Theorem 2.1].

Lemma 2.6. Let A ∈ Cn×n with ind(A) = k. Then A can be written as

A = A1 +A2, (2.4)

in which

(1) A1 ∈ CCM
n ;

(2) Ak
2 = 0;

(3) A∗1A2 = A2A1 = 0.
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We call the equality (2.4) the Core-EP decomposition of A.

Definition 2.7. [11, Definition 3.1] Let A ∈ Cn×n with ind(A) = k. A matrix X ∈ Cn×n

is the core-EP inverse of A (is unique and denoted by A †©) if X is an outer inverse of A
and satisfies

R(X) = R(X∗) = R(Ak).

Lemma 2.8. [11, Lemma 3.3] Let A ∈ Cn×n with ind(A) = k. Then X ∈ Cn×n is the
core-EP inverse of A if and only if

XAk+1 = Ak, XAX = X, (AX)∗ = AX and R(X) ⊆ R(Ak).

3 A matrix decomposition related the CS decomposition
and the core-EP decomposition

Theorem 3.1. Let A ∈ Cn×n with ind(A) = k and r = rk(A). There exists a unitary
matrix U ∈ Cn×n such that

A = U

[
MC MS

0 D4

]
U∗, (3.1)

where M and C are both nonsingular, D4 is nilpotent, C2 +SS∗ = Ir and matrices C and
S have the form after equality (2.1).

Proof. From Lemma 2.6, we have

A = A1 +A2,

in which A1 ∈ CCM
n , Ak

2 = 0 and A∗1A2 = A2A1 = 0. Now, applying Lemma 2.2 to A1,
there exists a unitary matrix U such that

A1 = U

[
MC MS

0 0

]
U∗,

in which M is nonsingular. We also have C is nonsingular in view of A1 ∈ CCM
n and [2,

Theorem 3.7]. Let A2 = U
[
D1 D2
D3 D4

]
U∗. And

A∗1A2 = U

[
CM∗ 0
S∗M∗ 0

] [
D1 D2

D3 D4

]
U∗ = U

[
CM∗D1 CM∗D2

S∗M∗D1 S∗M∗D2

]
U∗; (3.2)

A2A1 = U

[
D1 D2

D3 D4

] [
MC MS

0 0

]
U∗ = U

[
D1MC D1MS
D3MC D3MS

]
U∗. (3.3)

From (3.2) and (3.3) and A∗1A2 = A2A1 = 0 we get

CM∗D1 = 0; CM∗D2 = 0; D3MC = 0.

The nonsingularity of C and M implies that D1, D2 and D3 are zero matrices. Thus

A = A1 +A2 = U

[
MC MS

0 D4

]
U∗.

The equality Ak
2 = 0 implies that D4 is nilpotent.
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Note that the decomposition in Theorem 3.1 has the same form as Schur form, but the
decomposition seems easier to handle. Have in mind that M and C are both nonsingular,
C is real and diagonal, D4 is nilpotent and C2 + SS∗ = I by Theorem 3.1.

Since C is nonsingular, we have A#
1 = U

[
C−1M−1 C−1M−1C−1S

0 0

]
U∗ by [2, Theorem 3.7].

It is evident that A#©
1 = U

[
C−1M−1 0

0 0

]
U∗. From [18, Theorem 3.2], we have A †© = A#©

1 =
U
[
C−1M−1 0

0 0

]
U∗.

In the following theorem, we will use the matrix decomposition in Theorem 3.1 to
investigate the core-EP order, which was introduced by Wang in [18], defined as: for
matrices A,B ∈ Cn×n

A
†©
≤ B ⇔ A †©A = A †©B and AA †© = BA †©.

Theorem 3.2. Let A,B ∈ Cn×n. Assume that A has the form (3.1). If A is core-EP

invertible, then A
†©
≤ B if and only if B −A can be written as

B −A = U

[
0 0
0 E

]
U∗, E ∈ C(n−r)×(n−r).

Proof. Let B −A = U
[
B1 B2
B3 B4

]
U∗, where B1 ∈ Cr×r and suppose A

†©
≤ B, then

A †©(B −A) = U

[
C−1M−1B1 C−1M−1B2

0 0

]
U∗; (3.4)

(B −A)A †© = U

[
B1C

−1M−1 0
B3C

−1M−1 0

]
U∗. (3.5)

From (3.4), (3.5), A †©A = A †©B and AA †© = BA †©, we get

C−1M−1B1 = 0; C−1M−1B2 = 0; B3C
−1M−1 = 0. (3.6)

From (3.6) and the nonsingularity of C and M it follows that B1, B2, B3 are zero matrices.

To prove the opposite implication, it is easy to check that (B−A)A †© = A †©(B−A) = 0,

that is A
†©
≤ B.

4 Core, star, group and minus partial order

In this section, we consider the relationships between the core partial order and other
partial orders by using Lemma 2.2 for square matrices. Let A ∈ Cn×n. Recall that the
left star partial order A ∗≤ B in Cn×n is defined by A∗A = A∗B and R(A) ⊆ R(B). The
right sharp partial order A ≤# B is defined as: AA# = BA# and R(A∗) ⊆ R(B∗). Let us
begin with some lemmas will be useful in the sequel.

Lemma 4.1. [13, Lemma 2.2] Let A ∈ Cn×n be group invertible. Then A
#
≤ B if and only

if A2 = AB = BA.
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Lemma 4.2. [22, Theorem 3.2] Let A,B ∈ Cn×n be two core invertible matrices. Then

A
#©
≤ B if and only if A ∗≤ B and B#©AA#© = A#©

An equivalent form of the minus partial order is the following statement: for the
complex case can be found in [4, 12] and for the ring case can be found in [10].

Lemma 4.3. Let A,B ∈ Cn×n. Then the following are equivalent:

(1) B
−
≤ A;

(2) There exists A− ∈ A{1} such that B = AA−B = BA−A = BA−B;

(3) B = AA−B = BA−A = BA−B for all A− ∈ A{1}.

The following lemma was proved in the more general setting of rings with an involution
in [16, Theorem 4.10].

Lemma 4.4. Let A,B ∈ Cn×n. If A,B are both core invertible and B
−
≤ A, then B

#©
≤ A

if and only if A#©BA#© = B#©.

Theorem 4.5. Let A,B ∈ Cn×n. Assume that A has the form (2.1). If A is core
invertible, then the following are equivalent:

(1) A
#©
≤ B;

(2) B −A can be written as

B −A = Y

[
0 0
0 B4

]
Y ∗, B4 ∈ C(n−r)×(n−r); (4.1)

(3) PA(B −A) = 0 and (B −A)PA = 0, where PA = AA#©;

(4) B = A+ (In −AA#©)X(In −AA#©) for some matrix X ∈ Cn×n.

Proof. (1) ⇔ (2). Since A is core invertible and the core invertibility is equivalent to

the group invertibility, matrix C is nonsingular. Let B = Y
[
B1 B2
B3 B4

]
Y ∗. If A

#©
≤ B, then

AA#© = BA#©, A#©B = A#©A. Thus AA#©B = A = BA#©A by AA#©A = A.

AA#©B = Y

[
Ir 0
0 0

] [
B1 B2

B3 B4

]
Y ∗ = Y

[
B1 B2

0 0

]
Y ∗; (4.2)

BA#©A = Y

[
B1 B2

B3 B4

] [
Ir C−1S
0 0

]
Y ∗ = Y

[
B1 B1C

−1S
B3 B3C

−1S

]
Y ∗. (4.3)

From (4.2) and (4.3) we get B1 = MC, B2 = MS and B3 = 0. Thus

B = Y

[
MC MS

0 B4

]
Y ∗ = Y

[
MC MS

0 0

]
Y ∗+Y

[
0 0
0 B4

]
Y ∗ = A+Y

[
0 0
0 B4

]
Y ∗.
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That is (4.1). Conversely, if we have (4.1), it is easy to check that AA#©B = A, which is
equivalent to A#©A = A#©B. And we have AA#© = BA#© in a similar way.

(2) ⇒ (3). Since we have A#© = A#AA† = Y
[
C−1M−1 0

0 0

]
Y ∗, so AA#© = Y

[
Ir 0
0 0

]
Y ∗.

It is easy to check that PA(B −A) = 0 and (B −A)PA = 0.

(3)⇒ (2). Let B−A = Y
[
X1 X2
X3 X4

]
Y ∗, where X1 ∈ Cr×r. The hypothesis PA(B−A) =

0 implies that X1 and X2 are zero matrices and (B−A)PA = 0 implies that X3 = 0. Thus
we have the form in (4.1).

(2)⇒ (4). Note that (4.1) can be written as

B −A = Y

[
0 0
0 In−r

] [
0 0
0 B4

] [
0 0
0 In−r

]
Y ∗

= Y

{([
Ir 0
0 In−r

]
−
[
Ir 0
0 0

])[
0 0
0 B4

]([
Ir 0
0 In−r

]
−
[
Ir 0
0 0

])}
Y ∗.

Therefore, B − A = (In − PA)X(In − PA) for some matrix X. Let Q = In − PA, we get
that QA = 0 and B −A = QXQ for some matrix X.

(4)⇒ (3) is trivial.

Remark 4.6. When ind(A) = 1, from [11, Theorem 3.8] we have the core-EP inverse
coincides with the core inverse. Thus, the equivalence between (1) and (2) in Theorem 4.5
also can be got by Theorem 3.2.

Theorem 4.7. Let A,B ∈ Cn×n. Assume that A has the form (2.1). If A is group
invertible, then the following are equivalent:

(1) A
∗
≤ B;

(2) B −A can be written as

B −A = Y

[
0 0

−B4S
∗C−1 B4

]
Y ∗, B4 ∈ C(n−r)×(n−r); (4.4)

(3) AA†(B −A) = 0 and (B −A)AA† = (B −A)Y

[
0 0

−S∗C−1 0

]
Y ∗;

(4) B = A+ (In −AA†)X(In −AA†)(I −A#A)∗ for some matrix X ∈ Cn×n.

Proof. (1) ⇔ (2). Since A is group invertible, matrix C is nonsingular. Let B − A =

Y

[
B1 B2

B3 B4

]
Y ∗, where B1 ∈ Cr×r. Suppose A

∗
≤ B. Hence A∗A = A∗B and AA∗ =

BA∗. We marked with F, the entries that we are not interest in.

A∗(B −A) = Y

[
CM∗ 0
S∗M∗ 0

] [
B1 B2

B3 B4

]
Y ∗ = Y

[
CM∗B1 CM∗B2

F F

]
Y ∗; (4.5)

(B −A)A∗ = Y

[
B1 B2

B3 B4

] [
CM∗ 0
S∗M∗ 0

]
Y ∗ = Y

[
F 0

B3CM
∗ +B4S

∗M∗ 0

]
Y ∗. (4.6)
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From (4.5) we get CM∗B1 = 0 and CM∗B2 = 0. The nonsingularity of C and M implies
that B1 = 0 and B2 = 0. From (4.6) we get B3CM

∗ + B4S
∗M∗ = 0. The nonsingularity

of C and M leads to B3 = −B4S
∗C−1. Conversely, we have

(B −A)A∗ = Y

[
0 0

−B4S
∗C−1 B4

] [
CM∗ 0
S∗M∗ 0

]
Y ∗ = 0; (4.7)

A∗(B −A) = Y

[
CM∗ 0
S∗M∗ 0

] [
0 0

−B4S
∗C−1 B4

]
Y ∗ = 0. (4.8)

From (4.7) and (4.8), we get BA∗ = AA∗ and A∗B = A∗A. That is A
∗
≤ B.

(2) ⇒ (3). Since we have A† = Y
[

CM−1 0
S∗M−1 0

]
Y ∗, so AA† = Y

[
Ir 0
0 0

]
Y ∗. It is easy to

check that AA†(B −A) = 0 and (B −A)AA† = (B −A)Y
[

0 0
−S∗C−1 0

]
Y ∗.

(3) ⇒ (2). Let B − A = Y
[
X1 X2
X3 X4

]
Y ∗, where X1 ∈ Cr×r. From AA†(B − A) = 0 we

get that X1 and X2 are zero matrices and (B−A)AA† = (B−A)Y
[

0 0
−S∗C−1 0

]
Y ∗ implies

X3 = −X4S
∗C−1. Thus we have the form in (4.4).

(2)⇒ (4). Note that (4.4) can be written as

B −A = Y

[
0 0
0 B4

] [
0 0

−S∗C−1 In−r

]
Y ∗

= Y

{[
0 0
0 B4

]([
Ir 0
0 In−r

]
−
[
Ir C−1S
0 0

])∗}
Y ∗

= Y

{[
0 0
0 B4

](
I −A#A

)∗}
Y ∗

Therefore, B −A = (In −AA†)X(In −AA†)
(
I −A#A

)∗
for some matrix X ∈ Cn×n.

(4)⇒ (1). Since A∗(In −AA†) = A∗(In −AA†)∗ = 0 we obtain A∗(B −A) = 0. Since
(In −A#A)∗A∗ = [A(In −A#A)]∗ = 0, we get (B −A)A∗ = 0.

Theorem 4.8. Let A,B ∈ Cn×n. Assume that A has the form (2.1). If A is group
invertible, then the following are equivalent:

(1) A
#
≤ B;

(2) B −A can be written as

B −A = Y

[
0 −C−1SB4

0 B4

]
Y ∗, B4 ∈ C(n−r)×(n−r); (4.9)

(3) AA#(B −A) = (B −A)AA# = 0;

(4) There exists a projection Q such that QA = 0 and B − A = (I − A#A)QXQ for
some matrix X ∈ Cn×n.

In this case, A
#
≤ B if and only if exists X ∈ Cn×n such that B = A + (In − A#A)(In −

AA†)X(In −AA†).
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Proof. (1)⇒ (2). Since A is group invertible, we get that C is nonsingular. Let B −A =

Y
[
B1 B2
B3 B4

]
Y ∗, where B1 ∈ Cr×r. Since A

#
≤ B, then AB = A2 = BA by Lemma 4.1, i.e.,

A(B −A) = (B −A)A = 0. We marked with F, the entries that we are not interest in.

0 = (B −A)A = Y

[
B1 B2

B3 B4

] [
MC MS

0 0

]
Y ∗ = Y

[
B1MC B1MS
B3MC B3MS

]
Y ∗.

The nonsingularity of M and C imply that B1 and B3 are zero matrices.

0 = A(B −A) = Y

[
MC MS

0 0

] [
0 B2

0 B4

]
Y ∗ = Y

[
0 M(CB2 + SB4)
0 0

]
.

The nonsingularity of M and C imply B2 = −C−1SB4, i.e., we have obtained (4.9).
(2) ⇒ (1). Conversely, we have

(B −A)A = Y

[
0 −C−1SB4

0 B4

] [
MC MS

0 0

]
Y ∗ = 0; (4.10)

A(B −A) = Y

[
MC MS

0 0

] [
0 −C−1SB4

0 B4

]
Y ∗ = 0. (4.11)

From (4.10) and (4.11), we get A2 = AB = BA. That is A
#
≤ B.

(1)⇒ (3). From AB = A2, we get A#AB = A, and now AA#(B−A) = AA#B−A =
0. The equality (B −A)AA# = 0 is obtained in a similar way.

(3)⇒ (1). Since AA#(B−A) = 0 and (B−A)AA# = 0 are equivalent to AA#B = A
and BAA# = A, respectively, we can get A#B = A#A and AA# = BA# by multiplying
A# on the left side of AA#B = A and multiplying A# on the right side of BAA# = A.

That is A
#
≤ B by the definition of the sharp star partial order.

(2)⇒ (4). Note that (4.9) can be written as

B −A = Y

[
0 −C−1S
0 In−r

] [
0 0
0 B4

]
Y ∗

= Y

{([
Ir 0
0 In−r

]
−
[
Ir C−1S
0 0

])[
0 0
0 B4

]}
Y ∗.

Therefore, B −A = (In −A#A)(In −AA†)X(In −AA†) for some matrix X ∈ Cn×n. Let
Q = In −AA†, we get that Q is a projection such that QA = 0.

(4) ⇒ (1). Multiplying by A on the left side of B − A = (I − A#A)QXQ, we obtain
A2 = AB, and multiplying by A on the right side of B −A = (I −A#A)QXQ, we obtain

A2 = BA. Thus A
#
≤ B by lemma 4.1.

Let A,B ∈ Cn×n and let A be a group invertible matrix. If A is an EP matrix, then
A(A − B) = 0 ⇔ R(A − B) ⊆ N(A) ⇔ R(A − B) ⊆ N(A∗) ⇔ A∗(A − B) = 0 and
(A − B)A = 0 ⇔ A∗(A∗ − B∗) = 0 ⇔ R(A∗ − B∗) ⊆ N(A∗) ⇔ R(A∗ − B∗) ⊆ N(A) ⇔

A(A∗ − B∗) = 0⇔ (A− B)A∗ = 0, which proves that if A is an EP matrix, then A
#
≤ B

if and only if A
∗
≤ B.
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Theorem 4.9. Let A,B ∈ Cn×n be core invertible. Then A
#©
≤ B if and only if A ∗≤ B

and R(A) ⊆ N(B#© −A#©).

Proof. By Lemma 4.2, it is enough to prove that B#©AA#© = A#© if and only if R(A) ⊆
N(B#© −A#©).

If B#©AA#© = A#©, then (B#© − A#©)(In − AA#©) = B#© − A#©, and thus, exists X ∈
Cn×n such that B#© − A#© = X(In − AA#©). And B#© − A#© = X(In − AA#©) implies
(B#© − A#©)∗ = (In − AA#©)X∗, hence R[(B#© − A#©)∗] ⊆ R(In − AA#©). But R[(B#© −
A#©)∗] = [N(B#© − A#©)]⊥ and by using that AA#© is the orthogonal projector onto R(A),
we have R(In−AA#©) = R(AA#©)⊥ = R(A)⊥. Therefore, [N(B#©−A#©)]⊥ ⊆ R(A)⊥, hence
R(A) ⊆ N(B#© −A#©).

Conversely, if R(A) ⊆ N(B#© − A#©), then R[(B#© − A#©)∗] = [N(B#© − A#©)]⊥ ⊆
[R(A)]⊥ = R(AA#©)⊥ = R(In −AA#©), hence B#© −A#© = X ′(In −AA#©) for some matrix
X ′ ∈ Cn×n. Therefore B#©AA#© = [A#© +X ′(In −AA#©)]AA#© = A#©AA#© = A#©.

Let A,B ∈ Cn×n. To study a partial order between A and B, we have two ways. One
is to use the CS decomposition of A; another is to use the CS decomposition of B.

Theorem 4.10. Let A,B ∈ Cn×n be group invertible. Assume that A has the form (2.1).

Then B
−
≤ A if and only if B can be written as

B = Y

[
B1 B1C

−1S
0 0

]
Y ∗, C−1M−1 ∈ B1{1}. (4.12)

Proof. Since A is group invertible, we have that C is nonsingular. Let B = Y
[
B1 B2
B3 B4

]
Y ∗,

with B1 ∈ Cr×r.

If A
−
≤ B, then B = AA#©B = BA#©A = BA#©B by Lemma 4.3. From

AA#©B = Y

[
Ir 0
0 0

] [
B1 B2

B3 B4

]
Y ∗ = Y

[
B1 B2

0 0

]
Y ∗,

B = AA#©B and the above expression of B we get that B3 and B4 are zero matrices. From

BA#©A = Y

[
B1 B2

0 0

] [
Ir C−1S
0 0

]
Y ∗ = Y

[
B1 B1C

−1S
0 0

]
Y ∗

and B = BA#©A we get B2 = B1C
−1S. From

BA#©B = Y

[
B1 B2

0 0

] [
C−1M−1 0

0 0

] [
B1 B2

0 0

]
= Y

[
B1C

−1M−1B1 B1C
−1M−1B2

0 0

]
Y ∗

and BA#©B = B we get B1 = B1C
−1M−1B1. Thus B has the form in (4.12).

For the opposite implication, it is easy to check that B = AA#©B = BA#©A = BA#©B,

which gives B
−
≤ A by Lemma 4.3.
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The following lemma is obvious in view of Proposition 2.5.

Lemma 4.11. Let A,B ∈ Cn×n be the same as in Theorem 4.10 with B
−
≤ A. Then B1

is core invertible and B#© = Y
[
B

#©
1 0
0 0

]
Y ∗.

Proof. We write B as in (4.12). The group invertibility of B leads to the core invertibility

of B and B1 by [9, Theorem 1]. It is easy to verify that B#© = Y
[
B

#©
1 0
0 0

]
Y ∗ by using the

Proposition 2.5.

Lemma 4.11 will useful in the next theorem. In the following, we will answer the
following question: when the minus partial order is core partial order?

Theorem 4.12. Let A,B ∈ Cn×n be core invertible. Assume that A has the form (2.1).

Then B
#©
≤ A if and only if B can be written as

B = Y

[
B1 B1C

−1S
0 0

]
Y ∗, C−1M−1 ∈ B1{1}. (4.13)

and B1 = MCB#©
1 MC.

Proof. Since A is core invertible and the core invertibility is equivalent to the group invert-

ibility, we get that C is nonsingular. Let B = Y
[
B1 B2
B3 B4

]
Y ∗, where B1 ∈ Cr×r. Suppose

B
#©
≤ A. Since B

#©
≤ A implies B

−
≤ A, Theorem 4.10 and Lemma 4.11, imply

B = Y

[
B1 B1C

−1S
0 0

]
Y ∗, B#© = Y

[
B#©

1 0
0 0

]
Y ∗, C−1M−1 ∈ B1{1}.

Since B
#©
≤ A, by Lemma 4.4, we know A#©BA#© = B#©.

A#©BA#© = Y

[
C−1M−1 0

0 0

] [
B1 B2

B3 B4

] [
C−1M−1 0

0 0

]
Y ∗

= Y

[
C−1M−1B1 C−1M−1B2

0 0

] [
C−1M−1 0

0 0

]
Y ∗

= Y

[
C−1M−1B1C

−1M−1 0
0 0

]
Y ∗.

(4.14)

From (??), (4.14) and A#©BA#© = B#© ( by Lemma 4.4 ) we get

C−1M−1B1C
−1M−1 = B#©

1 .

That is B1 = MCB#©
1 MC. The opposite inclusion is trivial.
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5 Core invertibility under the core partial order

In [13, Theorem 2.2], Mitra has shown that for matrices A,B ∈ Cn×n, if A
∗
≤ B, then

B† −A† = (B −A)†. It is well-known that a complex matrix is Moore-Penrose invertible,
but it is not true for the core inverse of a complex matrix. When we consider the CS
decomposition in Lemma 2.2, then A is core invertible if and only if C is nonsingular and

A#© = Y

[
C−1M−1 0

0 0

]
Y ∗. A natural question is that if we assume that A and B − A

are both core invertible with A
#©
≤ B, then B is core invertible ? Moreover, if B is core

invertible, do we have B#© − A#© = (B − A)#© ? In the following theorem, we will answer
this question.

Theorem 5.1. Let A,B ∈ Cn×n. Assume that A has the form (2.1). If A and B−A are

both core invertible and A
#©
≤ B, then B is core invertible. In this case

B#© = A#© + (B −A)#© −A#©A(B −A)#©.

Proof. From Theorem 4.5, we have

B −A = Y

[
0 0
0 B4

]
Y ∗, B4 ∈ C(n−r)×(n−r). (5.1)

Since A and B−A are both core invertible, we get C is nonsingular and B4 is core invertible
in view of the Proposition 2.5. Thus MC is core invertible and (MC)#© = C−1M1. The
equality (5.1) gives that

B = Y

[
MC MS

0 B4

]
Y ∗, B4 ∈ C(n−r)×(n−r). (5.2)

Let X = Y

[
C−1M1 −C−1SB#©

4

0 B#©
4

]
Y ∗, we have

BX =Y

[
I 0
0 BB#©

4

]
Y ∗ is Hermitian,

XB2 =Y

[
C−1M−1 −C−1SB#©

4

0 B#©
4

] [
(MC)2 MCMS +MSB4

0 (B4)
2

]
Y ∗ = B,

BX2 =Y

[
I 0
0 BB#©

4

] [
C−1M−1 −C−1SB#©

4

0 B#©
4

]
Y ∗ = X.

Thus, B#© = X in view of Lemma 2.4.

That is we have B#© = Y

[
C−1M−1 −C−1SB#©

4

0 B#©
4

]
Y ∗. The equality (5.1) gives that

(B−A)#© = Y

[
0 0
0 B#©

4

]
Y ∗ in view of the Proposition 2.5. Thus B#© = A#©+(B−A)#©+

Y

[
0 −C−1SB#©

4

0 0

]
Y ∗. Having in mind A#© = Y

[
C−1M−1 0

0 0

]
Y ∗. Finally, since we
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have A#©A = AA# and

Y

[
0 C−1SB#©

4

0 0

]
Y ∗ =Y

[
Ir C−1S
0 0

] [
0 0
0 B#©

4

]
Y ∗

=AA#(B −A)#©,

Thus B#© = A#© + (B −A)#© −A#©A(B −A)#©.

We will prove that A2 = AB if and only if Y

[
0 C−1SB#©

4

0 0

]
Y ∗ = 0. Next we

will show that AA#(B − A)#© = 0 if and only if A2 = AB. Since we have B − A =
(B −A)#©(B −A)2 and (B −A)#© = (B −A)((B −A)#©)2, thus

AA#(B −A)#© = 0 ⇔ A(B −A)#© = 0

⇔ A(B −A) = 0.

Corollary 5.2. Let A,B ∈ Cn×n. Assume that A has the form (2.1). If A and B − A
are both core invertible, A

#©
≤ B, then A2 = AB if and only if B#© −A#© = (B −A)#©.

In [2, Theorem 3.7], the author proved that if A is an EP matrix, then S = 0.

Corollary 5.3. Let A,B ∈ Cn×n. Assume that A has the form (2.1). If A and B − A
are both core invertible, A

#©
≤ B and A is an EP matrix, then B#© −A#© = (B −A)#©.

It is well-known that for complex matrices A,B we have A
∗
≤ B if and only if A

−
≤ B

and (B − A)† = B† − A†. For the core partial order, we also can get a similar result as
follows.

Theorem 5.4. Let A,B ∈ Cn×n. Assume that A has the form (2.1). If A and B−A are

both core invertible, then A
#©
≤ B if and only if A

−
≤ B and B is core invertible with

B#© −A#© = (In −A#©A)(B −A)#©.

Proof. By (??), we can get that A#©A = Y

[
Ir C−1S
0 0

]
Y ∗. From the proof of Theorem

5.1, it is enough to prove that A
−
≤ B and B is core invertible with B#© − A#© = (In −

A#©A)(B −A)#© = Y

[
0 −C−1SB#©

4

0 B#©
4

]
Y ∗ implies that A

#©
≤ B. Since

B#©AB#© =
[
A#© + Y

[
0 −C−1SB#©

4

0 B#©
4

]
Y ∗
]
A
[
A#© + Y

[
0 −C−1SB#©

4

0 B#©
4

]
Y ∗
]

=Y

[
Ir −C−1S
0 0

]
Y ∗
[
A#© + Y

[
0 −C−1SB#©

4

0 B#©
4

]
Y ∗
]

=Y

[
C−1M−1 0

0 0

]
Y ∗ = A#©.

Thus B#©AB#© = A#©, which gives that A
#©
≤ B in view of [16, Theorem 4.10].
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Theorem 5.5. Let A,B ∈ Cn×n. Assume that A has let A have the form (2.1) and A is

core invertible. If B = Y

[
MC MS

0 B4

]
Y ∗ with B4 is core invertible and SB4 = 0, then

(1) If A
#©
≤ B, then B −A is core invertible and (B −A)#© = B#© −A#©;

(2) A
#©
≤ B if and only if (B −A)

#©
≤ B.

Proof. The part (1) is a corollary of Theorem 5.1.

The part (2), suppose A
#©
≤ B. It is sufficient to show that (B−A)∗(B−A) = (B−A)∗B

and (B −A)2 = B(B −A) by [16, Theorem 2.4].

(B −A)∗(B −A) = Y

[
0 0
0 B∗4

] [
0 0
0 B4

]
Y ∗ = Y

[
0 0
0 B∗4B4

]
Y ∗; (5.3)

(B −A)∗B = Y

[
0 0
0 B∗4

] [
MC MS

0 B4

]
Y ∗ = Y

[
0 0
0 B∗4B4

]
Y ∗; (5.4)

(B −A)2 = Y

[
0 0
0 B4

] [
0 0
0 B4

]
Y ∗ = Y

[
0 0
0 B2

4

]
Y ∗; (5.5)

B(B −A) = Y

[
MC MS

0 B4

] [
0 0
0 B4

]
Y ∗ = Y

[
0 0
0 B2

4

]
Y ∗. (5.6)

From (5.3), (5.4), (5.5) and (5.6) we get (B−A)
#©
≤ B. Conversely, it is easy to check that

A∗A = A∗B and A2 = BA.
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