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New matrix series expansions for the matrix cosine
approximation

Emilio Defez [1, Javier Ibáñez\, José M. Alonso\, Jesús Peinado] and Pedro Alonso-Jordá∗

([) Institut Universitari de Matemàtica Multidisciplinar,
Universitat Politècnica de València,

(\) Instituto de Instrumentación para Imagen Molecular,
Universitat Politècnica de València,

(]) Departamento de Sistemas Informáticos y Computación,
Universitat Politècnica de València,

(∗) Grupo Interdisciplinar de Computación y Comunicaciones,
Universitat Politècnica de València.

1 Introduction and notation

The computation of matrix trigonometric functions has received remarkable attention in the
last decades due to its usefulness in the solution of systems of second order linear differential
equations. Recently, several state-of-the-art algorithms have been provided for computing these
matrix functions, see [1–4], in particular for the matrix cosine function.

Among the proposed methods for the approximate computation of the matrix cosine, two fun-
damental ones stand out: those based on rational approximations [1,5–7], and those related to
polynomial approximations, using either Taylor series developments [8,9] or serial developments
of Hermite matrix polynomials [10]. In general, polynomial approximations showed to be more
efficient than the rational algorithms in tests because they are more accurate despite a slightly
higher cost.

Bernoulli polynomials and Bernoulli numbers have been extensively used in several areas of
mathematics (an excelent survey about Bernoulli polynomials and its applicacions can be found
in [11]).

In this paper, we will present a new series development of the matrix cosine in terms of the
Bernoulli matrix polynomials. We are going to verify that its use allows obtaining a new and
competitive method for the approximation of the matrix cosine.

The organization of the paper is as follows: In Section 2, we will obtain two serial developments
of the matrix cosine in terms of the Bernoulli matrix polynomials. In Section 3, we will present

1e-mail: edefez@imm.upv.es
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the different numerical tests performed. Conclusions are given in Section 4.

Throughout this paper, we denote by Cr×r the set of all the complex square matrices of size
r. Besides, we denote I as the identity matrix in Cr×r. A polynomial of degree m is given by
an expression of the form Pm(t) = amt

m + am−1t
m−1 + · · ·+ a1t+ a0, where t is a real variable

and aj, for 0 ≤ j ≤ m, are complex numbers. Moreover, we can define the matrix polynomial
Pm(B) for B ∈ Cr×r as Pm(B) = amB

m + am−1B
m−1 + · · ·+ a1B + a0I. As usual, the matrix

norm ‖· · · ‖ denotes any subordinate matrix norm; in particular ‖· · · ‖1 is the usual 1−norm.

2 On Bernoulli matrix polynomials

The Bernoulli polynomials Bn(x) are defined in [12, p.588] as the coefficients of the generating
function

g(x, t) = tetx

et − 1 =
∑
n≥0

Bn(x)
n! tn , |t| < 2π, (1)

where g(x, t) is an holomorphic function in C for the variable t (it has an avoidable singularity
in t = 0). Bernoulli polynomials Bn(x) has the explicit expression

Bn(x) =
n∑
k=0

(
n

k

)
Bkx

n−k, (2)

where the Bernoulli numbers are defined by Bn = Bn(0). Therefore, it follows that the Bernoulli
numbers satisfy

z

ez − 1 =
∑
n≥0

Bn

n! z
n , |z| < 2π, (3)

where

B0 = 1, Bk = −
k−1∑
i=0

(
k

i

)
Bi

k + 1− i , k ≥ 1. (4)

Note that B3 = B5 = · · · = B2k+1 = 0, for k ≥ 1. For a matrix A ∈ Cr×r, we define the m− th
Bernoulli matrix polynomial by the expression

Bm(A) =
m∑
k=0

(
m

k

)
BkA

m−k. (5)

We can use the series expansion

eAt =
(
et − 1
t

)∑
n≥0

Bn(A)tn
n! , |t| < 2π, (6)

to obtain approximations of the matrix exponential. A method based in (6) to approximate
the exponential matrix has been presented in [13].

65



Modelling for Engineering & Human Behaviour 2019

From (6), we obtain the following expression for the matrix cosine and sine:

cos (A) = (cos (1)− 1)
∑
n≥0

(−1)nB2n+1(A)
(2n+ 1)! + sin (1)

∑
n≥0

(−1)nB2n(A)
(2n)! ,

sin (A) = sin (1)
∑
n≥0

(−1)nB2n+1(A)
(2n+ 1)! − (cos (1)− 1)

∑
n≥0

(−1)nB2n(A)
(2n)! .


(7)

Note that unlike the Taylor (and Hermite) polynomials that are even or odd, depending on the
parity of the polynomial degree n, the Bernoulli polynomials do not verify this property. Thus,
in the development of cos (A) and sin (A), all Bernoulli polynomials are needed (and not just
the even-numbered ones).

Replacing in (6) the value t for it and −it respectively and taking the arithmetic mean, we
obtain the expression

∑
n≥0

(−1)nB2n(A)
(2n)! t2n = t

2 sin
(
t
2

) (cos
(
tA− t

2I
))

, |t| < 2π. (8)

Taking t = 2 in (8) it follows that

cos (A) = sin (1)
∑
n≥0

(−1)n22nB2n
(
A+I

2

)
(2n)! , (9)

Note that in formula (9) only even grade Bernoulli’s polynomials appear.

3 Numerical Experiments
Having in mind expressions (7) and (9), two different approximations are given to compute
cosine matrix function.

To test the proposed method and the two distinct approximations, and to compare them with
other approaches, the following algorithms have been implemented on MATLAB R2018b:

- cosmber. New code based on the new developments of Bernoulli matrix polynomials (formulae
(7) and (9)). The maximum value of m to be used is m = 36, with even and odd terms.

- cosmtay. Code based on the Taylor series for the cosine [8]. It will provide a maximum value
of m = 16, considering only the even terms, which would be equivalent to m = 32 using
the even and odd terms.

- cosmtayher. Code based on the Hermite series for the cosine [10]. As mentioned before, it
will provide a maximum value of m = 16.

- cosm. Code based on the Padé rational approximation for the cosine [7].
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The following sets of matrices have been used:

a) Diagonalizable matrices. The matrices have been obtained as A = V ·D · V T , where D
is a diagonal matrix (with complex or real values) and matrix V is an orthogonal matrix,
V = H/16, where H is a Hadamard matrix. We have 2.18 ≤ ‖A‖1 ≤ 207.52. The matrix
cosine is exactly calculated as cos (A) = V · cos (D) · V T .

b) Non-diagonalizables matrices. The matrices have been computed as A = V · J · V −1,
where J is a Jordan matrix with complex eigenvalues with module less than 10 and random
algebraic multiplicity between 1 and 5. Matrix V is a random matrix with elements in
the interval [−0.5, 0.5]. We have 1279.16 ≤ ‖A‖1 ≤ 87886.4. The matrix cosine is exactly
calculated as cos (A) = V · cos (J) · V −1.

c) Matrices from the Matrix Computation Toolbox [14] and from the Eigtool Matlab
package [15]. These matrices have been chosen because they have more varied and
significant characteristics.

In the numerical test, we used 259 matrices of size 128 × 128: 100 from the diagonalizable
set, 100 from the non-diagonalizable set, 42 from Matrix Computation Toolbox and 17 from
Eigtool Matlab package. Results are given in Tables 1 and 2. The rows of each table show the
percentage of cases in which the relative errors of cosmber (Bernoulli) is lower, greater or equal
than the relative errors of cosmtay (Taylor), cosmtayher (Hermite) and cosm (Padé). Graphics
of the Normwise relative errors and the Performance Profile are given in Figures 1 and 2. The
total number of matrix products was: 3202 (cosmber), 2391 (cosmtay), 1782 (cosmtayher) and
3016 (cosm). Recall that in the Bernoulli implementation, the maximum value of m to be used
was m = 36 considering all the terms and, in the rest of algorithms, was m = 32 but just
having into account the even terms.

E(cosmber) < E(cosmtay) 55.60%
E(cosmber) > E(cosmtay) 44.40%
E(cosmber) = E(cosmtay) 0%

E(cosmber) < E(cosmtayher) 50.97%
E(cosmber) > E(cosmtayher) 49.03%
E(cosmber) = E(cosmtayher) 0%

E(cosmber) < E(cosm) 76.83%
E(cosmber) > E(cosm) 23.17%
E(cosmber) = E(cosm) 0%

Table 1: Using approximation (7)

E(cosmber) < E(cosmtay) 65.64%
E(cosmber) > E(cosmtay) 34.36%
E(cosmber) = E(cosmtay) 0%

E(cosmber) < E(cosmtayher) 60.62%
E(cosmber) > E(cosmtayher) 39.38%
E(cosmber) = E(cosmtayher) 0%

E(cosmber) < E(cosm) 73.75%
E(cosmber) > E(cosm) 26.25%
E(cosmber) = E(cosm) 0%

Table 2: Using approximation (9)
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Figure 1: Normwise relative errors.
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Figure 2: Performance Profile.

4 Conclusions

In general, the implementation based on the new Bernoulli series (9) is more accurate than (7),
comparing it with the one based on the Taylor series, algorithm (cosmtay) and Hermite series,
algorithm (cosmtayher), and the one based in Padé rational approximation, algorithm (cosm).
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