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Abstract

This paper is practice-oriented and reports on a mathematical modelling unit specifically developed for first-year
engineering students in a South African context. The main idea with the unit was to foster students’ mathematical
modelling competency development. This idea supports an essential goal of mathematics teaching, that is to enable
students to solve real - world problems by means of mathematics. The unit consists of five lessons and several
tasks, carefully planned to consider students’ mathematical pre-knowledge, the demands of the first-year mathe-
matics (calculus) curriculum and the intended competency development. The unit was linked to the mathematical
topic of functions and taught for different groups of students according to two different teaching designs, similar
to the designs used in the German DISUM project. 144 first year engineering students from the extended curri-
culum programme of a large public university were divided in three groups and exposed to the unit. An empirical
evaluation of the intervention (with a pre-post-test design) showed a significant competency growth for all groups,
with substantial differences, dependent on the teaching design. Some strengths and shortcomings of the unit will
be identified and implications for future practice will be discussed.
Este art́ıculo está orientado a la práctica e informa sobre una unidad de modelización matemática desarrollada
espećıficamente para estudiantes de primer año de ingenieŕıa en un contexto sudafricano. La idea principal de
la unidad era fomentar el desarrollo de la competencia de modelización matemática de los estudiantes. Esta idea
apoya un objetivo esencial de la enseñanza de las matemáticas, que es permitir a los estudiantes resolver problemas
del mundo real por medio de las matemáticas. La unidad consta de cinco lecciones y varias tareas, cuidadosamente
planificadas para tener en cuenta los conocimientos matemáticos previos de los alumnos, las exigencias del plan de
estudios de matemáticas de primer curso (cálculo) y el desarrollo de competencias previsto. La unidad se vinculó
al tema matemático de las funciones y se impartió a distintos grupos de estudiantes según dos diseños didácticos
diferentes, similares a los utilizados en el proyecto alemán DISUM. Se dividieron en tres grupos 144 estudiantes
de primer año de ingenieŕıa del programa curricular ampliado de una gran universidad pública y se les expuso la
unidad. Una evaluación emṕırica de la intervención (con un diseño pre-post-test) mostró un crecimiento signifi-
cativo de las competencias en todos los grupos, con diferencias sustanciales, dependiendo del diseño didáctico. Se
identificarán algunos puntos fuertes y deficiencias de la unidad y se discutirán las implicaciones para la práctica
futura.

Palabras clave: First-year engineering students; mathematical modelling competency; mathematical modelling
unit; real-world problems; teaching design
Keywords: Estudiantes de primer año de ingenieŕıa; competencia en modelización matemática; unidad de mode-
lización matemática; problemas del mundo real; diseño de enseñanza
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1. Introduction

The formal education of engineering students requires the development of mathematical
competency and specifically higher cognitive skills such as arguing or modelling. However,
the South African assessment framework has a greater focus on knowing and solving routine
problems, and there is limited emphasis on applying and reasoning. According to the latest
TIMSS findings (Reddy, Winnaar, Juan, Arends, Harvey, Hannan et al., 2020), the school
and national assessments should include more items at higher cognitive levels. As a result of
school mathematics, students entering engineering programmes at universities often lack higher
cognitive skills and therefore have to be educated accordingly. One way is to expose students
to a series of mathematical modelling activities (De Villiers and Wessels, 2020; Durandt, 2018).
Mathematical modelling is in many countries an integral part of the curriculum at all levels of
education, also at the tertiary level. The inclusion of a modelling unit in the formal education of
engineering students seems important as they will be expected to apply higher cognitive skills
and solve real - life problems in their profession. The question arises as to how mathematical
modelling can be incorporated in the formal education of engineering students and in particular
how such a unit should be constructed. This paper reports on the design of a mathematical
modelling teaching unit specifically developed for first-year engineering students in a South
African context.

2. Mathematical modelling

Mathematical modelling usually means solving real - world problems by means of mathe-
matics. This involves translating the problem situation into mathematics, working within the
resulting mathematical model of the situation, and interpreting the mathematical outcomes in
the given situation. An example which is well-known from the literature (see Blum and Leiß,
2007, and Niss and Blum, 2020, chapter 3, for details to this example) is the question as to
whether it is worthwhile to drive to a remote petrol station to fill up one’s car when the petrol
is cheaper there than at a nearby station. Typical steps when solving this problem are: first
to understand the given problem, to imagine the situation (two petrol stations with different
distances and different prices) and to construct a mental model of the situation; second to
structure the situation by identifying relevant parameters (besides the distances and the prices
at least also the tank volume and the consumption rate of the given car) and relations between
them; third to set up a mathematical model of the given situation, that means to write down
terms for the different prices for filling up; fourth to do some calculations; fifth to interpret the
results of these calculations in the light of the initial problem of which station to choose; sixth
to check whether the result makes sense and if there may be additional variables to consider
(such as the time that it costs to drive to the stations, the air pollution by the trip or the
risk of an accident on the trip), and if necessary to go once again through steps three to five
with a refined model; and seventh and finally to present the whole solution together with a
recommendation of what to do. These seven steps can be visualised by the modelling cycle
shown in Figure 1 (where, according to Pollak, 1979, “rest of the world” denotes the whole
extra-mathematical world).
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Figure 1 – Seven step modelling cycle according to Blum and Leiß (2007)

Mathematical modelling is a compulsory topic in many mathematics curricula around the
world, from primary to tertiary education. There are several justifications for the inclusion of
modelling (see Blum, 2015, for an overview of such arguments): first to help students to under-
stand certain problems in the real world better; second to advance mathematical competencies
such as mathematising, problem solving or communicating; third to contribute to an adequate
picture of mathematics as a science; and fourth to support students’ learning of mathematics
(motivation and interest for mathematical activities, and deeper understanding of mathemati-
cal topics). In particular for mathematics as a service subject at the tertiary level, its vital role
is to contribute to a better understanding and mastering of situations and problems stemming
from the serviced discipline.

Mathematical modelling can be included in the learning and teaching of mathematics by
appropriate tasks. No other subject in education is shaped by tasks to the same extent as
mathematics. A mathematical modelling task is a task which requires genuine mathematical
modelling activities to solve it. By “genuine” we mean that the real - world situation has to be
taken seriously and is not only a mere, easily recognisable dressing-up of a mathematical task;
that the answer to the given question is not obvious from the beginning; that relevant parame-
ters have to be identified and assumptions have to be taken; that some mathematical model has
to be chosen; and that the mathematical result has to be translated back into the real world.
The real - world situation does not have to be authentic in the sense that it is directly taken
from a context where mathematics is actually applied in industry, business, science, society or
everyday life. However, the situation has to be credible so that it might occur in practice (see
Niss and Blum, 2020, chapter 5, for a discussion of authenticity), or it has to be presented
honestly as deliberately constructed for educational purposes. Appropriate modelling tasks for
certain educational levels have, of course, to be accessible at that level, that is both the real -
world context and the mathematics necessary for the solution have to be comprehensible.

The abovementioned aim to advance students’ competencies presupposes a transfer from the
competencies needed to solve a particular problem (such as the Filling Up problem) to more
general competencies which can be applied to solve other problems. In this sense, an important
goal of teaching modelling is to develop students’ mathematical modelling competency, that is
their ability to construct and to use mathematical models for solving real - world problems
by carrying out appropriate steps as well as to analyse or to compare given models (for a
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detailed discussion of modelling competency and its sub-competencies see Niss and Blum, 2020,
chapter 4). As is well-known from learning theories and empirical findings, transfer cannot be
expected to happen automatically. The essential reason is the situatedness of all learning (see
Brown, Collins and Duguid, 1989). This means that the modelling competency which a student
acquires is usually restricted to the specific mathematical area and the specific real - world
context in which it was needed while solving a specific task, and transfer to other tasks, areas
and contexts has to be carefully organized by the teacher, especially by pointing to similarities
between different tasks. One similarity which can be emphasized are the solution steps through
the modelling cycle. Seven steps (like in Figure 1) will generally be too complicated for learners,
but a four step cycle like the one developed in the DISUM project (“Solution Plan”, see Figure
2) has proven to be helpful for learning modelling (see Schukajlow, Kolter and Blum, 2015).

Figure 2 – Four step modelling cycle for learners, developed in the DISUM project

With the difficulty of transfer we have mentioned one of many aspects which make the
teaching and learning of mathematical modelling demanding for learners and for teachers (for
an overview on empirical findings concerning modelling see Blum, 2015; Kaiser, 2017; Stillman,
2019; Niss and Blum, 2020, chapter 6). We know from several empirical studies that each
step in the modelling process is a cognitive challenge for students and may be a barrier which
may even lead to a breakup of the solution process if students are working completely alone,
without teacher support. There is a fundamental difference between students working alone,
and students working independently but supported, if needed, by a teacher. It is crucial that
teachers give minimal support, aiming at a permanent balance between students’ independence
and teachers’ guidance. A key element to achieve such a balance is to use adaptive teacher
interventions which allow students to continue their work without losing their independence
(Blum, 2011; Stender and Kaiser, 2016), in particular strategic interventions (such as “Read the
text carefully!”, “Imagine the situation clearly!”, “What do you aim at?”, “What is missing?”,
“Does this result make sense for the real situation?”). Another key element are meta-cognitive
tools like the Solution Plan just mentioned. Many empirical results have shown positive effects
of meta-cognitive activities during modelling (see Vorhölter, Krüger and Wendt, 2019, for an
overview). There are several more aspects which ought to be taken into account for teaching
modelling. Basic criteria of quality teaching such as an effective classroom management, an
orientation towards the students’ pre-knowledge or a permanent cognitive activation of the
students have proven important also for teaching modelling.

ISSN 1988-3145 @MSEL

http://polipapers.upv.es/index.php/MSEL


M
o
de
lli
ng

in
S
ci
en
ce

E
du

ca
ti
on

an
d
L
ea
rn
in
g

ht
tp
:/
/p

ol
ip
ap
er
s.
up

v.
es
/i
nd

ex
.p
hp

/M
S
E
L

Volume 15 (1), doi: 10.4995/msel.2022.16646. 81

3. Study context and aims

In 2018, the idea arose to carry out a research study analogous to the German DISUM1

project, but for South African engineering students at the tertiary level. The main aim of this
study was to compare the effects of different teaching designs for a mathematical modelling
unit on the development of students’ modelling and mathematical competencies. To monitor
the effectiveness of the intervention as well as the influence of the respective teaching design, the
participants’ competencies were assessed in a pre-post-test design and their attitudes towards
mathematical modelling were also measured after the unit.

The unit was designed by the first two authors of this paper and developed for initial im-
plementation in an extended curriculum programme at the University of Johannesburg. In this
programme, the first year of the mainstream programme is split over two consecutive years to
allow students with lower grades in key subjects (such as mathematics, science, and English)
to develop competencies and adequate learning strategies to successfully adapt to the tertiary
environment. Hence, the modelling unit was constructed as a part of formal education and
during a scheduled weekly tutorial session in students’ first semester. During February and
March 2019, a sample of 144 first-year engineering students participated in such a curriculum
programme and thus in our study. Their participation was voluntary, and standard departmen-
tal ethical matters were addressed. The students were automatically assigned to three distinct
class groups by the university’s registration system, not more than 50 each, according to their
focus of study (physical or extraction metallurgy, or construction).

These three groups were taught according to two different teaching styles which fulfil certain
criteria of quality teaching (see Blum, 2015), a “method-integrative” and a “teacher-directive”
style, analogous to those styles in the DISUM project (for details see Blum and Schukajlow,
2018). The construction group (labelled “MI”) was taught according to the method-integrative
style which aims essentially at students’ independent work on tasks, adaptively supported by
the teacher. Both the construction and the physical metallurgy groups (labelled “TD1” and
“TD2” respectively) were taught according to the teacher-directive style where the students
are to work on tasks guided by the teacher (for more details of the teaching design see Du-
randt, Blum and Lindl, 2021). The language of instruction was English for all groups, although
English was not the home language for the lecturers and for most students. In both the TD1
and TD2 group approximately 16 % of students speak English as their home language, while
in the MI group approximately 12 % of students have English as their home language (other
languages spoken are mostly African such as Zulu or Northern Sotho). The two lecturers who
implemented the modelling unit were the first author of this paper for the groups TD1 and MI,
and a colleague from the same department for the group TD2. Both lecturers were experienced
in teaching mathematics, but only the first lecturer had experience in teaching mathematical
modelling. The researchers’ intention was to evaluate the unit after implementation, especially
concerning students’ learning gains, and to make strategic changes to the unit for further im-
plementation in consecutive years (see Section 6).

In the present, practice-oriented paper we mainly report on the design of the mathematical
modelling teaching unit and its contents, not on details of the teaching methods. Also, we will

1Didaktische Interventionsformen für einen selbständigkeitsorientierten aufgabengesteuerten Unterricht am Beispiel
Mathematik–in English: Didactical intervention modes for mathematics teaching oriented towards students’ self-regulation and
guided by tasks. The project was directed by W. Blum (mathematics education), R. Messner (pedagogy, both University of Kas-
sel), and R. Pekrun (pedagogical psychology, University of München) and was carried out 2002–2013.
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only briefly report on the empirical evaluation of the modelling unit and the corresponding
development of students’ competencies and attitudes (for more details see Durandt, Blum and
Lindl, 2021). Therefore, the leading question for this paper is: How can a mathematical teaching
unit be constructed to support first–year students’ development of modelling competency?

4. Description of the unit

The mathematical modelling teaching unit was constructed over five lessons with ten dif-
ferent tasks, all carefully planned considering students’ mathematical pre-knowledge from the
pre-tertiary phase, the demands of the first-year engineering mathematics curriculum and the
intended development of students’ mathematical and modelling competency. All tasks were de-
veloped with a focus on the mathematical content area of functions. The last two tasks in lesson
5 were not modelling tasks as characterised in Section 2 but mere word problems, primarily
serving for deepening the understanding of proportions (a topic which is needed in several of
the modelling tasks). In the following, we describe the content of the individual lessons (45
minutes each; for an overview see Table 1).

Lesson Number of tasks Tasks
1 3 Hot-air Balloon, Hot-water Tap, and Weight of Person
2 2 Age of Trees, and Evacuation of an Aircraft

3 & 4 1 Traffic Flow
5 4 Giant’s Shoe, Statue in Germany,

and two situations with direct and indirect proportions

Table 1 – Tasks included in the five lessons of the modelling unit

Lesson 1: This lesson consists of three tasks, from which the first requires most of the
available time. The first task, Hot-air Balloon, contains the problem of how much air is in a
balloon shown on a picture with a base jumper on top, see Figure 3a (from Herget and Torres-
Skoumal, 2007). When solving the task, students are expected to model the balloon (e.g., as a
half sphere and a cone), make some approximations (related to the man, the half sphere, and
the cone), then proceed with calculations, and finally interpret the mathematical results. For
one such example see Figure 3b; here the height of the half sphere was estimated as 12.6 meters
and the height of the cone as 18.9 meters. Consequently, the total volume was estimated as
approximately 7000 cubic meters.

(a) (b)

Figure 3 – (a) The Hot-air Balloon task from lesson 1 (b) A possible solution approach for the Hot-air Balloon
task from lesson 1
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The other two tasks included in this lesson were interpretations of given real - life graphs
(both tasks from Stewart, 2016). With the Hot-water Tap task (see Figure 4a) students are
expected to explain their view on how the graph represents the temperature of the water (T),
when a hot water tap is opened, as a function of time (t). One possible solution is to explain
that the initial temperature of the running water is close to room temperature because the
water has been sitting in the pipes. When the water from the hot-water tank starts flowing
from the geyser, T increases quickly. In the next phase, T is constant at the temperature of
the heated water in the tank. When the tank is drained,T decreases to the temperature of
the water supply. With the Weight of Person task (see Figure 4b) students are expected to
describe in words how a person’s weight varies over time as represented by the graph. Then
an interpretation is expected particularly for when the person is 30 years old, with possible
reasons such as diet, exercise, or health problems.

(a) (b)

Figure 4 – (a) The Hot-water Tap task from lesson 1 (b) The Weight of Person task from lesson 1

Lesson 2: This lesson consists of two tasks. In both, data is provided regarding the situation.
In the first example, the Age of Trees task, a linear model is used that relates the tree diameter to
the age of the tree (from Stewart, Redlin and Watson, 2012; see Figure 5a). In real situations,
it is much easier to measure the diameter of a tree than the age of a tree, which requires
special tools for extracting a representative cross section of the tree. Based on a table of data
values, students are expected to construct a linear model that relates the variables. A possible
representation of the data and the linear function (given by ŷ ≈ −0.5 + 6.6x) is presented in
Figure 5b.

(a) (b)

Figure 5 – (a) The Age of Trees task from lesson 2 (b) A possible solution for the Age of Trees task from lesson
2

The second example in this lesson deals with the evacuation of an aircraft, a modelling
multiple choice task taken from Haines, Crouch and Davis (2001), where the best out of five
given sets of relevant variables has to be identified (see Figure 6).
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Figure 6 – The multiple-choice modelling task from lesson 2 (Haines, Crouch and Davies, 2001)

Students are expected to work through the multiple options and indicate which one of the
options contains parameters, variables or constants which should be included in the model. An
expected solution (presented by Haines, Crouch and Davies, 2001) is:

A. “Time of day at which the landing occurred” is irrelevant, so A is not appropriate.

B. “Amount of personal items carried out” is not important, so B is not appropriate.

C. “Time of day at which the landing occurred” is hardly relevant, so C is not appropriate.

D. All three variables are relevant, so D is appropriate, but one of the most important va-
riables, number of people in the plane, is missing, that means D brings partial credit
only.

E. All three variables are relevant, so E is appropriate, and these three variables are sufficient
for a simple model, so this is the best option, thus full credit.

Lessons 3 and 4: Only one, more complex task, Traffic Flow, is treated extensively over two
lessons (for details of this example see Niss and Blum, 2020, chapter 3). The situation of dense
traffic on a single-lane road is presented and students are asked to find the speed at which cars
should go to maximize the flow rate. An obvious answer seems to be as quickly as possible, but
the faster the cars go, the bigger the distance between two cars has to be, for safety reasons,
so it is not immediately clear what an optimal balance between velocity and safety would be.
In order to be accessible, the situation has to be simplified and structured. The students are
expected to:

1. Imagine the situation – dense traffic in a single lane travelling at a specific speed; which
speed, which car length and which distance?

2. Look for a suitable mathematical model – draw a diagram; define “traffic flow rate” as
number of cars per time; define distance rules and thus specify the flow rate function.

3. Do mathematics – analyse the flow rate function and find the maximum if there is one
(calculating values, graphing, finding possible maximum values).
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4. Explain the solution – optimal speed for maximising flow.

By a few obvious assumptions, that all cars have the same speed v, all cars have the same length
l, and the distance d between two cars (dependent on v) is the same everywhere, a model for
traffic flow rate can be constructed (F = v/(l+d), where F is the number of cars per time at a
fixed point on the road). Although several possibilities exist, the intention is to define common
distance rules such as the “half speed rule” and the “driving school rule” and then specify the
flow rate function. The “half speed rule” is given by d = 〈v〉/2 meters, and the “driving school
rule” is given by d = 3 · 〈v〉/10+(〈v〉/10)2 meters, where 〈v〉 means the absolute measure of the
velocity in km/h. The graph of the flow rate function determined by the “half speed rule” (see
Figure 7) is strictly increasing. This can be easily proved by looking at the term of this function
which is a quotient of two linear terms. Thus, the driver can drive as fast as he can in order
to maximize the flow rate. In reality, this rule is by no means safe for high velocities (because
the braking distance varies, for physical reasons, quadratically with velocity). The graph of the
flow rate function determined by the “driving school rule” (see Figure 7 where it is assumed
that all cars have a length of 5 meters) has a maximum value. This can also be easily proved
by noticing that the term, a quotient of a linear and a quadratic term, tends to 0 both for very
low and for very high velocities. The optimal velocity is approximately 20 km/h, a surprisingly
low value. In reality this rule is more cautious than physically necessary because it presupposes
that the car in front stops immediately to 0.

Figure 7 – Graphs of flow rate functions from the “Traffic Flow” task in lessons 3 and 4

Lesson 5: In this lesson four tasks are treated: two picture tasks similar to the first task
in lesson 1, and two tasks written in words related to proportions (“direct” and “indirect”
proportion). In the first task students are expected to approximate how tall a giant would be in
order to fit the world’s biggest shoes (2.37 meters by 5.29 meters) given on a photo (see Figure
8a). A possible solution assumes the length of a human foot as, for instance, 0.25 meters, which
leads to a shoe length of approximately 0.30 meters. Assuming a human is approximately 1.80
meters tall, and applying the factor 6 (1.80÷0.30 ≈ 6) to the length of the giant’s shoe, we can
estimate the giant is approximately 32 meters tall (5.29×6 ≈ 32). Similarly, in the second task
students are expected to estimate the height of a man’s statue whose foot is shown (see Figure
8b). One possible solution is to assume the four human feet are altogether roughly 1 meter in
length, so the foot in the statue is approximately 2 meters. Hence, a man matching the statue
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is approximately 2× 7 ≈ 14 meters, using the ratio 1.80÷ 0.25 ≈ 7.

(a) (b)

Figure 8 – (a) The Giants’ Shoes task from lesson 5 (b) The Statue in Germany task from lesson 5

The remaining two tasks deal with proportions. To practice the concept of “direct propor-
tion” a word problem is given: A student on a bicycle rides at a constant speed to cover a
distance of 12 km in 45 minutes. If he is able to maintain this speed for 1 hour and 15 minutes,
how far will he be able to travel? A straightforward solution is possible by multiplying 12 km by
the factor 75/45, thus the distance is 20 km. To practice the concept of “indirect proportion”,
an exemplary fictitious situation is described: Two students sharing the costs of a holiday home
means 510 (South African) Rand per day for each, three students sharing the costs means 340
Rand per day for each, and four students sharing the costs means 255 Rand per day for each.
The situation is visualised by a hyperbola.

5. Some empirical results

To monitor the effectiveness of the modelling unit described in section 4 and students’
progress in mathematics and mathematical modelling after its implementation, a pre-test and
a post-test were administered to all three groups (“MI”, “TD1”, and “TD2”) before and after
the intervention (see section 3). In these two tests, different but comparable tasks were used,
which were directly aligned with the learning content of the intervention (see Table 2, and for a
detailed description of the test design Durandt, Blum and Lindl, 2021). Pre-test and post-test
thus consisted of three sections each: A) modelling tasks with pictures (such as a beer container
or a straw roll) or data tables, B) mathematical tasks (with proportional, linear, and rational
functions), and C) multiple-choice modelling tasks similar to the task in lesson 2.

Depending on the number and type of tasks per test section, a different maximum number
of marks could be achieved (A: 2 tasks, 6 marks; B: 3 tasks: 7 marks; C: 3 tasks, 6 marks). The
answers of the participants were evaluated by two independent raters, marks were assigned for
partially or completely correct solutions of the tasks, and the marks were summed up per test
section and for the overall test. Table 2 provides an overview of the marks per test section and
overall, obtained on average by each group.

Here, we report only briefly on the essential results of the evaluation of these data; further
details can be found in Durandt, Blum and Lindl (2021). If we compare the maximum pos-
sible marks with the average results achieved by each group in the tests, these are certainly
unsatisfactory from a normative point of view in the individual test sections as well as overall.
Nevertheless, all groups have reached on average higher values in the post-test than in the pre-
test, both with respect to each test section and overall. The learning gains (i.e., mean differences
between pre-test and post-test) are descriptively highest for group MI (method-integrative tea-
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Note. TD1 and TD2: teacher-directive design groups, MI: method-integrative teaching design group; M =
mean; SD = standard deviation. For Section C, the results of test versions 1 and 2 are summarised here
and, for psychometric reasons, only the results of three (of the original five) items are presented.

Table 2 – Pre- and post-test design, alignment with the modelling unit, and means and standard deviations per
test (section) and teaching design group (teacher-directive vs. method-integrative)

ching design), in all test sections and overall, although in the modelling tasks section they are
almost equivalent to group TD1 (teacher-directive design).

In deepened analyses (using so-called linear mixed regression models; see Hilbert, Stadler,
Lindl, Naumann and Bühner, 2019), which among other things can also consider influential
factors such as the entrance selectivity of groups, it can even be shown that the performance
increase in the section with modelling tasks is significantly higher in group MI than in group
TD2 and that all groups show similar significant performance gains regarding mathematical
tasks. While there are no significant differences concerning the multiple-choice tasks, MI per-
forms significantly better than TD2 and descriptively better than TD1 in the overall test.

We also measured the participants’ attitudes towards mathematical modelling after the inter-
vention, using an internationally well-established instrument, the Survey of Attitudes Towards
Statistics (SATS-36, Schau, Stevens, Dauphinee and Del Vecchio, 1995; Schau, 2003), adap-
ted towards mathematical modelling. Analogous to the original instrument, six dimensions are
differentiated: Affect (6 items, e.g., “I am scared of mathematical modelling”), Cognitive com-
petence (6 items, e.g., “I can learn mathematical modelling”), Value (9 items, e.g., “Mathema-
tical modelling should be a required part of my professional training”), Difficulty (7 items, e.g.,
“Mathematical modelling is highly technical”), Interest (4 items, e.g., “I am interested in using
mathematical modelling”), and Effort (4 items, e.g., “I plan to/did attend every mathemati-
cal modelling class session”). For organisational-administrative reasons, it was only possible to
distinguish between the teacher-directive groups (TD1 and TD2) and the method-integrative
group (MI) when surveying attitudes. Figure 9 visualises the differences between the groups for
all six dimensions.

As can be seen in Figure 9, neutral attitudes exist for both groups in terms of affect, cognitive
competence, and value. The two groups show more negative attitudes for difficulty, and more
positive attitudes for interest and effort. In five out of six aspects (except affect), the MI group
has on average descriptively more positive attitudes than the TD groups.
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Figure 9 – Attitudes towards mathematical modelling with six dimensions (7-point rating scale: 1 = strongly
disagree,..., 7 = strongly agree)

6. Conclusion and perspectives

On a practical level, the intention was to construct a mathematical modelling teaching unit
to support first year engineering students’ competency development. To document this process
and thus to verify the effectiveness of the intervention, it was evaluated with a pre-post-test
design. The empirical results show an encouraging competency gain both for mathematics and
for mathematical modelling, for all groups, with advantages (also in terms of attitudes) for
the group with the more independence-oriented teaching design. Despite the relatively short
duration of the intervention, this indicates that the intervention succeeded in substantially in-
creasing the students’ competencies, although both the results of the pre-test and the results of
the post-test were not satisfactory from a purely normative point of view. Information about
the student profiles made us realise some important factors that might have influenced the
results independently of the design of the modelling unit. One such factor could be that the
students had to work in English, which for most of them is not their home language (see in
Section 3). We know from several studies how important language proficiency is for academic
achievement at the tertiary level (see, e.g., Du Plessis and Gerber, 2012) and for understanding
the context of a modelling task (see, e.g., Plath and Leiß, 2018).

Certainly, the design of the teaching unit can be further improved. The students’ progress
during the unit was rather small as five lessons can only offer limited possibilities. De Villiers
and Wessels (2020) report a similarly slow progress of South African engineering students’ com-
petency development over an intervention with six modelling tasks. One obvious possibility for
improvement is therefore to extend the duration of the teaching unit and to include both more
tasks and more phases for individual practising, with and eventually without teacher support.
Yet another possibility is to link the modelling examples more closely to engineering topics and
to South African students’ life contexts. One concrete idea along these lines is to include an
additional task in lesson 4, Combined Resistors (adapted from Stewart, Redlin and Watson,
2012). This task is linked to the same content of rational functions as the Traffic Flow task, and
in addition to the engineering context and to the South African context. In the task a situation
is created, and students would be asked to give immediate advice to the technician and to use
technology at hand as an aid for solving the task.
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Combined Resistors: Theory on electricity explains that electrical resistance of two resistors
R1 and R2, connected in parallel, gives a combined resistance R by R = (R1R2)/(R1 +R2) . In
a nearby building in Johannesburg a technician connects a fixed 8 Ohm resistor in parallel with
a variable resistor. For safety reasons the technician must know precisely how the combined
resistance depends on the resistance of the variable resistor, in particular, how big the combined
resistance may become.

Another idea is to make a change to one picture task in lesson 5, namely to replace the
“Statue in Germany” with a picture of a statue in South Africa (see figure 10). In this task,
developed by the first two authors, students are asked to estimate the real volume of Nelson
Mandela’s upper body (covered by his shirt). Thus, by asking for a volume and not for a length,
this task aligns better with the photo tasks contained in the pre- and the post-test.

Figure 10 – The Nelson Mandela Statue task planned for lesson 5

Our goal is to develop a mathematical modelling teaching unit suitable for first-year engi-
neering students to support their competency development. The unit developed in 2019 and
presented here effectuated a significant competency growth, but can certainly be further im-
proved, both concerning the content and the teaching method. The effects of changes to the
existing unit can only be evaluated after implementation. We will report on effects of the refined
unit in due course.
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