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1 Introduction

The complexity of the railway interaction comes from the coupling between the train and the
track introduced through the forces appearing in the wheel/rail contact area. These forces are
governed by the friction coefficient through the Coulomb’s law, characterised by the static and
kinematic values, although most of the contact models in railway dynamics consider a constant
friction along the simulations. Nevertheless, it is well known that the friction coefficient falls
with the slip velocity [1, 2] from a maximum point determined by the static value to a point
of saturation corresponding to the kinematic value. The question under debate is if the slope
of this fall since recent test-rig experiments seem to reduce it ostensibly compared to friction
curves generally estimated in the literature [3].

Rudd [4] proposed this negative slope as mechanism responsible for the generation of an in-
stability phenomenon called railway curve squeal, which has received special attention from
researchers [5–9]. The self-excited oscillations that characterise this phenomenon occur when
the train is passing along a narrow curve, generating a strong tonal noise in the high-frequency
domain. Although falling friction is the most widely accepted mechanism, other possibilities
have been proposed to explain, getting more credit the mode-coupling mechanism [10,11]. For
this instability, the oscillation frequencies of two structural modes of an undamped system
come closer and closer together until they merge and a pair of an unstable and a stable mode
results [12, 13].

This work proposes a model based on a mass-spring-damper oscillator to evaluate its stability
when submitted to a variable friction curve. Considering a single-dof (degrees of freedom)
model, the paper studies the unstable conditions of the slip-dependent friction that can make
the steady-state unstable. The study is extended to a two-dof case with two different geometric
configurations in order to analyse the influence of the geometric coupling between the normal
and tangential directions arisen from the contact and if it may instabilise the system even
considering constant friction.

1e-mail: juanginer@upv.es

88



Modelling for Engineering & Human Behaviour 2019

2 Overview of the mathematical approach
Fig. 1 shows a single degree of freedom oscillator excited by friction over a moving belt [2]. As
mentioned in the previous section, there exists two means to get sustained oscillations with an
oscillator: either by a decreasing slope of the creepage-creep force phenomenological law, or by
a variation of the vertical force applied to the moving mass. In the former case, the motion of
the belt is transformed into self-excited vibrations of the mass. In the latter case, the mass is
subjected to a forced vibration imposed by the variation of the vertical force.

First, consider the case of a decreasing slope. The equation of motion reads

mẍ+ cẋ+ kx = Fx, (1)

where m is the mass of the oscillator, k the stiffness of the spring, c the damping coefficient
and Fx the creep force. The dependency between the relative speed between the mass and the
belt and the friction force is given by the Coulomb’s law

Fx = (µs − δµvx)N0sign(vx), (2)

where vx = (V−ẋ)
V

, and N0 is the static load, and δµ the decreasing slope of the friction curve.
From the convenient variable transformation, Eq. (1) can be adimensionalised and expressed
as

q′′ + 2ζq′ + q = (µs − δµṽx)sign(ṽx), (3)

where q = kx
N

, q′ = dq
dτ

= ωn
dq
dt

, ṽx = Ṽ − q′, Ṽ = kV
ωN

, ωn =
√

k
m

is the natural frequency and
ζ = c

(2mωn) is the damping rate.

For a given dimensionless sliding velocity Ṽ , the equilibrium state is associated with a stationary
slip where the conveyor belt moves at speed Ṽ but not the oscillator (q′0 = 0). The equilibrium
may be stable or unstable. As it is well known for this kind of friction-induced self-excited
oscillator that the equilibrium state can undergo instability through a Hopf bifurcation leading
to a cycle solution, i.e. a periodic vibration. This stability problem may be analysed by the
first Lyapunov method reconsidering the problem in the phase space.

Figure 1: Single-dof oscillator excited by friction.
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There is an increase of interest in the direction of mode-coupling phenomena in addressing
curve squeal, which have been explained in a simplified form by Hoffmann et al. [10, 12] and
Sinou and Jezequel [13], through frequency-domain models. This type of instability can occur
even considering a constant coefficient of friction, arising from non-conservative displacement-
dependent forces.

Fig. 2 shows the typical system adopted to illustrate this mechanism, in which the friction
coefficient µ is constant. Here the mass has two dof and two springs. As the mass vibrates,
variations in the normal load occur, leading to variations in the friction force. The modes of
the wheel may have both vertical and lateral components and the contact angle of the wheel
with the rail may vary. At least two modes are necessary to initiate this mechanism.

By considering small oscillations around the equilibrium of steady-state sliding, the system in
Fig. 2 can be mathematically described as

(
m 0
0 m

){
ẍ
ÿ

}
+
(
k11 k12 − µKH

k21 k22

){
x
y

}
=
{

0
0

}
, (4)

where the terms kij(α1, α2) in the stiffness matrix depend on the orientation and stiffness of
the springs which in turn depend on angles α1 and α2 [13]. KH represents the linearised
Hertzian contact stiffness; x and y are the vibration displacements in tangential and normal
directions, respectively, and F and N are the corresponding friction and normal forces. The
most important feature of Eq. (4) is that the stiffness matrix is non-symmetric, making the
system unstable if the upper diagonal term of the stiffness matrix k12 − µKH ≤ 0 due to the
value of friction coefficient µ.

Figure 2: Two-dof system on moving belt.
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3 Results
As shown in [14], the following non-dimensional parameter indicates the relative importance of
the stick and slip phases:

β = (µs − µk)
N

Vmωn
. (5)

This value is usually in the range 0.1–1 [14] for curve squeal situations. The parameter permits
to evaluate the stick-slip motion of the single-dof oscillator, as seen in Fig. 3a for three values
of β, in which the velocity (normalised by the belt velocity V0) is plotted against the displace-
ment (normalised by V0/ω0). It can be seen a ‘limit cycle’ as the formation of a stable periodic
motion from different initial conditions. For small values of β, the slip phase predominates
since the motion is close to elliptical on the phase plane and the oscillation frequency is close
to the natural frequency. The stick phase predominates for large values of β and the oscillation
frequency is lower than the natural frequency [14].

The effect of damping is also assessed in Fig. 3b for β = 1 and three values of damping ratio.
It is observed a small effect on the amplitude of the limit cycle when the damping is increased,
until the damping reaches a value where the oscillations are suppressed. For ζ = 0.05 in this
case, the damping exceeds the limiting value and the oscillations decay. The limiting value of
damping ratio can be approximated as ζ > β2/4π [14].

(a) (b)

Figure 3: Normalised displacement vs. non-dimensional velocity of a simplified stick-slip mech-
anism: µs = 0.4, µk = 0.3. (a) Without damping; (b) for different damping levels (β = 1).

Using now the two-dof oscillator model to assess the mode coupling, the effect of damping is
evaluated. It can be observed from Fig. 4 that an increase in damping can favour instability
in some situations or can improve stability in others. On the one hand, Fig. 4a shows the
stability map for varying friction coefficient when the damping ratio of only the second mode
of the system is varied, while the damping ratio of the first mode is kept at 10−4. For low
values of damping, the system remains stable. Nevertheless, it becomes more unstable when
the damping of the second mode is between about 2 × 10−3 and 10−1. On the other hand,
increasing together the damping ratios of both modes while keeping their ratio fixed, Fig. 4b
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shows that damping has no effect on the stability up to about 10−2, while the system is quickly
stabilised above this value.

(a) (b)

Figure 4: Stability maps for two-mode system for contact angle 3◦ and lateral contact position
of 8 mm showing effect of damping ratio. (a) Damping ratio of second mode only is varied; (b)
damping ratio of both modes is varied, keeping the ratio between them fixed.
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