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Abstract: This paper deals with the search for reliable efficient finite difference methods for the
numerical solution of random heterogeneous diffusion reaction models with a finite degree of
randomness. Efficiency appeals to the computational challenge in the random framework that
requires not only the approximating stochastic process solution but also its expectation and variance.
After studying positivity and conditional random mean square stability, the computation of the
expectation and variance of the approximating stochastic process is not performed directly but
through using a set of sampling finite difference schemes coming out by taking realizations of the
random scheme and using Monte Carlo technique. Thus, the storage accumulation of symbolic
expressions collapsing the approach is avoided keeping reliability. Results are simulated and a
procedure for the numerical computation is given.

Keywords: random mean square parabolic model; finite degree of randomness; monte carlo method;
random finite difference scheme

MSC: 35R60; 60H15; 65M06; 65M12

1. Introduction

Dealing with deterministic partial differential equations (PDE), finite difference meth-
ods (FD) are probably the most used because they are easy to apply and fairly efficient, [1,2].
Trying to capture real world problems, the models introduced uncertainty in several ways,
basically assuming that both data, parameters, initial and or boundary conditions are
stochastic processes instead of deterministic functions, [3,4]. The uncertainty appears not
only because of error measurements, but also considering heterogeneity of the media,
material impurities, or even the lack of access to measurements [5,6]. Independently of the
type of modelling the uncertainty, the consideration of partial differential equations models
(PDEM) has particular challenges. In fact, it is necessary to compute not only the stochastic
process solution or approximating stochastic process, but also their statistical moments,
mainly the expectation and the variance. Integral transforms methods are efficient tech-
niques to solve PDEM based on integration resources in fitting domains [7,8]. Another
powerful technique suitable for models with complex geometries is the finite element
method [9]. Iterative methods, for instance FD have particular troubles derived from the
storage accumulation of intermediate levels when the computer manages symbolically
the involved stochastic processes, [10–12]. This drawback of the iterative methods for
solving PDEM occurs in both approaches, the one based on Itô calculus [13] the so-called
stochastic differential approach (SDEA), as well as the one based on the mean square
calculus [14] also called random differential equations approach (RDEA). To face this
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computational challenge we take a set of realizations of the model, then we solve each
sampled problem using FD method. Finally, we use Monte Carlo technique, [15,16] to
average the results of the deterministic sampled problems to compute the expectation and
the variance of the approximating solution stochastic process. In our model the involved
stochastic processes (s.p.’s) are defined in a complete probability space (Ω,F ,P) and have
n degrees of randomness [14] (p. 37), i.e., they only depend on a finite number n of random
variables (r.v.’s):

h(s) = F(s, A1, A2, . . . , An), (1)

where

Ai, i = 1, . . . , n, are mutually independent r.v.’s;

F is a differentiable real function of the variable s
(being s the spatial variable x or the temporal one t).

 (2)

In addition, under this hypothesis, the s.p. h(s) has sample differentiable tra-
jectories (realizations), i.e., for a fixed event ω ∈ Ω, the real function h(s, ω) =
F(s, A1(ω), A2(ω), . . . , An(ω)) is a differentiable function of the real variable s. For
the sake of clarity in the presentation and to save notational complexity, we will as-
sume that involved s.p.’s in the coefficients and initial or boundary conditions, have
one degree of randomness, i.e., they have the form

h(s) = F(s, A) ,

with A a r.v. and F a differentiable real function of the variable s. Then the s.p. h(s)
has sample differentiable trajectories, i.e., for a fixed event ω ∈ Ω, the real function
h(s, ω) = F(s, A(ω)) is a differentiable function of the real variable s.

This paper deals with random parabolic partial differential models of the form

∂u(x, t)
∂t

=
∂

∂x

[
p(x)

∂u(x, t)
∂x

]
− q(x) u(x, t), 0 < x < 1, t > 0 , (3)

u(0, t) = g1(t), t > 0, (4)

u(1, t) = g2(t), t > 0, (5)

u(x, 0) = f (x), 0 ≤ x ≤ 1 , (6)

where the diffusion coefficient p(x), the reaction coefficient q(x), the boundary conditions
gi(t), i = 1, 2, and the initial condition f (x) are s.p.’s with one degree of randomness in
the sense as defined above. In addition we assume that p(x), q(x), f (x) and gi(t), i = 1, 2
are mean square continuous s.p.’s in variables x and t, respectively, p(x) is also a mean
square differentiable s.p. and the sample realizations of the random inputs p(x), q(x),
gi(t), i = 1, 2 and f (x) satisfy the following conditions denoting p′(x) as the mean square
derivative of p(x):

0 < a1 ≤ p(x, ω) ≤ a2 < +∞ , x ∈ [0, 1] , for almost every (a.e.) ω ∈ Ω , (7)

|p′(x, ω)|
p(x, ω)

≤ b < +∞ , x ∈ [0, 1] , for a.e. ω ∈ Ω , (8)

qmin ≤ q(x, ω) ≤ qmax , x ∈ [0, 1] , for a.e. ω ∈ Ω , (9)

gi(t, ω) ≥ 0 , i = 1, 2, t > 0 , for a.e. ω ∈ Ω , (10)
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0 ≤ f (x, ω) ≤ fmax , x ∈ [0, 1] , for a.e. ω ∈ Ω , (11)

This model is frequent in chemical engineering sciences and in heat and mass transfer
theory for reaction-diffusion problems with parameters depending on the spatial variables
as it occurs in heterogeneous and anisotropic solids, [17] (p. 455), [18] (p. 388), [19,20].

The paper is organized as follows. Section 2 deals with some preliminaries, defi-
nitions and notations about the mean square calculus as well as the construction of the
random mean square finite difference scheme (RMSFDS) resulting from the discretization
of model (3)–(6). Section 3 is addressed to the study of properties of the RMSFDS such as
positivity, stability and consistency. Throughout a sample approach, sufficient conditions
for stability and positivity of the random numerical solution s.p. in terms of the data
and discretization step-sizes are found. Consistency of the RMSFDS with Equation (3)
is also treated throughout a sample approach and the consistency of the corresponding
realized deterministic scheme for each fixed event ω ∈ Ω. In Section 4 we construct an
algorithm to perform the efficient computation of the expectation and the variance of the
numerical solution s.p. using Monte Carlo method and the solution of the sampled scheme.
Numerical simulations for a problem where the exact solution is known are performed
showing the efficiency of the proposed numerical method as well as the computations of
the expectation and the variance of the numerical approximated s.p. A conclusion Section
5 ends the paper.

2. Preliminaries and Construction of the Random Finite Difference Scheme

For the sake of clarity in the presentation, in this section we recall some definitions
and concepts related to the Lp-calculus, [14]. In a probability space (Ω, F , P), we denote
Lp(Ω) the space of all real valued r.v.’s U : Ω→ R of order p, endowed with the norm

‖U‖p = (E[|U|p])1/p =

(∫
Ω
|U(ω)|p fU(ω)dω

)1/p
< +∞ , (12)

where E[·] denotes the expectation operator, fU the density function of the r.v. U and ω an
event of sample space Ω.

Given T ⊂ R, a family of t-indexed r.v.’s, say {V(t) : t ∈ T}, is called a stochastic
process of order p (p-s.p.) if for each t ∈ T fixed, the r.v. V(t) ∈ Lp(Ω). We say that a p-s.p.
{V(t) : t ∈ T} is p-th mean continuous at t ∈ T, if

‖V(t + h)−V(t)‖p → 0 as h→ 0, t, t + h ∈ T .

Furthermore, if there exists a p-s.p. V′(t), such that∥∥∥∥V(t + h)−V(t)
h

−V′(t)
∥∥∥∥

p
→ 0 as h→ 0, t, t + h ∈ T ,

then we say that the s.p. {V(t) : t ∈ T} is p -th mean differentiable at t ∈ T and V′(t) is
the p-derivative of V(t). In the particular case that p = 2, L2(Ω), definitions above leads
to the corresponding concept of mean square (m.s.) continuity and m.s. differentiability,
respectively.

In this section, we construct an explicit random finite difference scheme for solving
problem (3)–(6). Firstly, let us write Equation (3) into the following form

∂u(x, t)
∂t

= p(x)
∂2 u(x, t)

∂x2 + p′(x)
∂ u(x, t)

∂x
− q(x) u(x, t) , (13)

where p(x) ∈ Lp(Ω) is p-th mean continuous and differentiable, p′(x) is the p-derivative
of p(t) and q(x) ∈ Lp(Ω) is p-th mean continuous.

Let us consider the uniform partition of the spatial interval [0, 1], of the form xi = ih,
0 ≤ i ≤ M, with Mh = 1. For a fixed time horizon, T, we consider N + 1 time levels



Mathematics 2021, 9, 206 4 of 15

tn = nk, 0 ≤ n ≤ N with Nk = T. The numerical approximation of the solution s.p. of the
random problem (3)–(6) is denoted by un

i , i.e.,

un
i ≈ u(xi, tn) , 0 ≤ i ≤ M, 0 ≤ n ≤ N . (14)

By using a forward first-order approximation of the time partial derivative and centred
second-order approximations for the spatial partial derivatives in Equation (13) one gets
the following random numerical scheme for the spatial internal mesh points

un+1
i − un

i
k

= pi
un

i−1 − 2un
i + un

i+1
h2 + p′i

un
i+1 − un

i−1
2h

− qi un
i , 1 ≤ i ≤ M− 1, 0 ≤ n ≤ N − 1 , (15)

where pi = p(xi), p′i = p′(xi) and qi = q(xi). The resulting random discretized
problem (3)–(6) can be rewritten in the following form

un+1
i =

k
h2

(
pi −

h
2

p′i

)
un

i−1 +

(
1− k qi −

2k
h2 pi

)
un

i +
k
h2

(
pi +

h
2

p′i

)
un

i+1 ,

1 ≤ i ≤ M− 1 , 1 ≤ n ≤ N − 1 ,

un
0 = gn

1 , un
M = gn

2 , 1 ≤ n ≤ N ,

u0
i = fi , 0 ≤ i ≤ M ,


(16)

where gn
1 = g1(tn), gn

2 = g2(tn), and fi = f (xi). Please note that all the inputs of the
random problem (16) are s.p.’s depending on one finite degree of randomness and lie
in Lp(Ω).

3. Properties of the Random Numerical Scheme: Positivity, Stability and Consistency

We are going to prove the positivity of the random numerical solution
{

un
i , 0 ≤ i ≤ M ,

0 ≤ n ≤ N} of the random scheme (16) and its ‖ · ‖p-stability in the sense of fixed station
respect to the time. We extend this type of stability to the random field.

Definition 1. A random numerical scheme is said to be ‖ · ‖p-stable in the fixed station sense in
the domain [0, 1]× [0, T], if for every partition with k = ∆ t, h = ∆ x such that N k = T and
M h = 1,

‖un
i ‖p ≤ C , 0 ≤ i ≤ M, 0 ≤ n ≤ N , (17)

where C is independent of the step-sizes h, k and the time level n.

First, we are going to find sufficient conditions on the spatial step-size h and the
temporal step-size k, so that the numerical solution {un

i (ω)} constructed by sampling
random scheme (16) for a fixed ω ∈ Ω

un+1
i (ω) =

k
h2

(
pi(ω)− h

2
p′i(ω)

)
un

i−1 +

(
1− k qi(ω)− 2k

h2 pi(ω)

)
un

i +
k
h2

(
pi(ω) +

h
2

p′i(ω)

)
un

i+1 ,

1 ≤ i ≤ M− 1 , 1 ≤ n ≤ N − 1 ,

un
0 (ω) = gn

1 (ω) , un
M(ω) = gn

2 (ω) , 1 ≤ n ≤ N ,

u0
i (ω) = fi(ω) , 0 ≤ i ≤ M ,


(18)
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guarantee its positivity, i.e., un
i (ω) ≥ 0 for 0 ≤ i ≤ M and for each time level n, 0 ≤ n ≤ N.

We denote

Ai(h, k)(ω) =
k
h2

(
pi(ω)− h

2
p′i(ω)

)
,

Bi(h, k)(ω) = 1− kqi(ω)− 2k
h2 pi(ω) ,

Ci(h, k)(ω) = pi(ω) +
h
2

p′i(ω) ,

(19)

then the sampling scheme (18) can be rewritten as follows

un+1
i (ω) = Ai(h, k)(ω) un

i−1(ω) + Bi(h, k)(ω) un
i (ω) + Ci(h, k)(ω) un

i+1(ω) .

To guarantee the positivity of the numerical approximation {un
i (ω)} it is sufficient to

impose the positivity of coefficients defined in (19). Please note that the simultaneously
positivity of coefficients Ai(h, k)(ω) and Ci(h, k)(ω) means that

−pi(ω) ≤ h
2

p′i(ω) ≤ pi(ω) ,

that is

h ≤ 2pi(ω)

|p′i(ω)| . (20)

Taking into account the bound condition (8) it follows that coefficients Ai(h, k)(ω)
and Ci(h, k)(ω), 1 ≤ i ≤ M− 1, are non-negative for a.e. ω ∈ Ω under condition

h ≤ 2
b

. (21)

Please note that for the particular case where pi(ω) is constant the positivity of coef-
ficients Ai(h, k)(ω) and Ci(h, k)(ω) defined in (19), is established for h > 0. To guarantee
the positivity of coefficient Bi(h, k)(ω) from (19) and bounds (7)–(9) note that

Bi(h, k)(ω) = 1− k qi(ω)− 2k
h2 pi(ω) ≥ 1− k qmax −

2k
h2 a2 . (22)

Thus, the positivity of Bi(h, k)(ω), 1 ≤ i ≤ M− 1, for a.e. ω ∈ Ω, is verified under
the conditions

k ≤ h2

2a2
, (If qmax < 0) , (23)

k ≤ h2

2a2 + h2qmax
, (If qmax ≥ 0) . (24)

Then taking into account the sufficient conditions (21), (23) and (24) over the discretiza-
tion step-sizes h and k, the positivity of all the coefficients (19) of sampling scheme (18)
for a.e. ω ∈ Ω is guaranteed and consequently the positivity of the numerical solution
{un

i (ω)}, 0 ≤ i ≤ M, for each time level n, 0 ≤ n ≤ N, (T = k N) is established.

Let us prove now that random numerical scheme (16) is ‖ · ‖p-stable in the sense of
Definition 1. In this study we need to distinguish two cases for the sampling parameter
qi(ω) for a fixed ω ∈ Ω.

Case 1. qi(ω) ≥ 0 , 0 ≤ i ≤ M.
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From (18) imposing conditions (21) and (24) one gets

un+1
i (ω) ≤ (Ai(h, k)(ω) + Bi(h, k)(ω) + Ci(h, k)(ω)) un

MAXi
(ω)

≤ (1− kqi(ω)) un
MAXi

(ω)

≤ un
MAXi

(ω), 1 ≤ i ≤ M− 1, 0 ≤ n ≤ N − 1 , (25)

where
un

MAXi
(ω) = max

0≤i≤M
{un

i (ω)} . (26)

Using (11), the boundary conditions of (18) and (25) we have by recurrence

un+1
i (ω) ≤ max{gn+1

1 (ω), gn+1
2 (ω), un

MAXi
(ω)}

≤ max{gn+1
1 (ω), gn+1

2 (ω), gn
1 (ω), gn

2 (ω), un−1
MAXi

(ω)}
≤ · · ·
≤ max

1≤s≤n+1

{
gs

1(ω), gs
2(ω), u0

MAXi
(ω)

}
≤ max

0≤t≤(n+1)k

{
g1(t, ω), g2(t, ω), max

x∈[0,1]
{ f (x, ω)}

}
. (27)

We denote
G(T) = max

0≤t≤T
{g1,max(T), g2,max(T), fmax} , (28)

where
gi,max(T) = max

0≤t≤T
{gi(t, ω) , for a.e. ω ∈ Ω} , i = 1, 2 . (29)

Thus, from (27) and (28) we obtain the following upper bound for the numerical
solution of sampling scheme (18)

0 ≤ un
i (ω) ≤ G(T) , for a.e. ω ∈ Ω , (30)

for each level n, 0 ≤ n ≤ N = Tk, and for each spatial point xi, 0 ≤ i ≤ M.

Case 2. qmin ≤ min0≤i≤M{qi(ω)} < 0

From (18) imposing conditions (21) and (23) and using (25) and (26) we obtain

un+1
i (ω) ≤ (1− k qi(ω)) un

MAXi
(ω)

≤ (1 + k |qmin|) un
MAXi

(ω), 1 ≤ i ≤ M− 1, 0 ≤ n ≤ N − 1 . (31)

Then using the boundary conditions of (18) and applying recurrently the bound
exhibits in (31) one gets

un+1
i (ω) ≤ max{gn+1

1 (ω), gn+1
2 (ω), (1 + k |qmin|)un

MAXi
(ω)}

≤ max{gn+1
1 (ω), gn+1

2 (ω), (1 + k |qmin|)max{gn
1 (ω), gn

2 (ω), (1 + k |qmin|)un−1
MAXi

(ω)}

≤ (1 + k |qmin|)2 max{gn+1
1 (ω), gn+1

2 (ω), gn
1 (ω), gn

2 (ω), un−1
MAXi

(ω)}

≤ · · ·

≤ (1 + k |qmin|)n+1 max
1≤s≤n+1

{
gs

1(ω), gs
2(ω), u0

MAXi
(ω)

}
. (32)

Taking into account the following inequality

(1 + k |qmin|)s ≤ (1 + k |qmin|)N < eT |qmin| , 0 ≤ s ≤ N ,
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and the notation introduced in (28), we obtain this upper bound for the numerical solution
of sample scheme (18)

0 ≤ un
i (ω) ≤ eT |qmin| G(T) , for a.e. ω ∈ Ω , (33)

for each level n, 0 ≤ n ≤ N = Tk, and for each spatial point xi, 0 ≤ i ≤ M.
Please note that both bounds (30) and (33) are independent of n, h and k.
Finally, under discretization step-size conditions (21), (23) and (24) and from the upper

bounds (30) and (33) it follows that

‖un
i ‖p =

(
E
[
|un

i |
p])1/p

=

(∫
Ω
|un

i (ω)|p fun
i
(ω) dω

)1/p
≤ α(T) G(T)

(∫
Ω

fun
i
(ω) dω

)1/p

︸ ︷︷ ︸
1

, (34)

where G(T) is defined in (28) and (29) and

α(T) =
{

1 if qmin ≥ 0 ,
eT|qmin| if qmin < 0 .

(35)

Consequently, random numerical scheme (16) is ‖ · ‖p-stable in the sense of Definition 1.
Summarizing, the following result was established.

Theorem 1. With the previous notation under conditions (21), (23) and (24) on the discretized
step-sizes h = ∆x and k = ∆t, the random numerical solution s.p. {un

i } of the RMSFDS (16)
for the random partial differential model (3)–(11) is positive for 0 ≤ i ≤ M at each time-level
0 ≤ n ≤ N with T = kN. Furthermore the RMSFDS (16) is ‖ · ‖p-stable in the fixed station sense
taking the value

C = α(T) G(T) ,

where constants G(T) and α(T) are defined in (28) and (35), respectively.

To prove the consistency of the random finite difference scheme (16) with the random
partial differential Equation (13) let us introduce the following definition inspired in the
well-known concept of consistency for deterministic PDEs, see [2].

Definition 2. Let us consider a RMSFDS F(un
i ) = 0 for a random partial differential equation

(RPDE) L(u) = 0 and let the local truncation error Tn
i (U(ω)) for a fixed event ω ∈ Ω be

defined by
Tn

i (U(ω)) = F(Un
i (ω))−L(Un

i (ω)),

where Un
i (ω) denotes the theoretical solution of L(u)(ω) = 0 evaluated at (xi, tn). We call

Tn
i (U) by

‖Tn
i (U)‖p =

(
E
[
|Tn

i (U)|p
])1/p

=

(∫
Ω
|Tn

i (U(ω))|p fTn
i (U)(ω) dω

)1/p
.

With previous notation, the RMSFDS F(un
i ) = 0 is said to be ‖ · ‖p-consistent with the

RPDE L(u) = 0 if

‖Tn
i (U)‖p → 0 as h = 4x → 0, k = 4t→ 0.

Next result shows the consistency in the p-norm of RFDS (16) with RPDE (13).

Theorem 2. The RFDS (16) is ‖ · ‖p- consistent with the RPDE (13).

Proof. Please note that for each fixed ω ∈ Ω the local truncation error using (13) and (15)
is given by
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Tn
i (U(ω)) =

Un+1
i (ω)−Un

i (ω)

k
− ∂U(ω)

∂t
(xi, tn)− pi

Un
i−1(ω)− 2Un

i (ω) + Un
i+1(ω)

h2 +

pi
∂2 U(ω)

∂x2 (xi, tn)− p′i
Un

i+1(ω)−Un
i−1(ω)

2h
+ p′i

∂ U(ω)

∂x
(xi, tn).

Assuming that U(x, t)(ω) is four times continuously differentiable with respect to x
and two times continuously differentiable with respect to t and using Taylor expansions of
U(x, t)(ω) at (xi, tn) one gets

Tn
i (U(ω)) =

k
2

∂2U(ω)

∂t2 (xi, δ)− pi
h2

12
∂4 U(ω)

∂x4 (η1, tn)− p′i
h2

6
∂3 U(ω)

∂x3 (η2, tn), (36)

where tn < δ < tn+1, xi−1 < ηj < xi+1, j = 1, 2.
Let us denote

E1(i, n)(ω) = max
{∣∣∣∣∂2U(ω)

∂t2 (xi, t)
∣∣∣∣, tn < t < tn+1

}
, (37)

E2(i, n)(ω) = max
{∣∣∣∣∂4U(ω)

∂x4 (x, tn)

∣∣∣∣, xi−1 < x < xi+1

}
, (38)

E3(i, n)(ω) = max
{∣∣∣∣∂3U(ω)

∂x3 (x, tn)

∣∣∣∣, xi−1 < x < xi+1

}
. (39)

As we are in the scenario of finite degree of randomness and the involved variables
have a truncated range, there exist Dj(i, n), j = 1, 2, 3, positive constants such that

Ej(i, n)(ω) ≤ Dj(i, n), 1 ≤ j ≤ 3, a.e. ω ∈ Ω. (40)

From Definition 2, condition (7) and (36)–(40) it follows that

‖Tn
i (U)‖p ≤

(∫
Ω

[
D1(i, n)

k
2
+

h2

12
(

pi D2(i, n) + 2|p′i |D3(i, n)
)]p

fTn
i (U)(ω) dω

)1/p

=
k
2

D1(i, n) +
h2

12
(

pi D2(i, n) + 2|p′i |D3(i, n)
)
= O(k) + O(h2). (41)

4. Algorithm

From a computational point of view, as it was commented on in the Introduction
Section, the handling of the random scheme (16) in a direct way makes unavailable the com-
putation of approximations beyond a few first temporal levels. This is because, throughout
the iterative temporal levels, n = 1, · · · , N, it is necessary to store the symbolic expres-
sions of all the previous levels of the iteration process collecting big and complex random
expressions with which the expectation and the standard deviation must be computed.
Furthermore, although the random expressions can be stored it does not guarantee that the
two first statistical moments could be computed in a numerical way. For this reason, we
propose using the random numerical scheme (16) together with the Monte Carlo technique
avoiding the described computational drawbacks. The procedure is as follows: to take a
number K of realizations of the random data involved in the random PDE (3)–(6) according
to their probability distributions; to compute the numerical solution, un

i (ωj), j = 1, · · · , K,
of the sampling deterministic difference schemes (18); to obtain the mean and the standard
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deviation of these K numerical solutions evaluated in the mesh points i = 1, · · · , M− 1, at
the last time-level N, denoted respectively by

EK
MC[u

N
i ] = µ

(
uN

i (ω1), uN
i (ω2), · · · , uN

i (ωK)
)

. (42)

√
VarK

MC[u
N
i ] = σ

(
uN

i (ω1), uN
i (ω2), · · · , uN

i (ωK)
)

. (43)

Algorithm 1 summarizes the steps to compute the stable approximations of the ex-
pectation and the standard deviation of the solution s.p., un

i , generated by means of the
sampling difference scheme (18) and the MC method.

Algorithm 1 Procedure to compute the approximations to the expectation and the standard deviation of the numerical
solution uN

i of the problem (3)–(6).

1: Consider random inputs p(x), q(x), gi(t), i = 1, 2, and f (x) as s.p.’s taking the form described in conditions (1) and (2).
2: Check that p(x) ∈ Lp(Ω) is m.s. continuous and m.s. differentiable for 0 < x < 1. Verify condition (7) and compute

the bounds a1 and a2.
3: Compute the m.s. derivative of p(x), p′(x), verify condition (8) and compute the bound b.
4: Check that coefficient q(x) ∈ Lp(Ω) being m.s. continuous s.p.’s for 0 < x < 1 and verifying condition (9).
5: Check that boundary conditions gi(t) ∈ Lp(Ω), i = 1, 2, being m.s. continuous s.p.’s for t > 0 and verifying

condition (10).
6: Check that initial condition f (x) ∈ Lp(Ω) being m.s. continuous s.p.’s for 0 ≤ x ≤ 1 and verifying condition (11).
7: Select a spatial stepsize h = ∆x verifying condition (21).

8: Consider a partition of the spatial domain [0, 1] of the form xi = i h, i = 0, . . . , M, where the integer M =
1
h

is the

number of discrete points in [0, 1].
9: Select a temporal step-size k = ∆t verifying condition (23) or (24).

10: Choose a time horizon T.
11: Consider a partition of the temporal interval [0, T] of the form tn = n k, n = 0, . . . , N, where the integer N = T

k is the
number of levels necessary to achieve the time T;

12: Take and carry out a number K of MC realizations, ωi, 1 ≤ i ≤ K, over the r.v.’s involved in the random data of the
problem (3)–(6).

13: for each realization ω`, 1 ≤ ` ≤ K do
14: for i = 0 to M do
15: Evaluations of p(xi; ω`), p′(xi; ω`), q(xi; ω`), f (xi, ω`).
16: end for
17: end for
18: for each realization ω`, 1 ≤ ` ≤ K do
19: for n = 0 to N do
20: Evaluations of g1(tn; ω`), g2(tn; ω`).
21: end for
22: end for
23: for each realization ω`, 1 ≤ ` ≤ K do
24: for n = 0 to N do
25: Compute un

i (ω`) using the sampling deterministic difference scheme (18).
26: end for
27: end for
28: for i = 0 to M do
29: Compute the mean, µ, of the K-deterministic solutions obtained in the time level N using (42).
30: Compute the standard deviation, σ, of the K-deterministic solutions obtained in the time level N using (43).

31: end for
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4.1. Numerical Example

To illustrate the efficiency of our proposed method in this subsection we present a test
example where the exact solution s.p. is available. We consider the problem (3)–(6) with
the random coefficients

p(x) = a e−x , q(x) = −c , (44)

and the following boundary and initial conditions

g1(t) = ec t
(

1
2
+ a t

)
, g2(t) = ec t

(
e2

2
+ a e t

)
, f (x) =

e2x

2
, (45)

that is,

∂u(x, t)
∂t

= a e−x ∂2u(x, t)
∂x2 − a e−x ∂u(x, t)

∂x
+ c u(x, t), 0 < x < 1, t > 0 , (46)

u(0, t) = ec t
(

1
2
+ a t

)
, t > 0, (47)

u(1, t) = ec t
(

e2

2
+ a e t

)
, t > 0, (48)

u(x, 0) =
e2x

2
, 0 ≤ x ≤ 1 , (49)

where the r.v. a follows a Gaussian distribution of mean µ = 0.5 and standard deviation
σ = 0.1 truncated on the interval [0.4, 0.6], that is a ∼ N[0.4,0.6](0.5; 0.1), and the r.v. c > 0
has a beta distribution of parameters (2; 4) truncated on the interval [0.45; 0.55], that is
c ∼ Beta[0.45,0.55](2; 4). Hereinafter, we will assume that a and c are independent r.v.’s.
Please note that p(x) in (44) is a s.p. with one degree of randomness verifying condition (2)
and gi(t), i = 1, 2, in (45) are s.p.’s with two degree of randomness (because they involve
both r.v.’s a and c) verifying condition (2). Furthermore all random input data p(x),
q(x), g1(t), g2(t) and f (x) lie in L2(Ω) and they are m.s. continuous and p(x) is m.s.
differentiable too. In addition, conditions (7)–(11) are satisfied with

a1 = 0.4 e−1 , a2 = 0.6 e0 , −0.55 ≤ q(x, ω) ≤ −0.45 , ω ∈ Ω , 0 ≤ f (x, ω) ≤ 3.69453 , ω ∈ Ω.

From [18] (Section 3.8.5.) the exact solution of problem (46)–(49) when both parameters
a and c are deterministic, is given by

u(x, t) = ec t
(

a ext +
e2x

2

)
. (50)

In our context, both a and c are r.v.’s, and expression (50) must be interpreted as a
s.p. Then, using the independence between r.v.’s a and c, the expectation and the standard
deviation of s.p. (50) are given by

E[u(x, t)] = E
[
ect](E[a] ext +

e2x

2

)
, (51)√

Var[u(x, t)] =

√
E[(u(x, t))2]− (E[u(x, t)])2 , (52)

being

E[(u(x, t))2] = E
[
e2ct
](

E[a2] e2xt2 +E[a] e3x t +
e4x

4

)
. (53)

Figure 1 shows the evolution of the expectation (51) and the standard deviation (52)
and (53) of the exact solution s.p. (50) when both parameters a and c are considered as the
r.v.’s described above.
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Figure 1. (Left): Surface of the expectation of the exact solution (50), E[u(xi, tn)], computed according to (51). (Right):
Surface of the standard deviation of the exact solution (50),

√
Var[u(xi, tn)], computed according to (52) and (53). For both

statistical moments the parameters considered in (50) are a ∼ N[0.4,0.6](0.5; 0.1), c ∼ Beta[0.45,0.55](2; 4) and the plotted
domain corresponds to (xi = ih, tn = nk) ∈ [0 + h = 0.0125, 1− h = 0.9875]× [0.05, 1] with the step-sizes h = ∆x = 0.0125,
1 ≤ i ≤ 79, and k = ∆t = 0.05, 1 ≤ n ≤ 20.

Numerical convergence of the expectation and the standard deviation of the approx-
imate solution s.p. generated by means the sampling difference scheme (18) using the
Monte Carlo (MC) technique shown in Algorithm 1, is illustrated in the following way. In
the first study, with a fixed time T, we have chosen both the spatial and temporal step-sizes
h and k, respectively, according to the stability conditions (21) and (23) and we have varied
the number of realizations, K, of the r.v.’s a and c involved in the random problem (46)–(49).
Then, at the temporal level N where the time T is achieved, we have computed the expec-

tation (mean), EK
MC[u

N
i ], and the standard deviation,

√
VarK

MC[u
N
i ], of the K-deterministic

solutions, uN
i , obtained to solve the K-deterministic difference schemes (18). Table 1 collects

the RMSEs (Root Mean Square Errors) computed at the time instant T = Nk = 1 with the
temporal step-size k = 0.0001 (N = 10,000) for M− 1 = 79 internal spatial points xi = ih,
1 ≤ i ≤ 79 with h = ∆x = 0.0125 in the domain [0.0125, 1], using the following expressions

RMSE
[
EK

MC[u
N
i ]
]

=

√√√√ 1
M− 1

M−1

∑
i=1

(
E[u(xi, tN)]−EK

MC[u
N
i ]
)2 , (54)

RMSE
[√

VarK
MC[u

N
i ]

]
=

√√√√ 1
M− 1

M−1

∑
i=1

(√
Var[u(xi, tN)]−

√
VarK

MC[u
N
i ]

)2
, (55)

where E[u(xi, tN)] and
√

Var[u(xi, tN)] are given by (51)–(53), respectively.
The good behaviour of both approximations the expectation and the standard devia-

tion as the K simulations increases was observed. That is, the accuracy of the approxima-
tions to both statistical moments increases when the number of MC simulations is growing.
In this sense, Figure 2 reflects the improvement of the approximations considering the
study of the relative errors computed by the expressions

RelErr
[
EK

MC[u
N
i ]
]

=

∣∣∣∣∣E[u(xi, tN)]−EK
MC[u

N
i ]

E[u(xi, tN)]

∣∣∣∣∣, (56)
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RelErr
(√

VarK
MC[u

N
i ]

)
=

∣∣∣∣∣∣
√

Var[u(xi, tN)]−
√

VarK
MC[u

N
i ]√

Var[u(xi, tN)]

∣∣∣∣∣∣ . (57)

Table 1. Root mean square errors (RMSEs) at T = Nk = 1 with k = 0.0001 (N0 = 1000) for the
numerical expectation and the numerical standard deviation computed after solving the K-deterministic
difference scheme (18) for several Monte Carlo (MC) realizations K ∈ {50, 200, 800, 3200, 12,800}. The
spatial discretization have been considered on the domain [0 + h = 0.0125, 1− h = 0.9875] with xi = ih,
1 ≤ i ≤ 79, h = 0.0125.

K RMSE
[
EK

MC[u
N
i ]
]

RMSE
[√

VarK
MC[u

N
i ]

]
50 1.45604 × 10−2 1.32856 × 10−2

200 1.11710 × 10−2 1.84435 × 10−3

800 1.08512 × 10−2 1.06139 × 10−3

3200 4.20138 × 10−3 6.01374 × 10−3

12,800 2.07183 × 10−4 1.69504 × 10−3

Table 2 shows the second complementary study, where we have fixed the number
of MC simulations K, K = 1600, and we have refined the step-sizes h and k attending
to the stability conditions (21) and (23). It is observed the decrease of the RMSEs of the
expectation (54) and an apparent stabilization in the RMSEs behaviour of the standard
deviation (55). Computations have been carried out by Mathematica© software version
12.0.0.0, [21] for Windows 10Pro (64-bit) AMD Ryzen Threadripper 2990WX, 3.00 GHz 32
kernels. The CPU times (in seconds) spent in the Wolfram Language kernel to compute,
in both experiments, the expectation (mean) and the standard deviation are included in
Tables 3 and 4. As a result, a good strategy to study the convergence of approximations
consists of choosing step-sizes h and k verifying the stability conditions and take a big
enough number of realizations K such that the error does not vary significantly when one
increases the number of realizations. For problems with no available solution the error is
changed by the deviation between two successive numerical solutions.
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Figure 2. Cont.
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Figure 2. Plot (a): Relative errors of the approximations to the expectation (mean), EK
MC[u

N
i ], (56). Plot (b): Relative errors

of the approximations to the standard deviation,
√

VarK
MC[u

N
i ], (57). For both graphics the fixed time horizon is T = 1 = Nk

with the temporal step-size k = 0.0001 (N = 10,000), the spatial domain xi ∈ [0 + h, 1− h] with xi = ih, h = 0.0125, but
varying the number of MC simulations K ∈ {50, 3200, 12,800}.

Table 2. RMSEs at T = 1 and K = 1600 (MC simulations) for the expectation (54) and the standard
deviation (55). The considered step-sizes h and k verify stability conditions (21) and (23). T = Nk = 1,
N ∈ {125, 500, 2000, 8000}, the spatial domain is [0 + h, 1− h] considering M − 1 internal points
xi = ih, 1 ≤ i ≤ M− 1 with M = 1/h.

h k RMSE
[
EK

MC[u
N
i ]
]

RMSE
[√

VarK
MC[u

N
i ]

]
0.1 0.008 5.29465× 10−2 2.36145× 10−3

0.05 0.002 3.19431× 10−3 2.49070× 10−3

0.025 0.0005 2.72452× 10−3 2.52301× 10−3

0.0125 0.000125 2.61957× 10−3 2.53168× 10−3

Table 3. CPU time (in seconds) spent to compute the approximations to the expectation (mean), EK
MC,

and the standard deviation,
√

VarK
MC in Table 1, for a fixed time horizon T = 1 and the step-sizes

h = 0.0125 and k = 0.0001 while the number of MC simulations, K, varies.

K CPU,s
[
EK

MC/
√

VarK
MC

]
50 630.516

200 982.375
800 2052.330
3200 6209.480

12,800 22,600.100

The use of MC method has allowed the obtainment of approximations to the ex-
pectation and the standard deviation of the solution s.p. uN

i of the random difference
scheme (16) at time horizon T = Nk for N not necessarily small. However, if we use
the random numerical scheme (16) directly in this example with the step-sizes h = 0.05
(M = 20) and k = 0.002 verifying the stability conditions (21) and (23), troubles appear in
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the early time-level n = 3, that corresponds to time tn = 0.006. In this case the symbolic
expressions for the random numerical solution un

i and (un
i )

2, for n = 3 are available and
their correspond expectations too. However, the Mathematica© software can not compute
the numerical expectation of

(
un

i
)2 for 2 ≤ i ≤ 18, n = 3, in consequence it is not possible to

compute the approximation of the standard deviation for these internal points at tn = 0.006
and hence at no other later time.

Table 4. CPU time (in seconds) spent to compute the approximations to the expectation (mean),

EK
MC, and the standard deviation,

√
VarK

MC in Table 2, for a fixed time horizon T = 1 and K = 1600
MC simulations but varying the temporal step-size k and the spatial step-size h in the domain
[0 + h, 1− h].

h k CPU,s
[
EK

MC/
√

VarK
MC

]
0.1 0.008 11.4688

0.05 0.002 56.2344
0.025 0.0005 341.6410

0.0125 0.000125 2438.70000

5. Conclusions

The main target of this paper is to solve the challenge of storage accumulation and
further computational breakdown dealing with FD methods for solving random PDEM.
Our approach is based on a combination of Monte Carlo method and the solution of
sampled deterministic methods using explicit FD schemes. Explicitness is necessary to
compute the statistical moments of the approximate solution what disregards the implicit
FD methods. We here use the explicit classic difference method, but the Crank-Nicolson
semi-implicit approach could be tried, making an ad hoc analysis. Numerical analysis
provides sufficient conditions for positivity, stability and consistency for the proposed
RMSFDS. Numerical experiments illustrate the reliability of the approach.
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