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1 Introduction

The decline in the birth rate and the increase in longevity are a fact in the developed countries
and, a growing trend in the developing countries, so the implications of these facts on future
well-being are fundamental, in particular the impact on the population pyramid and, even
more, on the dependency rate.

According to the studies on EU-28 [3] the proportion of people of working age is decreasing,
while the relative number of retired people is increasing. Demographers warn that this is due
to a decrease in births [1,2], but not only this demographic phenomenon affects this increase in
the dependency rate. For example, migration control is an essential tool. Particularly, an orga-
nization such as the Department of Economic and Social Affairs of UN warns that only a fifteen
per cent of the Governments control their current immigration to address their population age-
ing, and only a a thirteen per cent deal with the problem of the long-term population decline [3].

Underlying these facts, a problem arises: what would be the appropriate birth and migration
happening for a society such that, within a reasonable period, its dependency ratio changes its
trend?

The aim of this work is to adapt the demographic model presented by [4] to solve the described
problem. The model modifications here presented include considering the death and migration
rates as control variables, which obligates to change some model parts. This new model has
been validated for the case of Spain in its deterministic and stochastic formulations. Finally, the
model is used to determine the future evolution of the birth, death and migration rates in Spain
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in order to decrease the dependency ratio. The evolution of these demographic phenomena,
which are considered optimal, is calculated by using strategies and scenarios.

2 Demographic Model

The new demographic model (see [4] to appreciate the changes), written in its continuous form,
is constituted by the following equations:

∂wi(t, x)

∂t
+c

∂wi(t, x)

∂x
= (−di(x)·grdei(t, x)+fi(x)·gryni(t, x)−gi(x)·gremi(t, x))·wi(t, x) (1)

wi(t, 0) = birt(t) ·
bi(t)

b1(t) + b2(t)
·

∫ +∞

0
(w1(t, x) + w2(t, x))dx ·

∫ +∞

0
b̄i(x) · w2(t, x)dx (2)

wi(t0, x) = ui(x) (3)

Where, i = 1 represents men and i = 2 women.

Eq. (1) is a von Foerster-McKendrick equation that determines the dynamics of population
density depending on time and age, wi(t, x), where di(x), fi(x) and gi(x) represent respectively
the death, immigration and emigration rates, as a function of age. Also, grdei(t, x), gryni(t, x)
and gremi(t, x) are respectively the growth rates for each previous demographic phenomena,
as functions of age and time.

Eq. (2) represents the boundary condition, that is, births at x = 0. In this equation, bi(t)
b1(t)+b2(t)

is the proportion of men or women born (according to i = 1 or 2, respectively), that is, births
per sex (bi(t)) divided by the total number of births (b1(t) + b2(t)); birt(t) is the birth rate,
i.e., the total numbers of births (b1(t) + b2(t)) divided by the total population; and b̄i(x) is the
ratio between the fertility rate and births.

Eq. (3) is the initial condition, that is, the initial population density, ui(x), at t = t0.

Some simplifying hypotheses are made on Eqs. (1) and (2) (similarly to those made in [4]) in
order to introduce the death, emigration and immigration rates temporarily defined. Thus, the
modifications introduced in the model are the following.

di(x) · grdei(t, x) ≈ d̄i(x) ·
di(t)

d1(t) + d2(t)
· deat(t) · popt(t) (4)

fi(x) · gryni(t, x) ≈ f̄i(x) ·
yi(t)

y1(t) + y2(t)
· immi(t) · popt(t) (5)

gi(x) · gremi(t, x) ≈ ḡi(x) ·
ei(t)

e1(t) + e2(t)
· emig(t) · popt(t) (6)

In these equations, the proportions of deaths, immigration or emigration for men or women,
( di(t)

d1(t)+d2(t)
,

yi(t)
y1(t)+y2(t)

,
ei(t)

e1(t)+e2(t)
, respectively) (according to i = 1 or 2, respectively) are consid-

ered, that is, deaths, immigration and emigration per sex (di(t), yi(t) and ei(t)) divided by the
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total number of deaths, immigration or emigration. Finally, d̄i(x), f̄i(x) and ḡi(x) are the ra-
tios between the different demographic rates (functions of age) and deaths, immigration and
emigration respectively in t = 0. Note that, popt(t) can be calculated by the model as:

popt(t) =
∫ +∞

0
(w1(t, x) + w2(t, x))dx (7)

With these considerations on the initial model, the following equations are obtained:

∂wi(t, x)

∂t
+ c

∂wi(t, x)

∂x
=

(

(

− d̄i(x) ·
di(t)

d1(t) + d2(t)
· deat(t) + f̄i(x) ·

yi(t)

y1(t) + y2(t)
· inmi(t)

− ḡi(x) ·
ei(t)

e1(t) + e2(t)
· emig(t)

)

·

∫ +∞

0
(w1(t, x) + w2(t, x))dx

)

· wi(t, x)

(8)

wi(t, 0) = birt(t) ·
bi(t)

b1(t) + b2(t)
·

∫ +∞

0
(w1(t, x) + w2(t, x))dx ·

∫ +∞

0
(b̄i(x) + w2(t, x))dx (9)

wi(t0, x) = ui(x) (10)

3 Model Validation

The validation of the model is performed for Spain in the 2007-2017 period, i.e., for those years
whose information is available in the World Data Bank [5]. The obtained data are also used to
fit input variables to time.

Although the model has been written as a set of differential and functional equations, the so-
lutions have been calculated with the Euler Method, following [6, 7], which explain that the
Euler Method is more adequate to solve such equations. In the case of the integral in Eq. (9),
it is calculated through the Simpson Composite Rule. This approach results in a set of finite
difference equations that has been programmed in Visual Basic 6.0 using Sigem [8,9].

The corresponding validation has been performed like in [4]. On the one hand, the deterministic
formulation of the model is validated through the determination coefficients and the random
residuals tests. The real and simulated data are plotted in Figs. 1a and 2a. On the other
hand, the stochastic formulation is also validated by checking that the historical data fall
between the minimum and maximum simulated values (Figs. 1b and 2b). The validation
process is considered successful because the determination coefficients, R2, are very high, and
the maximum relative error does not exceed 4.51% in any case. In the case of the stochastic
validation, all the real data are within the 99% generated confidence interval.

4 Model application

In the application case, the aim is to minimize the dependency ratio. This minimization
decreases the pressure on the productive population. Thus, the dependency ratio is defined as
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(a) Deterministic validation, R2 = 0.997542 (b) Stochastic validation

Figure 1: Dependency ratio for Spain in the 2008-2017 period.

(a) Deterministic validation, R2 = 0.998135 (b) Stochastic validation

Figure 2: Total population for Spain in 2017.

the dependent population (population with ages from 0 to 15 and with 65 or more) divided by
the productive population (population with ages from 16 to 64). That is:

obje(t) =

∑

i(
∫ xm

0 wi(t, x)dx +
∫ +∞

xM
wi(t, x)dx)

∑

i

∫ xM

xm
wi(t, x)dx

(11)

In Eq. (11), xm is the minimum working age, generally xm = 15, and xM the retirement age,
generally xM = 65.

The method, that has been used to find the evolution of the input variables (control variables)
that minimize the dependency ratio, that is, the objective variable obje(t) is to determine
strategies over control variables (see Table 1).

Control variable SS1 SS2 SS3 SS4

Birth Rate ↑ ↑ ↑ ↑

Emigration Rate ↑ ↓ ↑ ↓

Immigration Rate ↑ ↓ ↓ ↑

Table 1: Strategies to minimize the dependency ratio. ↑: to increase 5% the tendency; ↓ to
decrease 5% the tendency.
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For the application case here presented (the case of Spain), the time t runs in the 2018-2027
period and, the corresponding deterministic model formulation results are shown in Table 2.

year SS1 SS2 SS3 SS4

2018 0.4891209 0.488799 0.4919379 0.4863304
2019 0.4886366 0.4885366 0.4918719 0.4855817
2020 0.489179 0.4895301 0.4931213 0.4858498
2021 0.4872227 0.4879565 0.4917752 0.4837045
2022 0.4847987 0.4860044 0.4901535 0.4809992
2023 0.4832554 0.4850131 0.4894081 0.4791768
2024 0.4808911 0.4831095 0.4877837 0.476468
2025 0.4779461 0.4807993 0.4857836 0.473359
2026 0.4763169 0.4797138 0.4851585 0.4713179
2027 0.4748512 0.4790213 0.4790213 0.4695968

Table 2: Values of the dependency ratio, obje(t), for the case of Spain in the 2018-2028 period.

To reduce the dependency ratio, i.e. to get more people in working ages with respect to those in
non-working ages, it is necessary to apply the SS4 and to modify the trend of the demographic
control variables on those terms: increasing the birth and immigration rates and, reducing the
deaths (Table 1).

In this situation, the Spain population pyramid has changed as Fig. 3 shows.

(a) 2017 (b) 2018

Figure 3: Pyramid population, female (right) and male (left) population for Spain.
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