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1 Introduction

The frequency response function (FRF) permits to characterise in the frequency domain the
systems governed by linear dynamics by means of a relationship between an excitation applied
at one degree of freedom (dof) and the consequent output response in a particular dof. A
modal approach is widely extended in the engineering fields as efficient method of computing
the FRF of matrix second-order linear equations of motion derived from the application of the
Finite Element Method (FEM) [1]. This approach is based on the truncation of the number
of vibration modes that conform the base of the new modal coordinates. The criterion for the
truncation is linked to the frequency range of the dynamic study, ordering the vibration modes
with respect to the eigenvalues (the square of natural frequencies) associated. The natural
frequency associated with the last vibration mode selected establishes the maximum frequency
that can describe the time response of the system. The truncation permits to reduce the di-
mension of the system from N number of dofs in physical coordinates to m truncated vibration
modes in modal coordinates.

The fundamental numerical problem derived from the truncation is the resulting non-square
vibration modes matrix, used as transformation matrix in the physical to modal change of
variable [1, 2]. This change should allow the diagonalisation of the matrices involved in the
equation of motion: mass, stiffness and damping matrices. The diagonalisation is essential to
decouple the system in m second-order linear differential equations that can be solved analyti-
cally in the time domain. Nevertheless, the inverse of vibration modes matrix required for the
diagonalisation cannot be applied from its non-square nature and it can only be replaced by the
transpose matrix if both mass and stiffness matrices are symmetric. The complexity increases
in a case of general damping instead of proportional or spectral ones [3], in which the damping
matrix must be included in the eigenproblem in order to diagonalise the whole modal system.

This work proposes a methodology to overcome the issues abovementioned and applies this
in the field of railway dynamics in order to compute the modal properties of a railway wheel
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modelled by using FEM [4]. The paper includes a study of the numerical performance of this
method and its comparison with other numerical procedures to find the FRF of the wheel.

2 Overview of the mathematical approach

The matrix equation of motion of a mechanical system can be formulated as

Mü+ Cu̇+ Ku = F, (1)

where M, C and K correspond with the mass, damping and stiffness matrices, respectively,
and F contains the external force terms and u are the physical coordinates. In this work, it is
considered a general case of damping, instead of a proportional or spectral definition.

2.1 KC method

The eigenvectors matrix is used as matrix transformation to move to modal coordinates. Only
the symmetric part of the stiffness matrix, Ksym, is taken in order to be able to use the transpose
matrix (instead of the inverse one) to diagonalise the mass and stiffness matrices involved. N
is the number of degrees of freedom of the system and m the truncation number selected.

eigs(Ksym,M,m)→ Φ = [{φ}1, . . . , {φ}m]. (2)

It is proposed a first variable transformation:

u = Φq, (3)

where q is the modal coordinates vector. Eq. (1) is reduced to dimension m:

q̈ + C̃q̇ + K̃q = F̃, (4)

where the eigs function has normalised the mass matrix M̃ = ΦTMΦ = I and K̃sym =
ΦTKsymΦ = [ω2

r ] is a diagonal matrix that contains the square of the natural frequencies.
Nevertheless, the stiffness matrix K̃ = ΦTKΦ = ΦT (Ksym + Kantisym)Φ = [ω2

r ] + K̃antisym

and the damping one C̃ = ΦTCΦ are not diagonal. The generalised force is F̃ = ΦTF, where
F̃r = ∑N

k=1 φkrFk.

Considering a harmonic excitation F̃ = ¯̃Feiωt, it is assumed a harmonic response q = q̄eiωt.
Replacing in Eq. (4):

q̄ = (−ω2Ĩ + iωC̃ + K̃)−1 ¯̃F. (5)

Hence, the receptance can be defined through an inverse matrix:

Hij(ω) = q̄
¯̃F

= Φj(−ω2Ĩ + iωC̃ + K̃)−1ΦT
k . (6)
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2.2 AB-decoupling method
Considering the 2m-extended system through

Q =
{
q
q̇

}
, (7)

the modal matrix equation results

ÃQ̇ + B̃Q =
{

F̃
0

}
, (8)

where

Ã =
(

C̃ I
I 0

)
, B̃ =

(
K̃ 0
0 −I

)
. (9)

At this stage, the eigenproblem associated with the linear first-order matrix equation of motion
is solved without truncating, obtaining the 2m-square matrix Θ,

eig(B̃, Ã)→ Θ = [{θ}1 . . . {θ}2m] (10)

The eig function has normalised the first matrix Ã = ΘTAΘ = I and B̃ = ΘTBΘ = [λs] is
diagonal, resulting a set of uncoupled first-order linear differential equations:

Q̇s + λsQs = {θ}Ts
(

F̃
0

)
. (11)

The diagonalisation of the matrix equation of motion permits to compute the receptance for
general damping using modal superposition. With just the first variable transformation, non-
diagonal modal matrices were found and the application of the inverse in the resulting modal
equation was needed to approach the calculation of the receptance. The inversion of a matrix
of the dimension for common FE structures (hundreds of thousands of dofs) is not addressable
for conventional PCs. The proposed method based on the second variable transformation from
the extended 2m-system drastically reduce the time consumption of the receptance computing
through the following expression:

Hjk(ω) =
m∑
s=1

φjs
2m∑
r=1

θsr

∑2m
l=1

(
θ−1

)
rl

∑m
t=1

(
Ã−1

)
lt

Φkt

iω + λr
(12)

Being Ã
−1 =

(
0̃ Ĩ
Ĩ −C̃

)
:

Hjk(ω) = Φj

2m∑
r=1

Θ(1:m,r) (Θ−1)(r,m+1:2m)

iω + λr
ΦT
k . (13)

The modal static correction [5] is implemented and applied to the previous expression in order
to compensate the lack of contribution of the truncated vibration modes on the static response
of the system.
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3 Results

Using both KC and AB-decoupling methods sinthetised in Eqs. (6) and (13), respectively, the
receptances for the track and the wheel have been evaluated. Fig. 1(a) shows that both methods
give the same receptance for a rail modelled by the Moving Element Method [6] supported by
a continuous viscoelastic Winkler bedding. A S1002 undamped Finite Element wheel model [1]
has been also computed, obtaining again two overlapped curves for both methods.

(a) (b)

Figure 1: (a) Track receptance; (b) wheel receptance.

In terms of computational performance, the KC method requires the calculation of the (−ω2Ĩ+
iωC̃+K̃)−1 inverse, which is the most expensive operation. Hence, the time consumption expo-
nentially grows with the number of frequencies selected to build the receptance. The pre- and
post-multiplication of the modal transformation matrix Φ barely increases the computational
time, as reflected in Fig. 2(a), in which the influence of the number of physical measured points
selected to calculate the receptance is almost negligible. Since there is not any inverse to com-
pute for the AB-decoupling method, the influence of the number of frequencies and measured
points can be clearly observed in Fig. 2(b).

(a) (b)

Figure 2: Computational time for the calculation of the wheel receptance.

The previous figures show that KC method requires higher computational time, especially when
the receptance is evaluated for low number of measured points. The ratio between KC and AB-
decoupling times plotted in Fig. 3 is in line with this observation since the first method needs
to compute a very large matrix only for evaluating a few terms of the resulting matrix. When
increasing the number of measured points, the ratio is reduced asymptotically but always above
1, showing that the AB-decoupling method is a more efficient one to compute the receptance.
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Figure 3: Ratio between the computational time for the KC and AB-decoupling methods for
the calculation of the wheel receptance.
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