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1 Introduction

A macroscopic spatio-temporal model of the brain dynamics is presented. It is here called as the
spatio-temporal response model (STRM), and also the quantum brain model, due to its eigen-
values and eigenfunctions quantization are quantized due due the boundary conditions. Thus,
the quantized prediction of the spatio-temporal brain activity (STBA) from a known initial
one is possible with this model. Its mathematical structure is a generalization of the temporal
response model (TRM) that predicts the temporal brain activity (TBA) as a consequence of
several stimuli [1]:

dy(t)
dt

= ā(b̄ − y(t)) +
∑

i p̄i · si(t) · y(t) −
∑

i q̄i ·
∫ t

t0
e

x−t

τ̄i · si(x) · y(x)dx
y (t0) = y0

}

(1)

In (1), t is the time, and y(t), b̄ and y0 are respectively the TBA, its tonic level and its
initial value. The TBA is measured with the psychological variable called as General Factor of
Personality (GFP) [1]. Besides, si(t) , i = 1, 2, . . . , n, are the different stimuli, which can be
of different natures: the amount of non-consumed drug by cells, a sound, a view, etc., which
can hold different mathematical temporal functions. In addition, ā(b̄ − y(t)) is the homeostatic
control, i.e., the cause of the fast recovering of the tonic level b̄, being ā the homeostatic control
power of this control; p̄i · si(t) · y(t) are the different excitation effects, which tend to increase

the temporal brain activity, being p̄i the excitation effect powers; q̄i ·
∫ t

0 e
x−t

τ̄i · si(x) · y(x)dx are
the different inhibitor effects, which tend to decrease the temporal brain activity and are the
cause of the its slow recovering, being q̄i the inhibitor effect powers and being τ̄i the inhibitor
effect delays.

1e-mail: jmico@mat.upv.es
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2 The spatio-temporal response model or quantum brain

The STRM is obtained as a generalization of the TRM. To do this, consider in Eq. (1) that the
TBA variable y(t) must be substituted by a function that represents the STBA as a spatial-
density depending on the time t and on the three spatial rectangular variables r = (x1, x2, x3).
Then, the time derivative in Eq. (1) must be a partial time derivative. The Ψ(t, r) be the
STBA variable, thus, the starting hypothesis is that:

y(t) =
( ∫∫∫

D
Ψ2(t, r)dr

)1/2

= (Ψ(t, r),Ψ(t, r))1/2 (2)

In (2), D is the integration domain that depends on the brain geometry considered, and “( , )”
represents the inner product. In addition, the spatial dynamics in (1) is introduced as a diffusion
term through a Laplacianne function of Ψ(t, r):

∂Ψ(t, r)

∂t
= a · (ω(r)−Ψ(t, r))+

∑

i

pi ·si(t) ·Ψ(t, r)−
∑

i

qi ·

∫ t

0
e

x−t

τi ·si(x) ·Ψ(x, r)dx+σ∇2Ψ(t, r) (3)

Ψ(t0, r) = φ(r) (4)

Note in (3) that the tonic level b̄ in (1) has been substituted by ω(r), i.e., a spatial function,
unknown by the moment. In addition, σ is the diffusion coefficient, here considered positive-
valued, while the other parameters are also positive-valued and conserve the same meanings
than in (1), i.e., a instead ā, pi instead p̄i, qi instead q̄i and τi instead τ̄i. However, they are
related in a way provided below. The initial condition Eq. (4) must be provided through the
spatial distribution of brain activity in the instant t = t0. In addition, the boundary conditions
must be also provided, but they depend on the brain geometry considered. They are provided
in Section 4 for an idealized box-brain geometry, which considers that the spatial flow through
the brain walls cancels. Observe that the spatio-temporal response model provided by Eqs. (3)
and (4) can be considered as a generalization of the cable model for a pulse translation on a
neuron axon [2], from an only spatial direction to the three spatial dimensions of the brain.

3 Analytical solution of the spatio-temporal response

model: the idealized box-brain

Eq. (3) is not separable due to it is a non-homogeneous equation as a consequence of the
term a · ω(r) (known as the non-homogeneous equation source). However, this problem can be
overcome by the method of eigenfunction expansions. This method considers the solutions of
the associated homogeneous spatio-temporal response model for a function Ψh(t, r), which does
not have the source:

∂Ψh(t, r)

∂t
= −a ·Ψh(t, r)+

∑

i

pi ·si(t) ·Ψh(t, r)−
∑

i

qi ·

∫ t

0
e

x−t

τi ·si(x) ·Ψh(x, r)dx+σ ·∇2Ψh(t, r) (5)

Then, Eq. (5) is so separable by a product:

Ψh (t, r) = ρ(t) · Ω(r) (6)
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whose substitution in (5) provides:

ρ′(t)

ρ(t)
+ a −

∑

i

pi · si(t) +
1

ρ(t)

∑

i

qi

∫ t

0
e

x−t

τi · si(x) · ρ(x)dx = σ ·
∇2Ω(r)

Ω(r)
(7)

In order to Eq. (7) holds, both members of the equation must be a constant. Let λ be this
constant. The temporal part of Eq. (7) does not play any role in the solution of the non-
homogeneous Eq. (3). However, from the spatial part of (7):

∇2Ω(r) =
λ

σ
Ω(r) (8)

Eq. (8) is the Helmoltz equation, which can be solved by separating variables for several
coordinate systems, and it is fundamental in the solution of Eq. (3). The solution considered
for Eq. (8) is the use of the rectangular coordinates for an idealized box-brain geometry of
dimensions L1 (length, from back to forebrain), L2 (width, from side to side of brain) and L3

(height, from down to up brain):

r = (x1, x2, x3) ∈ [0, L1]× [0, L2]× [0, L3] (9)

Thus, separating variables in Eq. (8) as: Ω(r) = Ω1(x1) · Ω2(x2) · Ω3(x3) and subsequently
dividing by the product Ω1(x1) · Ω2(x2) · Ω3(x3):

1

Ω1

d2Ω1

dx2
1

+
1

Ω2

d2Ω2

dx2
2

+
1

Ω3

d2Ω3

dx2
3

=
λ

σ
(10)

In order to Eq. (10) holds, each member of the addition must be a constant. These constants
must be negative-valued to obtain an oscillatory dynamics, thus let −k2

i be, i = 1, 2, 3, these
constants:

1

Ωi

d2Ωi

dx2
i

= −k2
i , i = 1, 2, 3. (11)

And from (10) and (11):
λ = −σ(k2

1 + k2
2 + k2

3). (12)

Also, from (11):
Ωi(xi) = Ai cos(kixi) +Bi sin(kixi), i = 1, 2, 3. (13)

being Ai and Bi (i = 1, 2, 3) arbitrary constants.
With the boundary conditions that the spatial flow through the brain walls cancels in Eq. (4):

∂Ψh(t, r)

∂xi

∣

∣

∣

∣

∣

xi=0

= 0;
∂Ψ(t, r)

∂xi

∣

∣

∣

∣

∣

x=Li

= 0 i = 1, 2, 3. (14)

which provide, from Eq. (13):

Bi = 0; sin (kiLi) = 0 → kiLi = niπ → ki =
π

Li

ni; ni = 1, 2, . . . ,+∞; i = 1, 2, 3 (15)

Eq. (15) represents the quantization of the eigenvalues of the associated homogeneous spatio-
temporal response model, as function of three positive integers. Note that the integers are
restricted to vary in the range ni = 1, 2, . . . ,+∞ (i = 1, 2, 3), thus, the constants ki are as
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well positive-valued. On a hand, ki = 0 has not physical sense, and the integers varying in the
range ni = −1, −2, . . . , −∞ (i = 1, 2, 3) will duplicate unnecessarily the solutions. In addition,
the separating constant λ from Eq. (12) becomes quantized, which can be rewritten as λn1n2n3

(from now onwards the expression ni = 1, 2, . . . ,+∞ is over understood):

λn1n2n3
= −σπ2

(

(

n1

L1

)2

+
(

n2

L2

)2

+
(

n3

L3

)2
)

(16)

As a consequence of (16), the solution of Eq. (8) is a superposition of the eigenfunctions:

Ω̄n1n2n3
(r) =

3
∏

i=1

sin
(

π · ni

Li

xi

)

(17)

Note that the eigenfunction Eq. (17) define an orthogonal base, due to:

(Ω̄n1n2n3
(r), Ω̄m1m2m3

(r)) =
∫∫∫

D
Ω̄n1n2n3

(r) · Ω̄m1m2m3
(r)dr

=
3

∏

i=1

∫ Li

0
sin(

πni

Li

xi) · sin(
2πmi

Li

xi)dxi

=
L1L2L3

8
δn1m1

δn2m2
δn3m3

.

(18)

Thus, the corresponding orthonormal base is given by the eigenfunctions:

Ωn1n2n3
(r) =

Ω̄n1n2n3
(r)

(

Ω̄n1n2n3
, Ω̄n1n2n3

)1/2
=

(

8

L1 · L2 · L3

)1/2 3
∏

i=1

sin
(

π · ni

Li

xi

)

. (19)

Such that, from Eqs. (8) and (19):

∇2Ωn1n2n3
(r) =

λn1n2n3

σ
Ωn1n2n3

(r) (20)

(Ωn1n2n3
(r),Ωm1m2m3

(r)) = δn1m1
δn2m2

δn3m3
(21)

Ω(r) =
∞

∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

Ωn1n2n3
(r) =

(

8

L1 · L2 · L3

)1/2 ∞
∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

3
∏

i=1

sin
(

2π · ni

Li

xi

)

(22)

That is,
λn1n2n3

σ
are the eigenvalues of the operator ∇2 with associated eigenfunctions Ωn1n2n3

.
These eigenfunctions are fundamental to find the solutions of the non-homogeneous spatio-
temporal response model given by Eq. (3) by the following expansions:

Ψ(t, r) =
∞

∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

ηn1n2n3
(t) · Ωn1n2n3

(r)

=
(

8

L1 · L2 · L3

)1/2 ∞
∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

ηn1n2n3
(t) ·

3
∏

i=1

sin
(

π · ni

Li

xi

)

(23)
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ω(r) =
∞

∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

Cn1n2n3
· Ωn1n2n3

(r)

=
(

8

L1 · L2 · L3

)1/2 ∞
∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

Cn1n2n3
·

3
∏

i=1

sin
(

π · ni

Li

xi

)

(24)

Such that:

ηn1n2n3
(t) = (Ψ(t, r),Ωn1n2n3

(r)) =
(

8

L1 · L2 · L3

)1/2 3
∏

i=1

∫ Li

0
Ψ(t, r) · sin

(

2π · ni

Li

xi

)

dxi (25)

Cn1nnn3
= (ω(r),Ωn1n2n3

(r)) =
(

8

L1 · L2 · L3

)1/2 3
∏

i=1

∫ Li

0
ω(r) · sin

(

2π · ni

Li

xi

)

dxi (26)

In the beginning, the two sides of Eq. (3) are multiplied by Ωm1m2m3
(r) and taken the inner

product ( , ):

η′

n1n2n3
(t) =

(

−a+ λn1n2n3
+

∑

i

pi · si(t)

)

ηn1n2n3
(t)

−
∑

i

qi ·

∫ t

0
e

x−t

τi · si(x) · ηn1n2n3
(x)dx+ a · Cn1n2n3

(27)

The initial conditions for the integro-differential Eq. (27) are given by Eq. (25) in t = t0 and
by Eq. (4):

ηn1n2n3
(t0) = (Ψ (t0, r) ,Ωn1n2n3

(r)) = (φ(r),Ωn1n2n3
(r))

=
(

8

L1 · L2 · L3

)1/2 3
∏

i=1

∫ Li

0
φ(r) · sin

(

2π · ni

Li

xi

)

dxi

(28)

In conclusions: the solution of the spatio-temporal response model given by Eqs. (3) and (4)
is provided by the expansion Eq. (23), where ηn1n2n3

(t) is given by Eq. (27), with initial
conditions Eq. (28), and Cn1n2n3

by Eq. (26). Note that the functions Ωn1n2n3
(r) are given by

Eq. (19), considering the geometric idealized case of a box-brain.

4 Steady solution of the spatio-temporal response model

The steady solution of the spatio-temporal response model Ψ(s)(r) is provided as t → +∞,
which corresponds for the idealized case that no stimuli are influencing on brain, i.e., when
si(t) = 0, in Eq. (3):

Ψ(s)(r) = lim
t→+∞

Ψ(t, r) =
∞

∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

lim
t→+∞

ηn1n2n3
(t) · Ωn1n2n3

(r) (29)

In this case, when si(t) = 0, Eq. (27) becomes:

η′

n1n2n3
(t) + (a − λn1n2n3

) ηn1n2n3
(t) = a · Cn1n2n3

(30)
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Eq. (30) has a simple analytical solution:

ηn1n2n3
(t) = e−(a−λn1n2n3

)(t−t0)
(

ηn1n2n3
(t0) + a · kn1n2n3

∫ t

t0
e(a−λn1n2n3)(x−t0)dx

)

= ηn1n2n3
(t0) e

−(a−λn1n2n3)(t−t0) +
a · kn1n2n3

(a − λn1n2n3
)

(

1 − e−(a−λn1n2n3)(t−t0)
) (31)

Note in Eq. (31) that, from Eq. (16), a − λn1n2n3
> 0 due to λn1n2n3

< 0. In addition, it tends
to the steady state η(s)

n1n2n3
(t) as t → +∞:

η(s)
n1n2n3

=
a · Cn1n2n3

(a − λn1n2n3
)
. (32)

And from Eq. (29):

Ψ(s)(r) = lim
t→+∞

Ψ(t, r) =
∞

∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

η(s)
n1n2n3

· Ωn1n2n3
(r) = a

∞
∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

Cn1n2n3

(a − λn1n2n3
)
Ωn1n2n3

(r)

=
(

8

L1 · L2 · L3

)1/2 ∞
∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

a · Cn1n2n3

(a − λn1n2n3
)

3
∏

i=1

sin
(

π · ni

Li

xi

)

.

(33)

5 Relationship between the spatio-temporal response model

and the temporal response model

The relationship of the solutions of both models, taking into account Eqs. (2) and (23):

y2(t) = (Ψ(t, r),Ψ(t, r)) =
∞

∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

∞
∑

m1=1

∞
∑

m2=1

∞
∑

m3=1

(Ωn1n2n3
(r)) Ωm1m2m3

(r)) · ηn1n2n3
(t)

· ηm1m2m3
(t) =

∞
∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

η2
n1n2n3

(t)

(34)

That is:

y(t) =





∞
∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

η2
n1n2n3

(t)





1/2

(35)

From Eq. (38) the hypothesis of the isolated existence of the time functions yn1n2n3
(t) can be

state as the projection:

yn1n2n3
(t) = (Ψn1n2n3

(t, r),Ψ(t, r))1/2 = ηn1n2n3
(t) (36)

Such that:

Ψn1n2n3
(t, r) = yn1n2n3

(t) · Ωn1n2n3
(r); y(t) =

∞
∑

n1=1

∞
∑

n2=1

∞
∑

n3=1

yn1n2n3
(t) (37)
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Due to ηn1n2n3
(t) hold the integro-differential Eq. (27), with initial conditions Eq. (28), the

functions yn1n2n3
(t) hold the equations:

y′

n1n2n3
(t) =

(

−a + λn1n2n3
+

∑

i

pi · si(t)

)

yn1n2n3
(t)−

∑

i

qi·

∫ t

0
e

x−t

τi ·si(x)·yn1n2n3
(x)dx+a·Cn1n2n3

(38)

yn1n2n3
(t0) =

(

8

L1 · L2 · L3

)1/2 3
∏

i=1

∫ Li

0
φ(r) · sin

(

2π · ni

Li

xi

)

dxi (39)

The corresponding temporal steady states of yn1n2n3
(t) are, from Eq. (32):

y(s)
n1n2n3

=
a · Cn1n2n3

(a − λn1n2n3
)

(40)

In fact, reorganizing Eq. (38) to obtain the mathematical structure of Eq. (1):

y′

n1n2n3
(t) = (a − λn1n2n3

)

(

a · Cn1n2n3

a − λn1n2n3

− yn1n2n3
(t)

)

+
∑

i

pi · si(t) · yn1n2n3
(t)

−
∑

i

qi ·

∫ t

0
e

x−t

τi · si(x) · yn1n2n3
(x)dx

(41)

With initial conditions (28) in (41). Then, by comparing Eqs. (1) and (41), the following
equivalences can be derived:

ā → ān1n2n3
= a − λn1n2n3

; b̄ → b̄n1n2n3
=

a · Cn1n2n3

a − λn1n2n3

; p̄i = pi; q̄i = qi; τ̄i = τi (42)

In Eq. (42) the parameter values ān1n2n3
and b̄n1n2n3

are quantized, such that, by Eq. (16),

λn1n2n3
= −σπ2

(

(

n1

L1

)2
+

(

n2

L2

)2
+

(

n3

L3

)2
)

; n = 1, 2, . . . ,+∞. Particularly, note that the quan-

tized b̄λn1n2n3
parameter values coincide with the values provided by Eq. (32), such as it must

be held by the theory coherence. Note that only these parameters, ān1n2n3
and b̄n1n2n3

, which
represent biological properties of the brain, are quantized, but not those that are related with
the stimuli dynamics, such that p̄i, q̄i and τ̄i.

6 Calibration of the STRM

There are several ways to observe experimentally the STBA. One of the most important ways
is Neuroimage, which has had to develop the brain mappings, by using the Talairach and MNI
coordinates [3] to measure the STBA by measuring the change of some important biological
indicators in the brain, such as oxygen, blood, etc. In fact, one of the crucial aims of the
Neuroimage technic is the study of the brain resting state [4], which can be identified with the
steady state Ψ(s)(r) of Eq. (33). The information that Neuroimage would provide about the
mathematical structure of the brain resting state would be a first way to validate the quantum
brain model presented. However, in general, to validate the STRM the Neuroimage technic
needs the φ(r) function knowledge, in order to obtain the initial conditions ηn1n2n3

(t0) through
Eq. (28). And the same problems happen with the EEG (electroencephalogram) technic [5],
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which measures the STBA by the electrical potential.

However, a first result can be provided for the STBA by its relationship with the TBA through
the identities Eq. (42). Due to the φ(r) is unknown, the calibration of Eq. (41) is done with
the initial condition of the experimental design presented in the beginning.

One subject consumed 10 mg of methylphenidate, and the GFP was observed every 7.5 minutes
during 180 minutes (3 hours), with the 5 adjectives scale, GFP-FAS [6], in the interval [0,50].
The initial condition was also observed before consumption, with value y0, which is considered
as initial condition of Eq. (41) instead the unknown one of Eq. (28). Assuming that no
methylphenidate is present in the organism, the temporal function of the methylphenidate [1]
is given by:

s(t) =

{

α·M
β−α

(

e−α·t − e−β·t
)

: α Ó= β

α · M · t · e−α·t : α = β
(43)

The calibration of Eq. (41) by generating random numbers is provided graphically in Figs. 1
and 2.

Figure 1: GFP response, yn1n2n3
(t), to the

10 mg of MF versus time. Experimental
values (dots) and theoretical values (line).
R2=0.94.

Figure 2: MF evolution s(t) of Eq. 44 in
the organism.

The results of the calibration provide the following parameter values: α = 0.011510165332;
β = 0.011069991532; a = 0.312844518371; Cn1n2n3

= 15.580863173952; p = 0.057535289406;
q = 0.000000125055; τ = 0.035782907172; M = 10.0; σ = 0.000432176762; n1 = 1; n2 =
1; n3 = 1. These values permit to obtain the results of the corresponding eigenfunction
Ψn1n2n3

(t, r)(n1 = 1;n2 = 1;n3 = 1) of Eq. (37). Two graphical representations are provided
in Figs. 3 and 4:
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Figure 3: STBA result for Ψn1n2n3
(t, r)

with n1=1; n2=1; n3=1: t=88.5846 (in-
stant of maximum TBA) for x3=L3/2.

Figure 4: STBA result for Ψn1n2n3
(t, r)

with n1=1; n2=1; n3=1: t ∈ [t0, T ] for
r = (L1/2, L2/2, L3/2).
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[6] Amigó, S., Micó, J.C. and Caselles, A., Five adjectives to explain the whole personality:
a brief scale of personality, Rev. Int. Sist., 16: 41–43, 2009.

150


