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Sampling of pairwise comparisons in decision-making

J. Beńıtez�1, S. Carpitella�, A. Certa� and J. Izquierdo�

(�) Instituto Universitario de Matemática Multidisciplinar,
Universitat Politècnica de València,

(�) FluIng - Instituto Universitario de Matemática Multidisciplinar,
Universitat Politècnica de València,
(�) Università degli Studi di Palermo.

1 Introduction

Various decision-making techniques rely on pairwise comparisons (PCs) between the involved
elements. Traditionally, PCs are provided by experts or relevant actors, and compiled into
pairwise comparison matrices (PCMs).

In highly complex problems, the number of elements to be compared may be very large. One
of the issues limiting PC applicability to large-scale decision problems is the so-called curse of
dimensionality, that is, many PCs need to be elicited from an actor, or built from a body of
information.

In general, when applied to a set of n elements to be compared, the number of PCs that have to
be made is n(n−1)/2. When the information in the comparison matrix is complete, the priori-
ties can be obtained. This is the case of decision-making with complete information. However,
if there are missing entries due to uncertainty or lack of information, decision-making must be
performed from the available incomplete information. The authors have addressed the issue of
incomplete information in [5, 6], and have characterized the consistent completion of a PCM
using graph theory in [6].

In this contribution, we claim that less than that number of comparisons may be suitable to
develop sound decision-making. There is a trivial solution providing a lower bound for the sam-
ple size: just produce n−1 PCs, for example comparing one element with the others. It can be
shown that this is equivalent to give directly the priority vector. Here we reduce the number of
pairwise comparisons in a decision-making problem by selecting just a sample of n PCs that are
able to provide balanced and unbiased (incomplete) information that still produces consistent
and robust decisions. Both the size of the sample and its distribution within the PCM are of
interest.

1e-mail: jbenitez@mat.upv.es
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We address this research within a linearization theory developed by the authors [2] based on
optimizing the consistency of reciprocal matrices.

2 Problem statement and solution
If there are n alternatives, the expert must build an n × n reciprocal matrix, and therefore,
produce n(n−1)/2 PCs. If n is large, n(n−1)/2 is also large and the expert can be easily tired
and lose the necessary concentration. For example, if n = 10 (which is not very large), then
n(n − 1)/2 = 45, and a survey of 45 questions may be tedious, strenous and time-consuming.
In contrast, if the expert is asked to fill fewer entries, the survey will become more friendly and,
arguably, more reliable.

2.1 Problem
Here we focus on the incomplete n×n reciprocal matrix B, where only entries b12, b23, . . . , bn−1,n,
bn1 are known. For example, for size 6 × 6,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 b12 � � � b−1
n1

b−1
12 1 b23 � � �
� b−1

23 1 b34 � �
� � b−1

34 1 b45 �
� � � b−1

45 1 b56
bn1 � � � b−1

56 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

The next result characterizes when B can be completed to be consistent.

Theorem 1 Let B ∈ Mn be a reciprocal incomplete matrix with known entries b12, b23, . . . ,
bn−1,n, bn1.

(i) Matrix B admits a consistent completion if and only if

b12 b23 · · · bn−1,n bn1 = 1. (2)

(ii) If B admits a consistent completion, then it is unique, say C, and C satisfies the following
condition: if (B)ij is unspecified and i < j, then (C)ij = bi,i+1bi+1,i+2 · · · bj−1,j.

Let’s check the performance of this approach. Let A be a (fully known) reciprocal matrix. We
can find XA, the closest consistent matrix to A by using the formula given in [4]. Also, from the
incomplete matrix B defined as in the statement of Theorem 1, supposing that B satisfies the
criterion given in this theorem, we can easily compute C. The next example compares matrices
XA and C and calculates the distance between both.

Example 1 Let

A =

⎡⎢⎢⎢⎣
1 2 2 8

1/2 1 4 1/2
1/2 1/4 1 1
1/8 2 1 1

⎤⎥⎥⎥⎦ . (3)

106



Modelling for Engineering & Human Behaviour 2019

This matrix A is not consistent (e.g., rank(A) > 1, see [3, Theorem 1]). The Perron eigenvalue
is λmax � 4.84, and (see [7]) CI(A) = (λmax −4)/(4−1) � 0.279 and CI(A)/RI4 � 0.314 > 0.1;
the consistency of A is not acceptable (Saaty’s criterion); here RI4 = 0.89 is the random index
for 4 × 4 matrices.

Using the formula given in [4], we have

XA �

⎡⎢⎢⎢⎣
1 2.38 4 3.36

0.42 1 1.68 1.41
0.25 0.59 1 0.84
0.29 0.71 1.19 1

⎤⎥⎥⎥⎦ .

To apply Theorem 1, let us consider the following incomplete reciprocal matrix

B =

⎡⎢⎢⎢⎣
1 2 � 8

1/2 1 4 �
� 1/4 1 1

1/8 � 1 1

⎤⎥⎥⎥⎦ .

Since (2) holds, then there exists a unique consistent completion, namely

C =

⎡⎢⎢⎢⎣
1 2 b12b23 8

1/2 1 4 b23b34
(b12b23)−1 1/4 1 1

1/8 (b23a34)−1 1 1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 2 8 8

1/2 1 4 4
1/8 1/4 1 1
1/8 1/4 1 1

⎤⎥⎥⎥⎦ .

Now the distance between XA and C is d(XA − C) = ‖XA − C‖F = tr(XACT ) � 2.4992, tr(·)
being the trace operator.

If (2) does not hold, the matrix B defined in Theorem 1 has no consistent completion. If we
denote by Cn the set of n × n consistent matrices, then we must find D ∈ Mn, a reciprocal
completion of B, such that

d(D, Cn) ≤ d(D′, Cn)
for any D′ ∈ Mn reciprocal completion of B.

We summarize the obtained results in the following theorem.

Theorem 2 Let B ∈ Mn be a reciprocal incomplete matrix with known entries b12, b23, . . . ,
bn−1,n, bn1.

(i) There is a unique reciprocal completion of B, say D, such that d(D, Cn) ≤ d(D′, Cn) for
all D′ ∈ Mn reciprocal completion of B.

(ii) There is a unique Z ∈ Cn such that d(D, Z) = d(D, Cn).

(iii) Z = E[φn(L†Qρ)], where ρ = (log b12, . . . , log bn−1,n, log bn1)T , and matrices Q, L are the
Laplacian matrix and the incidence matrix, respectively, of the graph associated to B.

(iv) If (i, j) is an unknown entry of B, then the (i, j) entry of D and Z are equal.
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Note that the oriented graph with n vertices and edges associated to B is

{1 → 2, 2 → 3, . . . , n − 1 → n, n → 1}.

Let’s define the following matrix J directly associated to the structure of B

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1
1 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (4)

A number of considerations enable us to prove the following result.

Theorem 3 Let B ∈ Mn be a reciprocal incomplete matrix with known entries b12, b23, . . . ,
bn−1,n, bn1. Under the notation of Theorem 2, one has

Z = E

[
φn

(
1
2n

n−1∑
k=0

(n − 2k − 1)Jkρ

)]
,

where the matrix J is given in (4) and φn is the linear mapping φn : �n → Mn given by
(φn(v))ij = vi − vj.

This expression shows that neither inverses nor pseudo-inverses have to be computed. Also,
ρ, Jρ, J2ρ, . . . , Jn−1ρ are trivial to compute. For example, for n = 4, one has J0 = J4 = I4,

J1 =

⎡⎢⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤⎥⎥⎥⎦ , J2 =

⎡⎢⎢⎢⎣
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤⎥⎥⎥⎦ , J3 = J−1 =

⎡⎢⎢⎢⎣
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎦ .

If ρ = (λ1, λ2, λ3, λ4)T and ρ̂ = (λ1, λ2, λ3, λ4, λ1, λ2, λ3, λ4)T , then J0ρ are the 1, 2, 3, 4 entries
of ρ̂; J1ρ are the 2, 3, 4, 5 entries of ρ̂; J2ρ are the 3, 4, 5, 6 entries of ρ̂; and J3ρ are the 4, 5, 6, 7
entries of ρ̂.

3 Conclusions
Making too many comparisons may be strenuous and time-consuming, and lead to wrong and
harmful conclusions. It is indispensable to focus on its reduction [1]. There is not a general
solution to the problem of finding an optimal sample of PCs to be issued so that card(sample)
< n(n−1) = 2 and still produce sound DM. We have given a solution in which one compares just
the elements of a balanced and unbiased subset of items. The solution, according to Theorem
3, is obtained through elementary, simple calculations.
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of incomplete judgments in decision making using AHP. Journal of Computational and
Applied Mathematics, 290: 412-422, 2015.
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