UNIVERSIDAD POLITECNICA DE VALENCIA
DEPARTAMENTO DE SISTEMAS INFORMATICOS Y COMPUTACION

Flexible Real-Time Linux
A New Environment for
Flexible Hard Real-Time Systems

Tesis doctoral

Dirigida por:
Dra. Dia. Ana Garcia Fornes y
Dr. D. Vicente Botti Navarro

Presentada por:
Andrés Martin Terrasa Barrena

Valencia, 2000

UNIVERSIDAD POLITECNICA DE VALENCIA
DEPARTAMENTO DE SISTEMAS INFORMATICOS Y COMPUTACION

Flexible Real-Time Linux
A New Environment for
Flexible Hard Real-Time Systems

Andrés M. Terrasa Barrena

Dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor en Informdtica

This work has been co-supervised by
Dr. Ana Garcia Fornes and Dr. Vicente Botti Navarro

Valencia, 2000

A Ana, por su eterna (im)paciencia,
y en memoria de nuestro amigo Lucas

I have never begun a novel with more misgiving.
If I call it a novel it is only because I don’t know
what else to call it. I have little story to tell and

I end neither with a death nor a marriage.

W. SOMERSET MAUGHAM:
The razor’s edge

/*
* Buddy system. Hairy. You really aren’t

* expected to understand this

* Hint: -mask = 1+ mask

*/

LINUS TORVALDS:

/usr/src/linux/mm/page_alloc.c

Abstract

This thesis proposes a new general framework for building flexible hard real-time systems,
that is, systems featuring both hard timing constraints and flexible behaviour. The proposed
framework is capable of integrating tasks with different criticality levels as well as combining
different scheduling paradigms into the same system. As a result, the framework completely
guarantees the timing requirements of hard tasks, while also allowing for an adaptive and in-
telligent scheduling of non-hard tasks. The framework is divided into a computational model,
a software architecture and a set of services. The computational model proposes building a
flexible real-time application as a set of tasks, with each task being structured as a sequence
of mandatory and optional components. The software architecture proposes separating the
execution of task components into two scheduling levels, one level for scheduling the task
mandatory components by means of a hard real-time policy and another level for scheduling
the task optional components by means of a sort of utility-based policy. The set of services
actually includes both a facility for communicating mandatory and optional components in-
side an application and a group of mechanisms for explicitly detecting and handling run-time
timing exceptions.

The proposed framework is also shown to be realizable in practice. In particular, this thesis
presents the design and implementation of a real run-time support system which supports all
the features proposed by the framework. This run-time system, called Flexible Real-Time
Linux (FRTL), has been developed by enhancing the original capabilities of the Real-Time
Linux (RT-Linux) operating system.

Finally, an exact timing characterization of the FRTL run-time system and actual mea-
surements of its overhead are also provided. The timing characterization allows for the de-
velopment of a complete feasibility analysis of the entire system, which can be then used for
verifying the timing constraints of any FRTL-based application. The overhead measurements
show that the FRTL has been designed and implemented very efficiently. Overall, FRTL is
shown to be both predictable and efficient, which actually proves that it can be useful in build-
ing real flexible real-time systems

The work presented in this thesis has been developed in the context of the following re-

il ABSTRACT

search projects, which have been funded by the Spanish government: “Entornos de sistemas
basados en el conocimiento de tiempo real” (TAP94-0511-C02-01), “ARTIS: herramienta
para el desarrollo de sistemas inteligentes en tiempo real aplicados al control de robots
moviles” (TAP97-1164-C03-01), “ARTIS: herramienta para el desarrollo de sistemas in-
teligentes en tiempo real estricto” (TAP98-0333-C03-01) and “Soporte de ejecucion para
sistemas empotrados distribuidos” (TIC99-1043-C03-02). Another related research project,
which is funded in this case by the Valencian Government, is called “Desarrollo de un entorno
de ejecucion para la realizacion de sistemas de tiempo real estricto” (GV98-14-76).

The main contributions of this thesis have been published in the following magazines and
conferences: an implementation of an ARTIS prototype was presented in [Gar96b, Gar97a].
This prototype, which was the predecessor of FRTL, was implemented in Solaris by using
POSIX facilities. Both papers presented a complete timing characterization of the prototype’s
kernel. An early implementation of this prototype in RT-Linux was presented in [Ter98].
In [Esp98], the problem of sharing memory predictably in the prototype was addressed. Fi-
nally, the actual framework proposed in this thesis and the corresponding FRTL run-time
system have recently been published in [Ter99, Terr0Oa, TerrOOb].

Acknowledgments

First of all, I would like to thank my two co-advisors, Dr. Ana Garcia Fornes and Dr. Vicente
Botti Navarro, for their constant dedication and their efforts in helping to make this work into
a doctoral thesis. Without them, this thesis would never have been finished.

I would also like to thank the rest of the colleagues in my research group, Grupo de Tec-
nologia Informdtica/Inteligencia Artificial (or simply GTI/IA) for their support. The never-
ending discussions that we normally have in the group meetings (week after week) have un-
doubtedly brought indispensable ideas related to this work. Specially, I would like to thank
Carlos Carrascosa for our philosophical discussions about ARTIS and Ignacio Pachés for his
help in debugging and measuring the kernel source code. I would also like to give special
mention to Agustin Espinosa, a brilliant fellow who is always so fast in finding weak points
in my work as in helping me to solve them. I want to thank them all for making my job a
daily enjoyment (this includes our particular way of testing the network capabilities. . . well,
they know perfectly well what I’'m talking about).

Part of the work of this thesis was developed while I was visiting the New Mexico Institute
of Mining and Technology (NMT), which is located in a tiny town called Socorro, in New
Mexico (USA). In my one-year-long stay there (from February, 1999 to February, 2000), I
had the privilege of working with Dr. Victor Yodaiken. Besides his technical support and
suggestions, he taught me that good research should be a synonym for useful research. I'll try
not to forget that. I also made many friends in Socorro. With their help, I managed to feel at
home within the beautiful (and sometimes too quiet) landscapes of New Mexico. Thanks to
Paulo Cortés, Pablo Altamirano, José Guilberto, Axel Bernal, Carlos Lopez Mariscal, Pablo
Veldzquez, Juan Mufioz, Mike Martinez, Niruj Mohan, Amy Bartlet, Sukesh Ganda, Justin
Jayne, Jen Rinard, Lee Paprocki, Bill Davenport, and many, many others. Regardless of
whether I talked to them in Spanish or in English, I shared very good times with all of them. I
sometimes wish I were in the Cap again having a beer with all of you.

I also had the opportunity of discussing some of the ideas of this thesis with people who
do not belong to my university or the NMT. This is the case of Guillem Bernat, who helped
me in some parts of the thesis. I would like to thank him for his comments and for sharing

iii

iv ACKNOWLEDGEMENTS

his thesis’ latex style with me. He made me promise to say that this style was designed by his
wife.

Last, but by no means least, I want to thank my family (Ana, my parents Andrés and
Micaela, my sister Silvia and my brother-in-law Vicent) for their constant support. It seems
that writing a thesis inevitably makes you angrier than usual, and they have suffered the worst
part of it with great patience.

Contents

Abstract i

Acknowledgements iii

Contents v

List of Figures ix

List of Tables xi

Glossary of Acronyms xiii

Nomenclature XV

1 Introduction 1

L1 Purpose e 1

1.2 Objectives e 3

1.3 Organization. e 3

2 An Overview of Flexible Hard Real-Time Systems 5
2.1 Real-Time Systems i

2.2 Flexible Real-Time Systems 7

2.3 Task Models for Imprecise Computations 10

2.3.1 The Milestone Method 10

232 SieveFunctions o 10

2.3.3 Multiple Versions Lo 11

2.3.4 The Prologue-Optional-Epilogue Model 11

2.4 An Overview of Fixed Priority Preemptive Scheduling 12

25 ARTIS e 15

CONTENTS

2.6 Summary and Discussion Lo 16
An Overview of Real-Time Operating Systems 19
3.1 Introduction 20
3.2 The Realtime Extensions of POSIX 21
3.2.1 POSIXfacilities 21
322 POSIXprofiles 22
323 DiISCuSSION e e 23
3.3 Real-Time Kernels underneathGPOSs 24
3.3.1 Slotted Priorities oL 24
332 Real-TimeLinux 25
3.3.3 Systems based on Windows NT 27
34 Summaryand Discussion 27
A New Framework for FRTS 29
4.1 Introduction 30
42 TheTaskModel 31
421 Tasks e 31
422 Components e 31
423 Synchronization 35
4.2.4 Dynamic Components 35
4.2.5 Set of Constraints Imposed over the Model 36
4.3 Formalizing the Task Model 36
43.1 Tasksand Components 36
4.3.2 Dynamic Components tiiu i 38
4.3.3 Model Constraints and Properties 39
4.4 The Software Architecture L. 40
44.1 TheReal-TimeLevel 40
442 TheNon-Real-TimeLevel 52
4.5 The FRTL Run-Time System 55
4.6 The Set of Interface Functions 56
4.7 Summary and Contributions oL 58
Synchronization Facilities 61
5.1 Introduction L 62
52 Relatedwork 64
5.2.1 Priority Ceiling Protocol 64
5.2.2 Ceiling Semaphore Protocol 65

5.2.3 Slack Stealing Algorithm and the PCP 67

CONTENTS vii

5.2.4 Problems Detected in thisWork 68

5.3 Integration of the Priority Ceiling Protocol 69
5.3.1 The PCP at the Real-Time Level 69

5.3.2 The PCP and the Slack-Stealing Algorithm 70

5.3.3 The PCP at the Non-Real-Time Level 70

5.4 Integration of the Ceiling Semaphore Protocol 71
5.4.1 The CSP atthe Real-Time Level 71

5.4.2 The CSP and the Slack-Stealing Algorithm 72

5.4.3 The CSP at the Non-Real-Time Level 73

5.5 Imterface Functions 75
5.6 Evaluation of the Two Protocols 76
5.6.1 High-Level Evaluation 76

5.6.2 Run-Time Evaluation 78

5.7 Summary and Contributions 0oL 79
6 Timing Exception Support 81
6.1 Introduction 82
6.2 PreviousWork.o 84
6.3 DesignPrinciples 85
6.4 Support for weet Exceptions oo o 86
6.4.1 Detection of wcet Exceptions 87

6.4.2 Handling of weet Exceptions, 91

6.4.3 Introducing User-Defined Handlers into the Task Model 92

6.5 Support for Deadline Exceptions 93
6.6 Interface Functions 94
6.7 Summary and Contributions oL 0oL 95
7 The FRTL Run-Time System 97
7.1 Overall Descriptionof FRTL 98
7.1.1 FRTLsReal-TimeLevel 98

7.1.2 FRTDsLinuxLevel 102

7.13 TheStorage 104

7.2 TheReal-TimeLevel 105
7.2.1 Interrupt-DrivenKernel 105

7.2.2 Common Entry and ExitPoints 106

7.2.3 The Scheduler’s Layered Structure 107

7.2.4 Taxonomyof System Calls 111

7.2.5 ImplementationDetails, 112

73 TheLinuxLevel 116

viii

7.3.1 Internal Design of the Second-Level Scheduler

7.3.2 Synchronization Between the Two Schedulers

7.3.3 ImplementationDetails
7.4 SystemTools
7.4.1 Collection of Run-TimeData
7.4.2 Off-line Analysis of the Collected Data

7.5 Summary and Contributions

Complete Feasibility Analysis

8.1 Introduction
82 PreviousWork oo
8.3 Theoretical Test Adapted for the Framework
8.4 Developinga Complete Test
8.4.1 KernelDesignIssues
8.4.2 Inclusion of Interrupt Handling
8.4.3 Inclusion of Implicit System Calls
8.4.4 Inclusion of Explicit System Calls
8.4.5 Inclusion of Timing Exception Support
8.4.6 Final Equation
8.5 Overhead Measurements
8.5.1 ExperimentDesign
8.5.2 Measurements of the Kernel Constants

8.6 Summary and Contributions

Conclusions and Future Work

9.1 Conclusions and Contributions
9.2 Future LinesofWork

Bibliography

CONTENTS

List of Figures

4.1
4.2
43
4.4
4.5
4.6
4.7

5.1
52

6.1
6.2

7.1
7.2
7.3
7.4
7.5

8.1

Example of atask structure. oL 33
The software architecture. 41
Schedule function of the first-level scheduler. 43
Example of slack scheduling 49
Main loop of the second-level scheduler. 53
Set of interface functions at the real-timelevel. 56
Set of interface functions at the non-real-time (Linux) level. 57
CSP anomaly at the non-real-time level. 74
Set of synchronization functions. L. 75
Example of the compensation mechanism. 89
Set of exception-handling interface functions. 95
The Flexible Real-Time Linux system. 99
The internal layered design of the FRTL’s real-time level. 107
Sequence of calls when processing a systemevent 110
The rt_task_runner function. 113
The rt_timer_handlerfunction. 115
Calculation of T,? 132

ix

List of Tables

4.1 Types of componentsinthe task model. 34
5.1 Measured values of the cost of lock and unlock operations. 78
7.1 Trace information collected by the first-level scheduler 124
8.1 Kernel constants introduced in the feasibility test. 140
8.2 Description of the hardware platforms. 141
8.3 Attributes of tasks included in test applications. 141
8.4 Internal structure of tasks in the test application (tasks 1to8) 143
8.5 Internal structure of tasks in the test application (tasks 9to 12) 144
8.6 Overhead measurements for a 200 Mhz. Pentium processor 147
8.7 Overhead measurements for a 233 Mhz. Pentium II processor. 148
8.8 Overhead measurements for a 450 Mhz. Pentium II processor. 149
8.9 Overhead measurements for a 500 Mhz. Pentium III processor 150
8.10 Overhead measurements for a 600 Mhz. Pentium III processor 151

X1

Glossary of Acronyms

ARTIS

CSpP

DASS

DM

DSS

EDF

FRTL

FRTS

GPOS

PCP

PIP

POSIX

RM

RTAI

RTOS

RTS

wcet

An Architecture for Real-Time Intelligent Systems.
Ceiling Semaphore Protocol.

Dynamic Approximate Slack Stealing algorithm.
Deadline Monotonic.

Dynamic Slack Stealing algorithm.

Earliest Deadline First.

Flexible Real-Time Linux.

Flexible Hard Real-Time Systems.
General-Purpose Operating System.

Priority Ceiling Protocol.

Basic Priority Inheritance Protocol.

Portable Operating System Interface.

Rate Monotonic.

Real-Time Atrtificial Intelligence.

Real-Time Operating System.

Real-Time System.

Worst-case execution time.

Xiii

Nomenclature

Definition of the Task Model

A

e [P

TRRER»ASS

Flexible hard real-time application, consisting of a sequence of
tasks {71,72,...,7,..., 78} plus a set of dynamic components,
LG e P A SN} Y

Application task 4, ; = (T;, D;, O;, C;, By, H;, M;, T;).

Application dynamic component, v¢ = (Y, D}, M, ®9).

Period of task ;.

Deadline of task 7;.

Initial offset of task ;.

Worst-case execution time of task 7;.

Worst-case blocking time of task 7;.

Handler of task 7;, H; = (Y;*, Cl, Pl)

Number of components of task 7;.

Sequence of components of task 7;, T's = {71, Vi2, - - - s Yijr - - - » ViM; }-
Jjth component of task 7, v;; = (Y35, Sij, Mij, ®ij).

Type of task 7;’s handler.

Worst-case execution time of task 7;’s handler.

Priority of task 7;’s handler.

Type of component ;.

Slack fraction of component ;.

Number of versions of component ;.

Set of versions of component 75, ®;; = {Cij1,Cij2, - - »Cijks- -5 CijMy, }-

Worst-case execution time of the kth version of component +y;;.

XV

XVi

NOMENCLATURE

Type of dynamic component 'y;-i.
Deadline of dynamic component 731.
Number of versions of dynamic component le.

Set of versions of dynamic component 73-1.

Definition of the Slack Stealing Algorithm

Vij

S;;
ESj;
AS3(t)
Tk (1)
SIz(t)

dz; (t)
Ik (tla t2)

List of contiguous optional components headed by component ;;.
Combined slack fraction for list of optional components ;.
Effective slack fraction for list of optional components ;.
Available slack for list of optional components 7;; at time ¢.

Time of the next release of task 74, after time ¢.

Slack interval to be programmed for list of optional components +;; at time
t.

Absolute deadline for list of optional components 7;; at time ¢.

Exact interference caused by task & in the interval [ty, t2].

Definition of the Feasibility Analysis

R;
man (i)

hand(7)

h
Tk

real
&

CTelease

Cgain

Copt
Cend
Clock

Worst-case response time of task 7;.

Set of mandatory components of task 7;.

Set of tasks having a mandatory handler with a priority higher than or equal
to 1.

Minimum inter-arrival time of task k’s handler.

Real worst-case execution time of task 7;, including the kernel overhead di-
rectly related to it.

Kernel cost of releasing an application task.

Kernel cost of processing the gain time after executing a task mandatory com-
ponent.

Kernel cost of releasing a task optional component.
Kernel cost of ending a task release.

Kernel cost of processing a mutex lock request.

NOMENCLATURE Xvii

Cunlock
Cdynamic

Cezccept

Cend_hand
C’ITLGAE

Kernel cost of processing a mutex unlock request.
Kernel cost of processing a dynamic mandatory component release request.

Kernel cost of processing a timer interrupt which signals a task timing excep-
tion.

Kernel cost of ending a mandatory handler release.

Longest non-interruptible section of kernel code.

Introduction

1.1 Purpose

A real-time system (RTS) can be defined as a computer system on which the correctness of
its response depends on both the logical correctness of the results and the moments at which
these results are generated. In other words, results have to be provided within well-defined
intervals of time in order to be useful. In real-time systems, this requirement is typically
expressed as a set of timing constraints that the system has to meet at run time. Hard real-
time systems form a subset of RTSs on which a single failure in one timing constraint may
lead to a catastrophe. For example, a self-guided robot failing to detect an obstacle may crash
into this obstacle. The strict necessity of avoiding any timing failure has focussed traditional
hard real-time systems on guaranteeing that their timing constraints are always met. In order
to fulfill this goal, simplistic theoretical models have been used. These models are almost
exclusively driven by timing characteristics, such as the deadline of each application task, and
require extensive a priori information of the problem or environment being solved. Thus,
traditional real-time applications, which are built according to these models, can only deal
with environments which are stable, completely specified and which are not very complex.
Many research efforts have emerged in the last few years in order to overcome these lim-
itations. These efforts share the common goal of adding flexibility and intelligence to hard
real-time systems. Systems of this new generation are intended to solve complex problems, to
deal with dynamic environments, to work with incomplete or uncertain data, etc. As a result
of these efforts, the concept of flexible real-time system has progressively become more rele-

2 CHAPTER 1. INTRODUCTION

vant. However, this concept has not yet been accurately defined: it seems to be applied to a
large and heterogeneous group of methods, architectures, techniques, computational models,
scheduling policies, etc., which try to incorporate intelligent, adaptive and flexible behaviour
to systems with real-time constraints. This is specially difficult in hard real-time systems,
since any added feature must completely preserve strict timing constraints. Systems of this
kind, here referred to as Flexible Hard Real-Time Systems (FRTS), are the topic of this thesis.

The first main aim of this work is to try to provide a general framework for building
FRTS. As a minimum, such a framework has to provide two main features. On the one hand,
the framework has to have the ability to combine tasks with different criticality levels into
the same application. Hard tasks are required to execute time-critical actions and thus they
normally implement simple, fast and predictable algorithms. Less critical tasks can be used
for implementing more complex and time-consuming algorithms, solving less critical aspects
of the problem and improving the response achieved by hard tasks. On the other hand, the
framework also has to provide a scheduling policy which is more sophisticated than tradi-
tional policies for hard real-time systems. This scheduling policy must completely ensure
the execution of hard tasks while also scheduling non-hard tasks in the best possible man-
ner. The expression “best possible manner” implies that the scheduling process itself can
help in improving the system response quality. In fact, the scheduling of non-hard tasks is
one of the key aspects in incorporating flexibility and intelligence to FRTS. This scheduling
process could not only maximize some quality function of task execution (as it proposes the
best-effort paradigm [Loc86]) but it could also incorporate specific knowledge of the problem
being solved, adapt the system to the current status of the environment, dynamically choose
among different scheduling strategies, etc.

The state-of-the-art approaches on FRTS have made contributions to either the system’s
computational model or to the run-time scheduling policy. However, both aspects are not nor-
mally considered at the same time. This thesis proposes a framework that tries precisely to
incorporate flexibility from both perspectives. First, the framework incorporates a computa-
tional model in which tasks are made up of components, which can be either mandatory or
optional, with the mandatory components being guaranteed to execute. Second, the framework
proposes the combination of two hierarchically related scheduling policies, one for scheduling
the mandatory components and the other for scheduling the optional components. The frame-
work establishes the policy for the mandatory components and the relationships between both
policies, but does not constrain the optional component’s policy. This policy can be selected,
adapted or even completely implemented by the application designer, depending on the re-
quirements of the application.

The second aim of this thesis is to implement the framework for FRTS as a real run-time
system. In this sense, the thesis presents the design and implementation of Flexible Real-Time
Linux (FRTL). FRTL is a run-time support system (or kernel) which has been developed to
support all the framework’s features. FRTL has been implemented by enhancing the original
functionality of the Real-Time Linux (RT-Linux) version 1 operating system [Yod99]. RT-
Linux leads a new trend in real-time operating systems in which a General-Purpose Operating

1.2. OBJECTIVES 3

System (GPOS) is provided with hard real-time capabilities by adding a small and predictable
real-time layer between the hardware and the GPOS kernel. The thesis also presents a com-
plete feasibility test of FRTL as a very important part in the realization of the framework.
This complete test incorporates all the relevant features of the framework’s task model and the
particular run-time behaviour of FRTL. The availability of such a complete test is necessary if
the kernel is to be useful. The designer can only prove the system’s feasibility by studying the
schedulability of the entire system (i.e., the application tasks plus the kernel).

This work has been developed as a result of several years of research on Real-Time
Artificial Intelligence (RTAI) by the research group GTI/IA, or Grupo de Tecnologia In-
formdtica/Inteligencia Artificial (Group of Computer Science Technology/Artificial Intelli-
gence), of the Technical University of Valencia. In particular, this work is directly related to
the ARTIS architecture [Gar96a]. In many senses, this architecture is the theoretical foun-
dation of the framework proposed in this work. In fact, this thesis can be seen as both an
evolution and a realization of ARTIS.

1.2 Objectives

The overall goal of this thesis is to analyze and identify the requirements of FRTS and to
provide both a framework and a corresponding run-time system which are appropriate for
systems of this type. This global goal can be divided into the following specific objectives,
which actually constitute the sequential steps of the work presented in this thesis:

e To identify the key features which are normally required by FRTS. These features lead
to the definition of the requirements that a framework for FRTS should provide.

e To propose a new framework for building FRTS according to the requirements pre-
viously identified. The framework has to include a computational model, a software
organization or architecture and a set of services which can support these requirements.

e To design and implement an actual run-time support system according to the proposed
framework, to be provided to the application developer for implementing FRTS. The
run-time system is required to be predictable and efficient.

e To develop a generic, complete schedulability analysis of the run-time system. The test
has to include all the framework’s characteristics and the particular timing behaviour of
the run-time system. By using this complete test, the application developer can accu-
rately study the timing feasibility of the entire system.

1.3 Organization

This thesis is divided into nine chapters. The first chapter presents the aims, objectives and
organization of the thesis.

4 CHAPTER 1. INTRODUCTION

Chapters 2 and 3 present the state-of-the-art results of FRTS and Real-Time Operating
Systems (RTOSs), respectively. In the final conclusions of these chapters, the features that
FRTS should include are presented from the viewpoint of both the framework and the run-
time system.

Chapter 4 introduces a new framework for building FRTS. This framework first proposes
and formalizes a task model on which tasks are defined as a sequence of mandatory and op-
tional components. This chapter also proposes a software architecture in which the application
components are separated into two scheduling levels. The chapter details how such an archi-
tecture could be designed. Finally, this chapter briefly introduces the FRTL run-time system
and presents the set of interface functions (related to the task model) which are available for
building an application in FRTL.

Chapter 5 introduces two synchronization protocols which have been adapted for the
framework in order to allow mandatory and optional components to safely share memory.
The chapter introduces the original definition of each protocol and shows how each can be
adapted to the framework. The end of the chapter is devoted to comparing both protocols in
order to determine which one is more appropriate for the framework.

Chapter 6 characterizes the possible types of timing exceptions that may occur at run time
and discusses the situations in which they may occur. Then, appropriate mechanisms for sup-
porting these situations are proposed. These mechanisms have been developed with the goal
of being predictable as well as providing a highly flexible support to the designer. In particular,
the detection mechanism has been integrated within the run-time system in order to maximize
the effectiveness of the real-time scheduling policy. The handling mechanism allows the de-
signer to implement specific timing handlers for each application task. The formal task model
introduced in Chapter 4 is extended in order to include these user-defined handlers.

Chapter 7 describes the design and implementation of the FRTL run-time support system
in detail. The chapter discusses the most relevant features of this system, specially emphasiz-
ing the aspects which affect its run-time timing behaviour.

Chapter 8 introduces a system’s complete feasibility test, which takes into account the
characteristics of both the theoretical framework and the FRTL run-time system. This chapter
presents a novel technique for analyzing the impact of running the kernel with the interrupts
disabled on the schedulability conditions of tasks.

Finally, Chapter 9 summarizes the contributions and conclusions of this thesis and intro-
duces some future lines of work.

An Overview of Flexible Hard
Real-Time Systems

2.1 Real-Time Systems

A real-time system is commonly defined as a computer system in which the correctness of the
system depends not only on the logical result of computation (logical correctness), but also
on the times at which results are produced (timing correctness) [Ram94]. This second type
of correctness is normally expressed as a set of timing constraints that the system has to meet
at run time. According to these constraints, real-time systems may be broadly classified into
two categories: hard and soft. Hard real-time systems require all their constraints to be met
under any circumstances, otherwise catastrophic results may occur. Many examples of hard
systems can be found within computer systems where a timing failure can cause an intolerable
cost (in terms of human lives, equipment damage or economic loss) such as avionics, robotic
systems, nuclear or chemical plants, etc. Soft real-time systems allow some of their constraints
to be occasionally lost, producing a degradation of the system response. A good example of a
soft system is a multimedia application whose video/audio output loses quality whenever the
system is not able to process all the input frames on time. This thesis is within the context of
hard real-time systems.

Hard real-time systems are normally identified as computing systems which interact with
(or control) a process or environment in the real world. In this sense, a real-time system con-

5

6 CHAPTER 2. AN OVERVIEW OF FLEXIBLE HARD REAL-TIME SYSTEMS

tinuously executes a loop in which it inputs data from the environment (perceives), computes
solutions based on the entry data (thinks), and outputs the solutions to the environment (acts),
potentially changing the environment status. Then, the system repeats this cycle again. All
these actions have to be performed in a timely fashion, with specific timing restrictions im-
posed by the environment. The multiplicity of processes present in real-world environments
and the inherent parallelism of these processes usually lead to designing and implementing a
hard real-time system as a set of cooperative, concurrent tasks. In this kind of design, each
application task solves a particular subset of the problem and it is assigned a specific timing
constraint. This constraint is typically expressed as a deadline which the task has to meet each
time it is executed. Hence, the general goal of timing correctness in hard real-time systems
is achieved in practice when the application tasks are scheduled and executed in such a way
that they always meet their deadlines. For this reason, most of the research efforts in the field
of hard real-time systems are centered on developing scheduling paradigms which are appro-
priate for achieving this execution goal. Normally, all other topics related to building these
systems (such as requirement specifications, design methodologies, programming languages,
operating system facilities, etc.) are geared towards the specific scheduling paradigm used by
the system.

Scheduling paradigms for hard real-time systems are focussed on guaranteeing the system
timing constraints a priori. In other words, a hard real-time system must be known to keep
its timing constraints before actually being executed. This guarantee is normally expressed in
terms of feasibility. Feasibility corresponds to the knowledge of the system being able to meet
its timing requirements. Feasibility, in turn, is based on predictability, which is defined as the
complete knowledge of the specific actions that the system will take under any given run-time
situation. In order to be able to provide such predictable behaviour, scheduling paradigms
impose several restrictions on the system. These restrictions are typically expressed in three
forms:

a) The computational model, also known as the task model, is the set of characteristics and
constraints imposed on the application tasks.

b) The pre-execution configuration is normally related to certain dependencies which are
statically imposed on the tasks. The term statically means that the dependencies do not
change at run time.

c) The run-time scheduling policy, which establishes the actual criteria used by the run-
time system for determining which task of all the runnable tasks must be executed.

The task model enforces strict rules for implementing the application tasks, such as “tasks
have to be periodic or else they must have a minimum inter-arrival rate”, “tasks must have
a known maximum execution time”, “task cannot voluntarily suspend themselves”, etc. The
task model also requires that several timing attributes about tasks be specified at design time,
such as the period, deadline, worst-case execution time, initial offset, etc. On the other hand,

the pre-execution configuration and the scheduling policy vary in importance depending on

2.2. FLEXIBLE REAL-TIME SYSTEMS 7

the particular paradigm the system is using. For example, in the static table-driven paradigm
(which includes the so-called cyclic executive scheduling), the pre-execution configuration is
the most important activity. This activity generates an explicit schedule or calendar which
determines which task has to be executed at any particular instant. In this paradigm, the run-
time policy just follows this static calendar. In the fixed priority preemptive paradigm, the
pre-execution configuration assigns a fixed priority to each task; at run time, the scheduling
policy dynamically assigns the processor to the runnable task with the highest priority. Finally,
in the dynamic priority preemptive paradigm, the pre-execution configuration is nonexistent
and the run-time policy selects the ready task with the earliest absolute deadline for execution.

Each scheduling paradigm has its own method for proving the system’s feasibility. For
example, in systems using the static table-driven scheme, feasibility is achieved by construc-
tion. Conversely, priority-driven paradigms (with either fixed or dynamic priorities) require
an explicit feasibility analysis. This analysis is based on a test that mathematically checks
whether all tasks can meet their deadlines. This test is expressed by equations reflecting both
the timing attributes of tasks and the particular run-time behaviour imposed by the scheduling
policy.

To sum up, the general goal of guaranteeing timing correctness a priori imposes two main
requirements when building a hard real-time system. The first requirement is to have a com-
plete knowledge of the environment in order for the application to be able to react to environ-
mental changes in a timely fashion. The second requirement is to enforce several restrictions
on the design of the application tasks and on the run-time system. Restrictions on the task
model includes, for example, knowing the maximum computation and resource requirements
of every application task in advance. Restrictions on the run-time system basically imply al-
ways scheduling tasks according to the same, fixed criteria. As a result, hard real-time systems
normally implement simple applications dealing with well-defined, predictable environments.

2.2 Flexible Real-Time Systems

As discussed in the previous section, traditional hard real-time systems have typically featured
restrictive task models and rigidly defined scheduling policies, in order to achieve predictabil-
ity. In this context, some research efforts have taken place with the general aim of adding
flexibility to hard real-time systems. Flexible Hard Real-Time System (FRTS) is the term
used in this thesis to denote a real-time system featuring both hard guarantees and a flexible
run-time behaviour. This section reviews the main contributions on this topic.

The first issue to be noted here is that there is not a clear, commonly accepted definition
of what flexibility is in the context of real-time systems. Nevertheless, there seems to be a
general agreement on that flexibility means a real-time system should be able to do some of
the following:

e To improve the system utilization, making the best use of the processor’s spare capacity
in order to run algorithms that enhance the system’s response quality.

8 CHAPTER 2. AN OVERVIEW OF FLEXIBLE HARD REAL-TIME SYSTEMS

e To deal with complex, highly dynamic, unpredictable environments, effectively adapt-
ing the system to the different environment situations.

e To work in an uncertain or hostile environment. In environments of this kind, the infor-

mation available may be incomplete or inaccurate.

e To incorporate unbounded algorithms. These algorithms cannot be directly introduced
into a hard real-time system because they do not have a known maximum computation

time or because this time is too pessimistic'.

e To incorporate intelligent scheduling, which takes into account not only the timing at-
tributes of tasks, but also some quality aspects and the environment situation.

e To deal with faults. A drastic change in the environment status may create a transient
overload in the system or force a task to overrun its maximum computation time because
of an unexpectedly large amount of input data or other factors.

Different techniques have been proposed in order to incorporate these new features, nor-
mally only addressing one of them. These techniques have been developed by two different
research communities, the real-time community and the artificial intelligence community?.
Research efforts from the real-time community are mainly focussed on incrementing the flex-
ibility of a hard real-time system; these efforts include the Imprecise Computation model
and many related research works [Liu91], the best-effort scheduling paradigm [Loc86], the
dynamic planning-based scheduling paradigm [Sta98], etc. Results in RTAI are, in general,
oriented towards achieving a complex, intelligent system which offers some degree of real-
time response, such as the design-to-time scheduling [Gar93], the satisficing cycle schedul-
ing [Hay90], etc. Overall, these different efforts may be broadly categorized in two groups,
although some solutions actually make use of elements from both groups:

a) Efforts to enhance the computational model. The typical task model for a hard real-time
system is rather restrictive. In particular, every hard task is supposed to have a known
maximum computation requirement named worst-case execution time (wcet). This usu-
ally makes these tasks implement simple algorithms. In order to overcome this restric-
tion, two main results have been proposed: the concepts of optional component [Aud96]
and anytime algorithm [Bod94]. Optional components are software components imple-
menting complex, typically unbounded algorithms, which are not strictly required to
execute, but that may be run if sufficient spare capacity is detected at run time. This
concept has been consolidated from earlier results such as the Imprecise Computation
models [Liu91] or the Approximate Processing paradigm [Les88]. Anytime algorithms
are iterative refinement algorithms that can be interrupted and asked to provide a result
at any time. This is useful when tasks have real-time constraints, since any task can

IThis means that the worst-case computation time for the algorithm is much larger than its average computation
time, making the feasibility test reject a task that can be successfully scheduled in most cases.
2There is an actual trend called Real-Time Artificial Intelligence (RTAI) [Mus95].

2.2. FLEXIBLE REAL-TIME SYSTEMS 9

b)

be potentially allowed to run to its deadline and then be interrupted, providing the best
possible result at the last possible moment. However, the main drawback of anytime
algorithms is that a problem cannot always be solved by means of such algorithms.

Efforts to develop new algorithms for flexible scheduling. Traditional real-time schedul-
ing only uses quantitative (timing) attributes of tasks in order to obtain timeliness. Tra-
ditional scheduling approaches in artificial intelligence try to achieve the best quality
solution, normally without any real-time restriction, by typically using search algo-
rithms and heuristics. Efforts in this group are oriented towards scheduling techniques
which are able to include quality features into the scheduling of tasks while letting
these tasks meet certain real-time constraints. Results are very heterogeneous, but may
be categorized in the following groups: first, algorithms specially developed for achiev-
ing this twofold goal, such as best-effort scheduling [Loc86], planning-based schedul-
ing [Sta98], flexible computation [Hor91], deliberation scheduling [Bod94], compila-
tion of anytime algorithms [Zil95, Zil96], design-to-time scheduling [Gar93] and the
satisficing cycle scheduling inside the AIS architecture [Hay90, Hay95]. These schedul-
ing algorithms cannot typically provide a priori hard real-time guarantees on tasks not
using anytime algorithms. The second approach corresponds to combining a real-time
and a non-real-time scheduling algorithm, each of which works at a different level and
deals with different parameters. Examples of this group are the scheduling approach of
architectures such as ARTIS [Gar96a] or CIRCA [Mus93]. Finally, the third approach
corresponds to mixing different scheduling paradigms into a single-level framework, as
in [Aud96], where fixed priority preemptive scheduling is used for hard tasks and some
utility-based criteria are used for scheduling optional tasks. In general, results in both
the second and third approaches are able to provide hard real-time guarantees to all the
critical tasks of the application.

Overall, this classification groups very different results which, in most cases, only deal

with part of the problem, leading either to soft real-time systems or to hard systems without

much flexibility. The rest of the chapter discusses some of the results which are directly related

to the proposals of this thesis in more detail. In particular, the following section reviews the

computational models developed for the Imprecise Computations paradigm. Section 2.4 dis-

cusses the main contributions in the field of single-processor fixed priority preemptive schedul-

ing, since this is the paradigm proposed in this thesis for achieving hard real-time guarantees.

Section 2.5 presents a summary of the ARTIS architecture, as it is the theoretical foundation

of the framework proposed in this work. Finally, Section 2.6 presents a summary of the ac-

tual characteristics that we have identified as necessary for any framework intended to support
FRTS.

10 CHAPTER 2. AN OVERVIEW OF FLEXIBLE HARD REAL-TIME SYSTEMS

2.3 Task Models for Imprecise Computations

This section first reviews the three original computational models developed by Liu et al.
under the generic name of algorithms for Imprecise Computations [Liu91]. These models
are the Milestone Method, the Sieve Functions and the Multiple Versions. The section then
presents a more generic model introduced by Audsley et al. [Aud96], which subsumes these
three models. A similar model has also been developed within the context of the ARTIS
architecture [Gar96a], which is presented in Section 2.5.

2.3.1 The Milestone Method

This model normally applies to monotone tasks. A task is said to be monotone if the quality
of its response does not decrease as the task executes. The Milestone Method is typically
applied to monotone tasks which can produce (imprecise) results before completely finishing
(i.e., they can be aborted at any time and still produce a consistent result). However, tasks of
this type usually need some initial time before which they can produce valid results or else
they are required to provide a minimum quality solution. As a result, tasks in this model are
broken down into two sequential parts: a mandatory part and an optional part. The mandatory
part executes first, obtaining a minimum quality solution in a predictable time. The optional
part runs afterwards, improving this solution as it executes.

In the Milestone Method, the feasibility test must only take into consideration the manda-
tory part of each task, verifying that these parts will always execute. At run time, the more
execution time the system can offer to the optional part of a task, the higher the solution quality
this task will provide, at least theoretically.

This model is useful when application tasks can be implemented as monotone algorithms,
which is the case of numerous algorithms for numerical computation, statistical approxima-
tions or heuristic search. However, a problem cannot always be solved by using algorithms of
this kind.

2.3.2 Sieve Functions

Under this approach, a task is broken down into a sequence of computation units or steps,
in such a way that the execution of each one refines (sieves) the solution provided by the
previous unit. A task designed within this model normally allows some of the units to be
skipped while still producing valid results. Thus, the units belonging to a task which are
required to be executed are considered as mandatory and the rest are considered as optional.
Mandatory parts must have known worst-case execution times in order to be considered in
the corresponding feasibility test, which guarantees their execution. Optional parts will only
execute if possible, and therefore they may implement unbounded algorithms.

This model is appropriate only when the solution of a problem can be produced in terms
of successive refinements. For this reason, just as for the Milestone Method, the model can
only be applied sometimes.

2.3. TASK MODELS FOR IMPRECISE COMPUTATIONS 11

2.3.3 Multiple Versions

In the Multiple Versions model, a task always consists of two versions: a primary version and
an alternate version. The primary version produces the highest quality solution of the task,
but it normally uses an unbounded algorithm. On the contrary, the alternate version produces
a minimum-quality solution in a bounded and known execution time. At run time, each task
always starts running its primary version. If the system can offer the task enough time to
finish its execution, the optimum response is produced. However, if the running task executes
beyond a security threshold (at which it is detected that the task will not finish on time) the
primary version is discarded and the alternate version is then executed until completion. From
the feasibility test’s point of view, only alternate versions are mandatory and thus required to
be considered.

This task model is actually more general than the models presented in the two previous
sections, since primary and alternate versions are not constrained to be of a certain type of al-
gorithm. However, there are important issues which are not explicitly addressed in the model.
For example, how does the system know at run time that a certain primary version will not
finish on time. Or what happens if this version must be abandoned just when it was executing
a critical section. Or, in this latter case, what happens with the partial results already computed
(and possibly written) by the primary version. All these issues would need to be solved for a
valid implementation of this model.

2.3.4 The Prologue-Optional-Epilogue Model

In [Aud96], Audsley et al. present a computational model designed for supporting the three
task models for Imprecise Computation presented above. The task model is based on breaking
down each application task into three sequential parts, named the prologue, the optional and
the epilogue parts. The prologue and the epilogue parts are mandatory (and hence they must be
guaranteed) while the optional part executes between them, if possible. The work in [Aud96]
shows how the model can be used to build any of the models for Imprecise Computations and
directly supports a mandatory final part for each task, which is not present in the other models.
A mandatory final part is useful, for example, for ensuring that the solution computed by the
task is actually communicated to the environment.

This work has two weak points: first, the model uses fixed offsets to delay the execution
of each epilogue part with respect to its related prologue. This produces a rigid behaviour
on the amount of time available for the optional components. And second, the scheduling of
optional components are exclusively based on an acceptance test (proving that their execution
will not jeopardize the schedulability of mandatory parts) and by a threshold function that
checks whether or not the utility value achieved when running a particular optional component
is enough. This kind of scheduling is based on the best-effort paradigm, which proposes
some utility-based scheduling criteria. Besides producing significant overhead, the problem
with the best-effort approach is that it is actually fixed: the scheduling of optional tasks only
uses a single value per task to decide which tasks should be executed. Which value is used

12 CHAPTER 2. AN OVERVIEW OF FLEXIBLE HARD REAL-TIME SYSTEMS

and how it is computed is decided at design time. A more interesting behaviour would be
achieved if, for example, specific knowledge about the problem being solved was introduced
into the scheduling process, or if this process could automatically adapt itself to changes in

the environment.

2.4 An Overview of Fixed Priority Preemptive
Scheduling

In the early 1970’s, a paper by Liu and Layland [Liu73] introduced two scheduling techniques,
the Rate Monotonic (RM) algorithm and the Earliest Deadline First (EDF) algorithm in the
context of real-time systems. In both algorithms, the run-time scheduling policy is not based
on a pre-configured calendar but on task priorities. In RM, each task is assigned a priority
off-line. This priority is inversely proportional to its period. At run time, the ready task with
the highest priority is always selected first. In EDF, the run-time scheduler always chooses
the task with the closest absolute deadline for execution. Although the task model originally
proposed for both algorithms was rather restrictive (only pure periodic, independent tasks
with deadlines equal to their periods and exact computation times), this work made a great
contribution to the real-time community, since the authors provided a mathematical feasibility
analysis for each algorithm.

The EDF algorithm evolved into the more general dynamic priority preemptive scheme.
Within this scheme, task priorities are recomputed at run time as a function of some dynamic
attribute (such as its closest deadline), so that the priority of a given task may change during
its runnable periods, depending on the value of that attribute. This scheme is not discussed
further because it is outside the scope of this thesis.

The RM algorithm turned into the fixed priority preemptive scheme, which nowadays is
one of the standards in developing hard real-time systems. The fixed priority scheme maintains
the original RM’s run-time scheduling policy, where the fixed task priorities are the only cri-
terion for selecting the running task. However, many features have been added to the original
RM algorithm, making the scheme more complete or, in other words, less restrictive. On one
hand, the original Rate Monotonic Analysis (RMA) (based on processor utilization) has been
replaced by a more general feasibility test based on calculating the worst-case response time
of each task. One of the benefits of this new test is that it no longer imposes how task priorities
should be calculated. These priorities can be freely assigned by the application designer.

The scheme evolution has progressively relaxed the constraints that RM imposed over the
task model. As expressed above, the original RM task model was very constraining, only
permitting a system to be formed by a set of pure periodic, independent, hard tasks, with the
deadline of each task being equal to that task period. Obviously, applications developed using
that model were rather simple. Over the years, features added by several authors have made
it possible to remove or relax many of the restrictions enforced by the original task model.
The following discusses some of the main contributions in this field, in the context of single-

2.4. AN OVERVIEW OF FIXED PRIORITY PREEMPTIVE SCHEDULING 13

processor systems.

Sporadic tasks

Sporadic task is the name given to a non-periodic task having a hard deadline. Although Liu
and Layland did not include tasks of this kind in their original task model, further work has
demonstrated that any task which executes at most once each period can be considered in
the original test for the RM algorithm. As a result, sporadic tasks with a known minimum
inter-arrival rate can be directly introduced in the RM feasibility analysis.

Synchronization

In any concurrent application, resource sharing is a major topic. Tasks often need to com-
municate with other tasks, either via messages or by means of reading and writing in shared
memory. In any case, the requirement of mutual exclusion in some regions of code has to be
explicitly introduced within the test. Many approaches deal with this problem, such as atomic
operations, lock-free data structures and semaphore-guarded critical sections (this is the most
popular technique). When real-time tasks use semaphores for controlling mutual exclusion,
specific protocols have to be used in order to know the worst-case time that each task may
be preempted by a lower priority task, due to blocking. Protocols such as the Priority Ceil-
ing Protocol [Sha90] or the Ceiling Semaphore Protocol [Raj89] bound (and calculate) these
factors, thus making it possible to introduce them into the test.

Deadlines different from periods

The restriction that each task deadline be equal to its period has also been removed from the
task model. The introduction of the Deadline Monotonic (DM) algorithm [Aud91] allowed for
the definition of tasks with deadlines less than or equal to their periods, but it also imposed the
method of calculating task priorities (a higher priority for a smaller deadline). This priority
assignment is actually not necessary if the feasibility test mentioned above (which is based
on the calculation of the worst-case response time of each task) is used. Nevertheless, this
assignment has been shown to be optimal for tasks with deadlines less than or equal to their
periods.

Other tests have been developed for systems whose tasks have arbitrary deadlines [Leh90,
Tin93]. In systems where some tasks have deadlines greater than their periods, the DM priority
assignment is not optimal; in this case, an optimal priority assignment is presented in [Aud93].

Soft tasks

In early hard real-time systems also containing soft tasks (tasks with soft, or null, time re-
quirements), the traditional approach was to schedule the soft tasks in background in order
to prevent them from jeopardizing hard task deadlines. The first attempt at improving the
scheduling conditions of soft tasks while maintaining the application timing correctness was

14 CHAPTER 2. AN OVERVIEW OF FLEXIBLE HARD REAL-TIME SYSTEMS

the introduction of aperiodic servers®. The common goal of these algorithms is to add a spe-
cial task, or server, to the application task set. This server in charge of executing soft tasks.
The server is a regular periodic task, and can thus be considered by the feasibility test. In this
way, the system actually reserves a guaranteed bandwidth to execute aperiodic tasks. Among
the several existing techniques based on servers, the most relevant are probably the Polling
Server, the Deferrable Server [Leh87], the Exchange Priority Server [Sto88] and the Sporadic
Server [Spu90]. The Sporadic Server has recently been added to the POSIX standard.

There is a different family of soft task scheduling techniques, which is based on the idea
of exploiting the processor spare time to execute soft tasks. These techniques are commonly
called slack stealing algorithms [Leh92, Dav93a, Dav93b]. The spare time, named slack time,
of each task is defined as the amount of time that this task may be delayed without missing
its deadline. Slack stealing algorithms detect whether such slack time is available whenever
the system has soft tasks to execute (typically, as soon as these tasks arrive to the system).
If there are soft tasks and slack is available, then the system executes as many soft tasks as
possible in the slack time. There are many types of slack algorithms (static and dynamic, exact
and approximate, etc.), but in general they are simpler and more flexible than servers: first,
no extra tasks have to be adjusted and introduced into the system so that the system remains
feasible; and second, there is not an explicit off-line reservation of execution bandwidth but
rather a dynamic usage of the available slack at any given moment.

Finally, there is still a third approach: the Dual-Priority Algorithm [Bur96]. This algorithm
proposes executing each task at two different priority levels or bands. For each task, its upper
band is above the priority level at which soft tasks are scheduled, while its lower band is below
the soft task level. When a hard task is released, it starts running at its lower band. This allows
soft tasks, if any, to preempt the hard task. When the task reaches a special time, called its
promotion time, its priority is immediately raised to its upper band. From that moment on,
it executes with no interference from soft tasks. The best feature of this algorithm is that
the promotion time of each task is unique and can be calculated off-line. Thus, the run-time
overhead related to the algorithm is practically nil. However, this algorithm has two main
drawbacks: first, it increases the amount of required priority levels; and second, the system is
not able to decide when it is necessary (or interesting) to run a soft task, since intervals of soft
tasks execution are exclusively based on the (fixed) task promotion times.

Mode Changes

In some application domains, the system is made to work in different modes, potentially hav-
ing a different set of running tasks in each mode. The typical example is a control system for
an aircraft, which has at least three modes: take-off, regular flight and landing. In applica-
tions of this kind, the real-time system must not only have the guarantee that the task set for
each mode is schedulable, but it must also ensure that hard deadlines are guaranteed within

3In early real-time systems, aperiodic tasks could not be considered as hard tasks in the feasibility test; for this
reason, the term aperiodic task was used as an antonym of hard task.

2.5. ARTIS 15

the transitions between modes. An exhaustive review of this topic, as well as several recent
contributions, can be found in [Rea00].

2.5 ARTIS

ARTIS (Architecture for Real-Time Intelligent Systems) [Gar96a] is an agent-based archi-
tecture which is focused on the development of intelligent real-time control applications with
hard real-time constraints. An ARTIS application can be seen as an independent entity or agent
which perceives its environment through a set of sensors, reasons about the perceived data and
acts through a set of actuators, potentially changing the environment. An ARTIS agent can
also communicate with other ARTIS agents which are working in the same environment.

There are two task models involved in the development of an ARTIS application. These
models, called the high-level task model and the low-level task model, are now discussed.

The high-level task model is the model given to system designers for specifying the appli-
cation in terms of their knowledge of the problem, that is, without having to be aware of the
low level details of the running system.

This model offers a hierarchy of entities, with the in-agent (internal agent) as the entity at
the top. An in-agent is an entity that perceives a subset of the environment, reasons about a
subset of the problem and acts on (or communicates its solution to) the environment. These
three activities are performed by the in-agent within a certain deadline and in a periodic man-
ner. Normally, the control problem to be solved by the ARTIS agent is broken down into some
smaller subproblems (which are not necessarily independent) and an in-agent is defined to
deal with each subproblem.

An in-agent is naturally made up of Multi-level Knowledge Sources (MKSs) or sets of
Knowledge Sources (KSs). The KSs are the architecture’s computation individuals. In par-
ticular, an in-agent can have one or several perception MKSs, one or several cognition MKSs
and one action MKS. Each MKS is defined as either critical or non critical. When a MKS
is defined as critical, its first KS is considered as mandatory and the rest are considered as
optional. Mandatory KSs are required to have bounded execution times, since their execution
is guaranteed by the system; optional KSs can be unbounded, since they are only executed if
possible. If the MKS is defined as non critical, all its KSs are considered as optional. For each
in-agent, at least one perception and one cognition MKSs, and the action MKS are normally
defined as critical. This is done in order to guarantee a useful (minimum-quality) response
each time the in-agent is executed. At run time, the system will try to run as many optional
KSs as possible, thus improving the agent’s response.

The designer specification of an ARTIS agent, in terms of the high-level task model, is
automatically translated into a real application, in terms of the low-level task model. In this
second model, each in-agent becomes a fask, made up of three consecutive parts: the initial
part, the optional part and the final part. The initial part is built by adding the first (manda-
tory) KS of each perception critical MKS and each cognition critical MKS. The optional part
is formed by the optional KSs of all perception and cognition MKSs. The final part is the

16 CHAPTER 2. AN OVERVIEW OF FLEXIBLE HARD REAL-TIME SYSTEMS

mandatory KS of the in-agent action MKS. Therefore, the initial and final parts of each task
are only formed by mandatory KSs, and thus both parts will be guaranteed to execute (by
means of a feasibility analysis). Optional parts will only be executed in moments when pro-
cessor spare capacity is detected at run time; the detection of this capacity is done by using
some slack stealing algorithm [Dav93a].

Another difference between mandatory and optional parts is that when a set of mandatory
KSs forms an initial or final part, the KSs become a strict sequence. In fact, each initial and fi-
nal part is considered as a single run-time entity. On the contrary, optional parts conserve their
hierarchy of MKSs and KSs at run time. Thus, each optional KS can be independently chosen
for execution. Furthermore, parts of each type are scheduled at a different level: manda-
tory parts are scheduled by the first-level scheduler, which applies a fixed priority preemptive
policy; optional parts (that is, their KSs) are scheduled by a second-level scheduler, which
normally applies some knowledge of the problem to its decisions. Because of this, this second
scheduler is also referred to as the Intelligent Server.

It is worth noting that a great deal of the flexibility present in the ARTIS architecture
derives from the fact of having two scheduling levels at run time. This allows for both a strict
guarantee of mandatory parts and a flexible scheduling of optional parts. However, the ARTIS’
low-level task model has limitations which could be relaxed. For example, although a task can
have any of its parts missing, it cannot have a more complex structure than two mandatory
parts separated by an optional part.

2.6 Summary and Discussion

Traditional research in hard real-time systems has focussed on developing scheduling paradigms
which can provide a 100% guarantee on the system timing correctness. The guarantee is ob-
tained when the application tasks can be mathematically proven to always keep their deadlines
at run time. In order to ensure this predictable run-time behaviour, the scheduling paradigms
typically impose several restrictions on real-time applications. The restrictions are mainly ap-
plied to two features: the computational model used for developing the application and the
scheduling policy used at run time. Restrictions over the task model include, for example,
knowing the maximum computation and resource requirements of each application task at de-
sign time. Restrictions over the run-time policy obligate the run-time system to always select
the running tasks according to the same, fixed criteria. As a result of these restrictions, tradi-
tional hard real-time systems have implemented simple applications dealing with predictable
environments.

As opposed to the simplicity of traditional hard real-time systems, this chapter has iden-
tified the abilities which FRTS are expected to have in order to feature a more intelligent,
flexible and adaptive behaviour. According to these abilities, the chapter has then reviewed
the main research efforts in this field. This review has presented that, in general, these efforts
are focussed on either adding flexibility to the system computational model or introducing a
more sophisticated run-time scheduling to the system. Taking both the requirements of FRTS

2.6. SUMMARY AND DISCUSSION 17

and the characteristics and limitations of the reviewed techniques into account, we consider
that a framework for developing FRTS should at least support the following features:

e First of all, the framework must obviously support all the features currently available
in traditional hard real-time systems. These features include tasks with hard deadlines,
periodic and sporadic tasks, synchronization among hard tasks, etc. Applications devel-
oped by using the framework have to allow for a feasibility analysis which guarantees
the deadlines of hard tasks.

e Since the framework has to provide a flexible response depending on the run-time situ-
ation, tasks with different criticality should be available. These include, as a minimum,
hard tasks, soft tasks and firm tasks. Hard tasks are completely specified a priori and
must be guaranteed off-line. Soft tasks do not have any constraints, and the system must
try to execute them, typically in order to improve the quality of system response. Firm
tasks have timing constraints but the system is not strictly required to always execute
them; when a firm task is released, the system applies an on-line guarantee test to it, in
order to check if its execution keeps its own constraint and maintains the guarantee of
all hard tasks; depending on the result, the on-line test can accept or reject the firm task.

e The framework has to offer a homogeneous functionality to all the application tasks,
in spite of being hard, firm or soft. In particular, at least two types of relationships
should be provided. On the one hand, all types of tasks normally cooperate to achieve
a common goal or result; hence, synchronization among tasks of any type must be pro-
vided. On the other hand, it is common in FRTS for some tasks to refine the solution
achieved by other tasks; for example, a soft task implementing an unbounded algorithm
is typically used for improving the outcome provided by a hard task, which normally
implements a much simpler algorithm. In scenarios of this type, the precedence rela-
tionship among tasks also has to be addressed.

e The typical run-time scheduling policy in a hard real-time system takes into account
the same, fixed criteria for choosing the running task, with these criteria normally being
based on some timing attributes of tasks. For hard tasks, this is the only way to be
able to guarantee the task timing constraints a priori. However, if the framework offers
tasks with different criticality, more sophisticated scheduling can be offered to non-hard
tasks. This scheduling can take into account the guality aspects of tasks, such as their
importance, appropriateness, utility, etc.

e The scheduling policy (or policies) adopted by the framework have to schedule hard
tasks in such a way that they always meet their deadlines as well as schedule non-
hard tasks in an intelligent and adaptive manner. The scheduling has to achieve the
overall goal of adapting the system response to the current scheduling conditions (from
low-load to overload situations) and to the current status of the environment. In this
sense, an interesting feature of the scheduling policy is to be able to include particular

18

CHAPTER 2. AN OVERVIEW OF FLEXIBLE HARD REAL-TIME SYSTEMS

knowledge about the problem being solved. By means of this knowledge, the system
can dynamically focus on executing some tasks rather than others.

e Since FRTS may deal with complex, dynamic and unpredictable environments, the
framework must have fault tolerance capabilities. These capabilities are needed, for
example, when a hard task overruns because of an unexpectedly large data input.

An Overview of Real-Time
Operating Systems

The previous chapter has explained that the development of a hard real-time system requires a
special theoretical framework in order to be able to guarantee the system timing correctness.
This framework (normally related to a scheduling scheme) imposes some restrictions on the
application tasks and enforces a specific run-time behaviour in aspects such as scheduling pol-
icy, periodicity of tasks, synchronization mechanisms, task priorities, etc. A run-time support
system (or operating system) for hard real-time systems has to offer such functionality, while
also meeting requirements of reliability, efficiency and predictability. Therefore, no matter
how good the framework is or how carefully the application design has followed it, without
this special run-time support it is not possible to successfully implement a hard real-time sys-
tem. Unfortunately, all these properties are usually not available in regular operating systems.
Thus, a special system, called Real-Time Operating System (RTOS), is required. Many RTOSs
have been developed over the years, with quite different capabilities. This chapter reviews the
current trends of RTOSs and their suitability in supporting FRTS. In particular, two types of
RTOSs are discussed: RTOSs based on the real-time extensions of the POSIX standard and
systems combining a real-time kernel and a General-Purpose Operating System (GPOS).

19

20 CHAPTER 3. AN OVERVIEW OF REAL-TIME OPERATING SYSTEMS

3.1 Introduction

According to [Ram94], there have been three traditional approaches for developing RTOSs:
small, fast proprietary kernels; GPOSs which have been enhanced with some real-time fea-
tures; and RTOSs developed within research groups. However, another classification of RTOSs
which is closer to the purposes of this chapter is presented here. This classification places
RTOSs in to groups according to their functionality: small kernels for simple embedded sys-
tems and bigger RTOSs offering more sophisticated support'.

The first group is generally formed by commercial products such as C executive, CMX,
eCos, pSOS, etc., mainly oriented towards the embedded industry. These kernels are normally
provided as a run-time support system included in a cross-compiling (or host/target) devel-
opment environment. In this kind of development environment, the application is coded in
the host computer, normally a full-featured system with compilers, debuggers and all sorts of
Graphical User Interface (GUI) tools. The application is then compiled by the cross compiler
and linked with the run-time kernel, in order to produce a binary executable system for the
target computer, where it will be executed. The functionality of these kernels is usually very
limited because their aim is to be small (in memory size), fully predictable and efficient, in
order to implement tiny hard embedded applications. These products are normally focussed
on providing a good set of development tools in the host environment and to support a great
variety of target hardware platforms, including special embedded boards.

The second group of RTOSs is formed by systems offering a greater number of features
and more sophisticated support. These systems are oriented to soft and hard real-time applica-
tions of medium to high complexity. Typical features of these RTOSs are: several scheduling
policies, network accessibility, synchronization/communication mechanisms, multi-processor
support, etc. In the past, this higher level of support was provided by several proprietary solu-
tions, including multi-featured RTOSs such as QNX, VxWorks, LynxOS, etc. However, these
particular solutions are lately converging into a common trend: to offer the real-time exten-
sions of the POSIX standard [POS90] as the application programming interface. The reason
of this convergence is that the POSIX real-time extensions are commonly accepted nowadays
as the set of real-time capabilities that a RTOS should offer. These real-time extensions of
POSIX are also being adopted by several Unix-like GPOSs, such as HP-UX, Solaris, Irix, etc.
These operating systems, which had formerly adopted the non-real-time part of the standard,
have found the real-time extensions a very natural way of also providing real-time support>.

The review presented so far deals with the support that RTOSs provide to regular real-time
systems. The capabilities required by FRTS are discussed herein. Due to their special com-
plexity, FRTS require very sophisticated run-time support, specially for managing different
types of tasks and utilizing different scheduling paradigms. As shown above, the current al-

!Information about many RTOSs in this section has been extracted from [RTE] and the RTOSs” own world-wide-
web pages.

2 Actually, most of these systems cannot be used for implementing hard real-time applications, since they are
excessively big and complex, and their original internal design has been optimized for the average case; as a result,
they are not completely predictable.

3.2. THE REALTIME EXTENSIONS OF POSIX 21

ternative with the state-of-the-art RTOSs would be to implement FRTS by using the POSIX
real-time extensions. However, there is another trend of RTOSs which is lately taking place
within both the academic community and industry: to combine a hard real-time executive with
a GPOS in order to provide both real-time capabilities to hard tasks and regular, full-featured
support for non-real-time tasks. The natural combination of hard and soft tasks, each one with
its own scheduling paradigm, brings this trend close to the requirements of FRTS. The rest of
the chapter presents both alternatives and discusses their appropriateness for building FRTS.

3.2 The Realtime Extensions of POSIX

The POSIX standard [POS90], developed by the Institute of Electrical and Electronic Engi-
neers (IEEE), is an attempt to standardize the Unix operating system at a programming level,
that is, to define a common environment and interface for all Unix-like operating systems and
to make the source code of programs directly portable to all these systems.

The first POSIX document did not contain any reference to real-time systems. However,
two new documents describing the system real-time capabilities were soon added to the stan-
dard: the Real-Time Extension [POS93] and the Threads Extension [POS95]. Based on these
documents, POSIX has also included the definition of four different profiles [POS97] or dif-
ferent levels of requirements, depending on the complexity of the system. The following
subsections revise the general real-time POSIX facilities as well as the four profiles.

3.2.1 POSIX facilities

There are nine groups of facilities included in the standard:

1) Semaphores, Mutexes and Condition Variables. These minimal synchronization
primitives have to be provided, being the base to the application for building more so-
phisticated mechanisms, if needed.

2) Process memory locking. This enforces the operating system to use only physical
memory to store all running real-time processes, instead of using typical Virtual Mem-
ory (VM) mechanisms, which normally keep part of the process memory in some sec-
ondary storage device.

3) Shared memory and memory-mapped files. Shared memory allows various processes
with independent memory spaces to share a portion of the physical memory, as a means
of sharing large volumes of data. The memory mapping facility permits a process to
access a file as if it were part of its memory. This latter facility is normally not allowed
in hard systems, since the time involved in accessing a file inside a secondary storage
device is difficult to bound.

4) Priority scheduling. The operating system must schedule concurrent processes with a
preemptive priority-based policy, in order to allow the applications to decide in which

22 CHAPTER 3. AN OVERVIEW OF REAL-TIME OPERATING SYSTEMS

order ready processes may use the processor.

5) Real-time signals. Extension of the traditional Unix signal mechanism to asynchronously
notify signals (or events) to the application in a reliable manner.

6) Clocks and timers. The traditional POSIX time management functions do not have
resolution enough for real-time systems. This facility increases the ability of both the
operating system and the application to measure and manage time.

7) Message passing. This provides a high-level mechanism for communication among
processes or threads.

8) Synchronized Input and Output (I/0). I/O operations of this kind permit the appli-
cation to ensure that the information being handled is physically stored in secondary
storage devices in order to provide data integrity.

9) Asynchronous Input and Output. This permits the application to queue requests to
data transfer and to be notified when these operations are completed.

3.2.2 POSIX profiles

The POSIX Realtime Application Support (AEP) [POS97] includes the definition of four dif-
ferent real-time profiles, describing the real-time requirements of systems with different levels
of complexity:

a) Minimal Realtime System Profile. This profile describes the simplest type of real-time
(typically embedded) system. The programming model includes one single process,
i.e. one address space, containing one or more threads. No file system (secondary
mass storage device) is needed, and devices are operated by memory-mapped Input
and Output (I/O) or specific I/O interfaces. This profile assumes one processor with no
Memory Management Unit (MMU).

b) Realtime Controller System Profile. This is an extension of the minimal profile, in
which a support for asynchronous I/O and a file system interface has been added. Mass
storage devices are not strictly required, and file system may be implemented in mem-
ory.

¢) Dedicated Realtime System Profile. This profile is an extension of the minimal profile
on which support for multiple processes is added. A common interface for devices and
files is required, but not a hierarchical file system. As many processes share memory,
memory locking must be provided. This profile assumes one or more processors with
or without MMUs.

d) Multi-Purpose Realtime System Profile. This profile includes all the functionality of
the other three profiles. The purpose is to be able to run a mix of different real-time and
non-real-time processes. The hardware assumed includes memory with MMUs, storage
devices, displays, network support, etc.

3.2. THE REALTIME EXTENSIONS OF POSIX 23

3.2.3 Discussion

The POSIX real-time extensions are a fixed set of well-defined functions which are intended
to be used for building real-time applications in a Unix-like RTOS. The system functionality
established by the standard is actually divided in four groups or profiles, with the functionality
of each group included within the more complex, next group. This division in profiles has
been designed in order to allow the RTOS to incorporate a functionality level according to the
complexity of the applications intended to be implemented on the system.

The POSIX real-time extensions (specially, those included in the Minimal Realtime System
Profile) actually provide a good environment for developing simple and predictable real-time
applications: the support for threads, priority-based scheduling, mutexes, timers, etc. are
commonly required by almost any real-time application. For applications demanding a more
sophisticated support, POSIX proposes the other three profiles which progressively establish a
larger set of features available to the application. In this sense, it must be noted that these fea-
tures are related to more complex system services (such as different synchronization facilities,
memory-mapped files, asynchronous input/output, network accessibility, etc.), but they do not
directly support a richer task model nor more sophisticated scheduling policies. On the other
hand, as profiles increment their support, it becomes more difficult for the RTOS to provide
this support in a completely predictable manner.

As a result, the POSIX real-time extensions are not appropriate for building FRTS in our
opinion, since these extensions have not been designed to directly support the features stated at
the end of Chapter 2, which include different task types, combination of different scheduling
paradigms, synchronization of tasks of different criticality, support for timing exceptions, etc.
Although a framework supporting some of these features could probably be implemented by
using POSIX, this would have two serious drawbacks:

e The framework support would have to be provided to the application as a custom kernel,
implemented at the top of the POSIX interface functions. Such a kernel would suffer
from the limitations of having a pre-fixed set of services available for implementing a
complex support. This would probably lead to a very inefficient kernel. Furthermore,
the kernel would suffer from a double overhead: its own overhead plus the overhead of
the POSIX RTOS it is using.

e Currently, not all the POSIX RTOSs provide detailed time measurements of each in-
terface function for each possible target platform. Without these times (or without the
RTOS source code) it is not possible to study the time behaviour of the custom kernel,
and, thus, the system’s feasibility analysis could not be performed. Therefore, the ap-
parent advantage of having a POSIX portable code is limited in this case to having these
measurements available on the system to be ported to.

As a conclusion, the alternative of building a general framework for FRTS by means of the
POSIX real-time extensions may be interesting in systems where 1) these extensions permit
the implementation of all the framework features, 2) the extensions are perfectly measured

24 CHAPTER 3. AN OVERVIEW OF REAL-TIME OPERATING SYSTEMS

and 3) the system overhead is not a major design topic. Until the current POSIX standard
incorporates mechanisms closer to FRTS requirements, it seems more appropriate to support
them natively, either by implementing a new kernel from scratch or by modifying an existing
kernel.

3.3 Real-Time Kernels underneath General-
Purpose Operating Systems

One of the traditional approaches of developing a RTOS, as shown above, is to incorporate
real-time capabilities to a GPOS. This approach is rather problematic, since GPOSs are nor-
mally big operating systems whose design principles are completely opposite to real-time
systems: fair sharing of resources, good average response time, FIFO queueing of requests,
etc. Actually adding real-time features to them is an arduous labor which includes revising
(and often re-implementing) a great part of the system’s source code.

As a completely different approach to achieve the same goal (obtaining a RTOS by means
of modifying a GPOS), a new idea has arisen: instead of changing a great part of the GPOS’
source code, the new approach proposes placing a real-time executive (or kernel) underneath
the GPOS; that is, between the hardware and the GPOS’ kernel. This idea, formerly expressed
in [Lyc78], has three significant advantages. First, it adds a second level of execution, meaning
that the executive can run hard tasks separate from (and with preference to) GPOS’ processes.
Second, predictability is more easily achieved, since the executive isolates the GPOS from the
hardware by intercepting all the hardware interrupts. Then, actions performed by the GPOS,
even by its kernel, cannot cause delays to the executive’s execution. And third, the GPOS
itself is almost unchanged, meaning that it maintains its regular capabilities, which actually
can support the designer in building the real-time application. With this approach the host
system can be the target system as well.

The following three sections revise the most important systems developed by applying

this idea: the Slotted Priorities architecture, Real-Time Linux and a few systems based on
Windows NT.

3.3.1 Slotted Priorities

The Slotted Priorities (SP) architecture [Bol97] is a theoretical model describing how a Real-
Time Kernel (RTK) can be placed below a GPOS in such a way that both systems share the
same hardware. The RTK allows the execution of real-time threads or tasks in such a way that
they always have preference of use (without delays) of all physical resources (this includes
the use of the processor) with respect to the GPOS and its processes. To do this, the RTK
accesses the hardware interrupts directly, but prevents the GPOS from doing so by providing
a mechanism called virtual interrupts. In this mechanism, the GPOS is unable to disable the
timer interrupt, which is programmed by the RTK scheduler to determine when to run the

3.3. REAL-TIME KERNELS UNDERNEATH GPOSS 25

real-time threads and when to run the GPOS. This achieves the necessary predictability for
building hard real-time systems. In [Bol97], it is also shown how this model can be actually
implemented above a real GPOS, the IBM MicroKernel.

Specifically, the SP architecture provides an execution model, a resource taxonomy and a
programming model. The execution model establishes how to share the resource processor be-
tween the GPOS and the RTK. The model uses a kind of cyclic executive technique, by which
the processor time is split into two fixed-duration, alternative intervals: the real-time minor
cycle, on which the RTK schedules ready real-time tasks, and the non-real-time minor cycle,
on which the GPOS schedules and executes its regular processes. The beginning of each cycle
is signaled by a timer interrupt (programmed by the RTK). The resource taxonomy classifies
physical devices in a hierarchy, depending on how they can be shared between the RTK and
the GPOS. For each resource to be shared, the model proposes building an executive, which
is in charge of making sure that the resource is available for the real-time tasks whenever they
request it. The taxonomy also provides some guidelines for designing these executives, which
can be very straightforward or really complex, depending on the device’s characteristics. The
programming model includes a set of interface functions to create real-time tasks, which can
only be purely periodic, independent tasks. Each time a new real-time task is created, the RTK
recomputes the duration of the real-time and non-real-time minor cycles, in order to be able to
meet the deadlines of all tasks, including the new one. Inside the real-time minor cycles, the
RTK uses a scheduling policy based on the Earliest Deadline First (EDF) policy.

The SP architecture is an interesting theoretical approach which describes how to have a
hard RTOS and a GPOS sharing the same hardware. The work includes a special feasibility
test for the system, by which the schedulability of applications using the architecture can be
proved. However, the actual sharing between the RTK and the GPOS is rather inflexible, in the
sense that the execution of real-time and non-real time tasks are confined inside fixed-duration
intervals. This approach is valid for an EDF scheduling policy inside the real-time minor
cycles, but it would be difficult to implement other real-time policies, like the fixed-priority
preemptive policy.

3.3.2 Real-Time Linux

Real-time Linux (RT-Linux) [Yod99] is another example of a system with a real-time kernel
underneath a GPOS, which is Linux in this case. Both Linux and RT-Linux have been released
under the terms of the GNU’s General Public License [GNU91], which means that they can be
freely distributed and modified (while still preserving the original authors’ copyright). In RT-
Linux, the real-time executive provides support for running hard real-time tasks (rt-tasks) and
turns the entire Linux into the lowest-priority task. All rt-tasks execute in the Linux kernel’s
address space and with kernel privileges.

Given that the theoretical foundations are the same in RT-Linux and the SP architecture,
the former has some significant advantages over the latter:

e The design of the executive is simpler in RT-Linux: the Linux kernel is completely

26 CHAPTER 3. AN OVERVIEW OF REAL-TIME OPERATING SYSTEMS

unaware of the existence of the executive, and it just becomes the lowest-priority task
for the RT-Linux scheduler.

e Scheduling in RT-Linux is more flexible, since the intervals of execution of the real-time
and non-real-time sides are not fixed: Linux executes whenever no rt-task is ready, and
an rt-task can be immediately ready to run at any moment, as a response to a hardware
interrupt (normally, the timer interrupt). In addition, changing the scheduling policy of
the RT-Linux kernel is straightforward.

e Although the theoretical foundation is the same in both cases, the RT-Linux’s soft inter-
rupts mechanism is more sophisticated and ambitious than the SP’s virtual interrupts
mechanism. The SP’s mechanism simply prevents the IBM MicroKernel from disabling
a particular interrupt which it does not use. On the contrary, the mechanism in RT-Linux
permits the real-time kernel (and the rt-tasks) to catch any interrupt (whether or not in
use by Linux), and the rest are still available for Linux.

e At apractical level, the most obvious advantage is that the GPOS is a free, full-featured,
Unix-like operating system. A system like this has a full set of tools which makes it
easier to develop the real-time application.

e In RT-Linux, the set of permanent modifications on the Linux kernel are very few. Most
of the real-time support, including the real-time scheduler itself, is compiled as kernel
modules that can be loaded and unloaded dynamically, just by typing the appropriate
commands in a Linux shell. This mechanism is also used to run the real-time applica-
tion.

The original support provided in RT-Linux v1 (version 1) includes a fixed priority pre-
emptive scheduler, periodic and non-periodic (single execution) rt-tasks and a communication
mechanism called RT-FIFO. RT-FIFOs are actually buffers (allocated in kernel address space)
which allow bidirectional communication between Linux processes and rt-tasks. From the rt-
tasks’ point of view, RT-FIFOs are accessed by calling special reading and writing functions,
which are atomic and non blocking. From the Linux processes’ point of view, RT-FIFOs are
accessed like traditional UNIX character devices. Communication between rt-tasks and Linux
processes permits designing a real-time application by separating the activities that must be
done in real-time (which are executed by rt-tasks) from the activities which do not have hard
timing requirements (which can be implemented as Linux processes). This allows keeping the
real-time system as simple (and fast) as possible, which is one of the major goals of RT-Linux.

Currently, the development of RT-Linux is going towards two main topics: the Simultane-
ous Multi-Processor (SMP) support and a POSIX interface according to the Minimal Realtime
System Profile described in Section 3.2. On the other hand, probably the main deficiency in
RT-Linux is not having a detailed feasibility test available with the costs of the services pro-
vided by the real-time scheduler. In this sense, the only way of knowing if an application will
meet its timing constraints is to execute it, as was experienced in [Hum99].

3.4. SUMMARY AND DISCUSSION 27

3.3.3 Systems based on Windows NT

Some real-time extensions to the Windows NT® operating system?, which are based on sim-
ilar ideas present in SP and RT-Linux, have appeared over the last years. Besides being ap-
propriate for adding real-time capabilities to a GPOS, in the case of NT it is the only possible
approach, since the NT kernel’s source code is not available. For this reason, the extensions
can only be placed at the lowest level of the NT’s architecture, that is, inside or at the same
level as the NT’s Hardware Abstraction Layer (HAL). This layer is in fact available in order
to implement device drivers.

VentureCom’s RTX [Car97], Radysis’ INtime [Fis98] and Imagination’s Hyperkernel [Hyp]
are three existing commercial, NT-based, real-time kernels. These extensions provide both a
real-time scheduler (normally implemented upon modifications on the HAL) in order to run
real-time threads, and an extension of the Win32 system library in order to provide some real-
time capabilities to regular NT threads, plus some means of communication between real-
time and NT threads. On the other hand some specific support, different for each solution,
is provided as well. Currently, the most sophisticated support is probably offered by the IN-
time system, which provides memory protection for real-time threads (running in user-mode),
mailboxes, semaphores, shared memory between real-time and NT processes, access from the
real-time threads to the NT’s file system and to the network, etc.

The solutions presented in this section are all commercial products and hence their source
codes are not available for further independent development. Nevertheless, their existence
demonstrates the growing interest within the industry of having a widely-used, full-featured
GPOS enhanced with hard real-time capabilities.

3.4 Summary and Discussion

This chapter has presented a review of real-time operating systems and has discussed their
applicability for developing FRTS. In particular, systems offering the real-time extensions of
the POSIX standard are appropriate for building traditional real-time systems, but they clearly
lack the facilities for directly providing a sophisticated task model or for integrating more
than one scheduling paradigm. Thus, implementing these features in POSIX would imply to
build a custom kernel at the top of the POSIX facilities. This kernel would suffer from two
drawbacks. First, it would be implemented by means of a pre-fixed set of facilities, which
would probably lead to a inefficient implementation of some features and to a high overhead
(produced by both the kernel and the POSIX facilities which are supporting it). Second, the a
complete feasibility analysis would only be possible if accurate measurements of the costs of
the POSIX facilities were available, which only a few POSIX RTOSs actually provide. As a
result, FRTS built on top of POSIX can easily suffer from a great deal of overhead, which, in
addition, may be very difficult to determine.

3Windows NT is a registered trademark of Microsoft Corporation. All other product names in this section are
trademarks of their respective companies.

28 CHAPTER 3. AN OVERVIEW OF REAL-TIME OPERATING SYSTEMS

The second part of this chapter has reviewed some systems corresponding to a new trend in
developing RTOSs. This new trend proposes incorporating a small, fully predictable real-time
kernel underneath a GPOS, making both systems share the hardware. This preserves both
the hard real-time capabilities of the kernel and the original capabilities of the GPOS. This
philosophy is very close to the framework for FRTS proposed in this thesis, which is based
on a two-level architecture that separates the application into two cooperative disjoint sides:
a real-time side containing the part of the application with hard real-time constraints, and a
non-real-time side containing all the optional activities. As a result, this framework has been
implemented by enhancing the capabilities of one of these RTOSs, called Real-Time Linux.

A New Framework for Flexible
Hard Real-Time Systems

This chapter introduces a new theoretical framework for FRTS supporting the requirements ex-
pressed at the end of Chapter 2. The framework is based on the original ARTIS architecture,
to which new features have been added and some limitations have been relaxed or removed.
In fact, the framework can be seen as an extended version (or an evolution) of ARTIS. In par-
ticular, the framework consists of three parts: a task model, a software architecture and a set
of services available to the application tasks. The first two parts are described in this chapter,
whereas the services currently developed are introduced in the two following chapters. In this
chapter, the framework’s task model proposes to design each application task as a sequence of
components, which may be either mandatory or optional. The software architecture proposes
to organize the system in two computational or scheduling levels, one for running the manda-
tory components and another for running the optional components, and to utilize a different
scheduling paradigm for each level. Besides providing a high-level definition of the frame-
work, this chapter also describes how this framework can be designed and implemented in a
real run-time support system. This system is called Flexible Real-Time Linux (FRTL). A gen-
eral description of FRTL is presented in this chapter, emphasizing the aspects directly related
to the task model. A complete description of this RTOS may be found later in Chapter 7.

29

30 CHAPTER 4. A NEW FRAMEWORK FOR FRTS

4.1 Introduction

In real-time systems, the fask model (also called the computational model) is the framework
specifying the type of tasks the application may define along with their characteristics and
constraints. This model has to be consistent with the feasibility test, in order to be able to
study the application timing constraints. According to the requirements for FRTS stated in
Chapter 2, a task model for FRTS is normally more sophisticated than a model for a traditional
hard real-time system. The reason for this is that a model for FRTS typically defines several
types of tasks, with each type having a different criticality level.

A task model for FRTS must not only define the characteristics and constraints of tasks
belonging to each type but also their possible interactions, providing an overall environment
where all tasks can usefully cooperate and where timing constraints are never jeopardized.
In particular, as soft tasks are normally used to enhance the results computed by hard tasks,
the task model must at least address synchronization and precedence relationships among
tasks. These relationships permit tasks to communicate their results (synchronization) and
allow some tasks to be defined to execute after some other task(s) (precedence). It is also
important for the task model itself to be as flexible as possible, in the sense that it allows for
the definition (even inside the same application) of tasks belonging to several different types.
These types should range from the most basic (periodic, independent) hard or soft task to a
highly sophisticated task which can be defined in terms of cooperating hard and soft tasks
forced to execute in a certain given order.

It is also common for a framework for FRTS to mix several cooperating scheduling poli-
cies. In such frameworks, the potential interactions among these policies have to be fully
described. The problem of mixing or combining different policies is that the resulting policy
should preserve the abilities of each one. At least, the scheduling policy for hard tasks must
maintain its compatibility with the feasibility test, because, otherwise, the schedulability of the
system could not be tested. An interesting feature in this context is the possibility of defining
custom scheduling policies depending on the characteristics of each particular application. If
the framework allows this, it should clearly establish how to incorporate these new policies to
the system.

This chapter presents a new framework for FRTS, which takes into account both the gen-
eral FRTS requirements specified in Chapter 2 and the issues discussed above. The organi-
zation of the chapter is as follows: Section 4.2 presents the framework’s task model, which
is based on the concept of component. Then, Section 4.3 formalizes the presented model.
Section 4.4 introduces the framework’s software architecture, which proposes organizing the
application in two scheduling levels. This section describes each level in detail and specifies
their possible interactions. Section 4.5 introduces the FRTL run-time system, emphasizing
the implementation of the framework’s scheduling levels. Then, Section 4.6 specifies the set
of task-related interface functions available within this run-time system. Finally, Section 4.7
summarizes the chapter and discusses its contributions.

4.2. THE TASK MODEL 31

4.2 The Task Model

4.2.1 Tasks

The task model now presented proposes a real-time application as a fixed set of real-time tasks.
The term fixed means that the full set must be determined before the application is executed,
because it is intended to be verified by an off-line feasibility test. Therefore, the set of tasks is
supposed to be verified at design time and no more tasks can be added at run time.

In this model, each task is characterized by the following basic timing attributes: a period,
a deadline, an initial offset, a worst-case execution time or wcet, and a worst-case blocking
time (derived from the use of a special synchronization protocol, introduced in Chapter 5).
Each task is also assigned a fixed priority, which is called its base priority. All these attributes
are static, in the sense that they are specified at design time and do not change at run time. A
task can also be attached to a timing exception handler, which is a special function to be called
if the task produces a timing exception. This possibility is further discussed in Chapter 6.

4.2.2 Components

This task model proposes each task to be composed of a sequence of components. A com-
ponent can be described as a subpart of a task implementing a concrete set of actions and
having a particular criticality. According to this criticality, components are classified in two
categories:

a) Mandatory components. These components are required to execute under any cir-
cumstances, and for this reason they must have bounded and known computation times
in order to be considered by the feasibility test. Thus, each mandatory component is
characterized by its wcet, which has to be provided by the designer.

b) Optional components. These components are not strictly required to execute and,
rather than being considered by the feasibility test, they are executed in the proces-
sor spare capacity. Each optional component is thus characterized by the portion of this
capacity that the system should spend in executing the component, as discussed below.

The task model proposes determining the intervals of processor spare capacity by using
a slack stealing algorithm (see Section 2.4), because algorithms of this sort naturally fit the
scheduling requirements of optional components in two main aspects. First, slack algorithms
permit exploiting the spare capacity in a flexible manner; that is, no bandwidth reservation
is made off line; instead, the available spare capacity is dynamically obtained at run time
when required (i.e., when optional components are ready to be executed). Second, the internal
behaviour of slack time algorithms naturally maintains the precedence relationship among the
components inside a task. Slack algorithms typically delay runnable hard tasks during the
intervals where there is slack available, in order to run soft tasks. In this task model, each
time a task wants to schedule an optional component, the slack algorithm is used for delaying

32 CHAPTER 4. A NEW FRAMEWORK FOR FRTS

the task’s following mandatory components (as well as all the mandatory components of all
other ready tasks). In the context of slack stealing algorithms, the available slack time is
normally computed at each priority level which, in practical terms, means for each task. For
this reason, the run-time system also needs to know how to distribute this slack among the
optional components belonging to each particular task. The task model thus characterizes
each optional component by its slack fraction, which is a real number between zero and one
expressing the component’s portion of the total slack time available for the task it belongs to.

Figure 4.1 illustrates the task model concept of an application task. The task has a dead-
line of 29 time units, with all other timing attributes being irrelevant for the purposes of the
example. The figure includes first the task structure, consisting of five components, and then
depicts a chronogram showing a possible execution of the task. The task execution assumes
that each mandatory component exactly consumes its wcet and that the task does not suffer
any interference from other tasks. As a result, the slack time available for the task is 24 time
units (calculated as its deadline (30) minus the sum of mandatory component wcets (5)). Then,
these 25 units of slack time are distributed between the task’s two optional components ac-
cording to their respective slack fractions: component 2 gets 20% of this slack (5 units) and
component 4 gets the other 80% (20 units).

Due to this method of scheduling optional components, the amount of slack time sched-
uled for a particular component inside a task actually establishes the component’s validity
interval. Beyond this interval, the component cannot be allowed to continue execution be-
cause it would either jeopardize mandatory components or steal the slack time corresponding
to other optional components. Therefore, if the slack time scheduled for an optional compo-
nent expires before the component is able to completely finish, then this component has to be
killed. In the example depicted in Figure 4.1, optional components 2 and 4 have a maximum
of 5 and 20 time units, respectively'. If either of them is not able to finish within its respective
interval, then it is killed. However, killing an optional component does not necessarily prevent
it from producing valid results, as explained below.

According to a more detailed classification, optional components can be further divided
into the three following types:

a) Unique Version (UV). This is the simplest type of optional component in the model,
consisting of a single computational unit or version. UV components may be used to
implement any algorithm (bounded or unbounded). In particular, monotone algorithms,
also called Anytime Algorithms [Dea88], are specially suited because they produce valid
results even if the component is killed before being allowed to finish.

b) Successive Versions (SV). A component of this type internally consists of a sequence
of versions, which must be executed in the strict order specified in the sequence. SV
components are appropriate for implementing a set of refinement algorithms, each one
enhancing the solution computed by the previous one, like the Progressive Deepening

At run time, the actual amount of slack time available for each optional component is dynamically calculated,
depending on aspects such as mandatory components consuming their wcet or not, interference of other tasks, etc.

4.2. THE TASK MODEL

33

Component Type Weet Slack Fraction
1 mandatory 2 -
2 optional - 20%
3 mandatory 2 -
4 optional - 80%
5 mandatory 1 -
(a) Internal structure of the task.
—
Task) ® o e
[[[[[[T 11 T 11
0 5 10 15 20 25 30

. Task release i Deadline l Optional |:| Mandatory

(b) Execution of the task.

Figure 4.1: Example of a task structure.

algorithms [Win92]. If a SV component is killed, the result computed by its last finished

version is used as the component’s result.

¢) Alternative Versions (AV). This type of component is made up of a set of versions,
without any order. Each time the component is run, only one of them can actually
be selected for execution. Thus, these components are provided in order to implement
different approaches solving the same problem, normally with different degrees of accu-
racy and different (estimated) computation times, like in the Multiple Methods discussed

in [Les88].

Thus, the task model allows the application developer to think of a task in terms of reusable
smaller pieces or components, knowing that the run-time system always executes the manda-
tory components and offers the maximum possible amount of execution time (slack time) to
the optional components. For this reason, mandatory components are intended to implement

34 CHAPTER 4. A NEW FRAMEWORK FOR FRTS

predictable and simple algorithms with hard constraints and to access physical devices, while
optional components are intended to implement complex, unbounded algorithms enhancing
the outcomes computed by mandatory components. Table 4.1 summarizes the types of com-
ponents along with their characteristics.

Name Type Guaranteed Feature Versions
Mandatory mandatory yes wcet 1
Unique Version optional no slack fraction 1
Successive Versions optional no slack fraction 1 or more
Alternative Versions optional no slack fraction 1 or more

Table 4.1: Types of components in the task model.

From the viewpoint of designing each application task, it is important to note that the
task model does not constrain the amount of components forming a task nor the particular
arrangement of these components inside the task. A task may be designed to consist simply
of one component, either mandatory or optional, or to be formed by several components, with
each one being of any of the defined types. Thus, the application developer is entirely in
charge of deciding the structure of each task, depending on the activity to be performed by
that task.

This model, based on the concept of component, offers the following advantages. First, the
model guarantees that a minimum-quality solution will always be produced in a predictable
time, by means of executing the application mandatory components. The model also helps
in achieving the best quality enhancement at run time, by means of providing as much slack
time as possible to the application optional components. Second, this model subsumes the
four models for Imprecise Computations presented in Section 2.3 (the Milestone Method,
Sieve Functions, Multiple Versions and the Prologue-Optional-Epilogue Model). As a result,
each application task may be designed by following any of them. Third, the model favors
code reusability, in the sense that a common part of several tasks may be coded as a separate
component, and then inserted in whichever task needs it. Furthermore, the same component
may be considered mandatory in one task and optional in another. And fourth, it allows a
more complex task structure than any other previous model for FRTS. For example, a task can
allocate one or more optional components after any mandatory component, in order to enhance
the mandatory component solution; a task can also allocate a mandatory component after an
optional component in the middle of the task structure, in order to immediately communicate
the result computed by the task up to that moment.

4.2. THE TASK MODEL 35

4.2.3 Synchronization

The ability of sharing resources among tasks is a common requirement in real-time systems.
In particular, memory sharing is often needed as a communication mechanism for tasks. For
this reason, many real-time task models allow tasks to safely share memory by providing a
special, real-time synchronization protocol which maintains both data consistency and task
timing constraints. However, architectures mixing hard and soft tasks normally only permit
synchronization among hard tasks. This model allows mandatory and optional components to
directly (and homogeneously) share memory, by using special synchronization mechanisms.
These mechanisms are introduced and evaluated in Chapter 5.

4.2.4 Dynamic Components

When real-time applications have to deal with changing environments, it may be necessary for
the application to be able to execute algorithms that solve special and rare situations. In this
case, since these algorithms are seldom (or maybe never) needed, it is not reasonable for the
system to a priori reserve a bandwidth for their execution by including them in the feasibility
test?.

As a more reasonable approach for coping with this requirement, the task model permits
the definition of special components. These components do not belong to any task nor are
considered in the test, and they are not released until the application decides to do so, after
detecting a special run-time situation. These components are called dynamic components, and
can be defined as either optional or mandatory:

a) Optional dynamic components do not have any timing constraints and. because of this,
they do not need any special scheduling mechanism to be defined in the task model. In
particular, when one of these components is released, it simply becomes another ready
optional component to be scheduled in slack time. Optional dynamic components can be
defined as Unique Version, Successive Versions or Alternative Versions, just as regular

optional components.

b) Mandatory dynamic components are characterized by a timing constraint, expressed
by a wcet and a deadline, that the system must #ry to meet. When a component of this
type is released, the system applies an acceptance test to it, in order to determine if it can
be executed by its deadline while maintaining the deadlines of the application tasks. If
the test is satisfactory, the component is accepted and the system is committed to execute
it before its deadline. On the contrary, if the test fails then the component is rejected.
These components are normally referred to as firm tasks in the literature [Dav95].

Overall, the concept of dynamic component completes the task model features by adding
the ability of dynamically releasing execution units not included in the initial, fixed set of
guaranteed application tasks.

2Obviously, unless they have to be 100% guaranteed. If so, these algorithms must be implemented as task manda-
tory components

36 CHAPTER 4. A NEW FRAMEWORK FOR FRTS

4.2.5 Set of Constraints Imposed over the Model

Finally, the constraints enforced to the task model are now presented. These constraints are
necessary in order to make the task model consistent with both the feasibility test and the soft-
ware architecture introduced later in this chapter. In particular, there are three main constraints
in the model:

e Mandatory components cannot suspend themselves. This is a common requirement in
hard real-time systems, and it is derived from the inability of feasibility tests to verify
tasks which exhibit this behaviour.

e The deadline of each task is assumed to be be less than or equal to the task’s period, since
the actual slack stealing algorithm used for scheduling optional components has been
designed by assuming this constraint. Having arbitrary deadlines makes this algorithm

more complex and inefficient.

e Sporadic tasks are not supported by the task model. The use of sporadic tasks wors-
ens the behaviour of the slack stealing algorithm, as shown in [Dav93a]. Furthermore,
sporadic arrivals of hard tasks make it impossible to exactly know the length of slack
intervals, which is a key concept in the software architecture introduced in Section 4.4.
Nevertheless, applications requiring sporadic tasks can implement them by means of
periodic tasks, as explained in [K1e93].

4.3 Formalizing the Task Model

One of the main goals of this framework is to provide a feasibility test considering the par-
ticular features of the task model. In order to be able to study the feasibility of tasks, their
characteristics must first be formally expressed. This section formalizes the model descrip-
tively introduced in the previous section.

A real-time application A following this model is defined by a finite sequence of fasks
{1,72,...,Ti,-.., 7} plus a set of dynamic components {y{,~4,...,v¢,...,v4}. The
following three subsections formalize the set of tasks, the set of dynamic components and the
model constraints and properties respectively.

4.3.1 Tasks and Components

The application sequence of tasks {71, 72, .. ., Tz } is strictly ordered by following any criteria,
which are not constrained by the model, with the priority of each task 7; being the position ¢
that it occupies in the sequence. In this sequence, a lower number expresses a higher priority.
Hereafter, each task will be referred to as either task 7; or simply task i.

Each task 7; is defined by a tuple:

7; = (T3, Di, Oy, Cy, By, Hy, M;, T'y)

4.3. FORMALIZING THE TASK MODEL 37

where:

e T; is task ¢’s period.

e D; is task ¢’s deadline, expressed as an interval of time relative to the moments at which
the task is periodically released.

e (; is task ¢’s initial offset, that is, the interval of time from the moment the application
starts running until the moment task ¢ is released for the first time.

e (; is the worst-case execution time for task 4. The formula by which it is automatically
calculated is shown at the end of the section.

e B, represents task i’s worst-case blocking time. This is the cost of the most time-
consuming section of code belonging to lower priority tasks that can interfere (or block)
task 4. Its calculation is derived from the particular synchronization mechanism used
by the system. The actual computation method is introduced in Chapter 5, when the

framework synchronization mechanism is explained.

e H; represents the exception handler that the application designer may attach to task <.
Handlers are explained (and formalized) in Chapter 6.

e M; is a finite positive integer number expressing the amount of components forming
task 4.

e T'; represents the sequence of task i’s components. This is further examined below.

As is usual in real-time systems, all the timing attributes of tasks (in this case, T;, D;, O;,
C; and B;), are defined as non-infinite positive integer numbers.

In this model, each application task ¢ can be broken down into a finite sequence of compo-
nents or scheduling units. This sequence, denoted by I';, is defined in the following terms:

Ui = {vit, vz -5 Yigo - - - Vit }
Each component y;; (or simply component 43) belonging to task ¢ is a tuple of the follow-
ing form:
Yig = (Yijs Sijy Mij, @45)
where:

e Y;; is the component’s type, which can be mandatory, unique version, successive ver-
sions or alternative versions. Please recall that the latter three types correspond to the
types of optional components. Formally:

Yy € {M, UV, SV, AV}

38 CHAPTER 4. A NEW FRAMEWORK FOR FRTS

e M;; is the amount of versions belonging to the component. Versions are computation
individuals that can be executed separately.

o ®;; is the finite set of versions belonging to the component. It can be expressed as:

®i; = {cij1,Cij2s - Cijh>---»CijM;; }

Where c;;, denotes the worst-case execution time of the kth version of the jth com-
ponent of task 7. The model enforces this value to be specified for each mandatory
component. This value is not required for optional components but, if provided, it is
considered as an estimate of the version’s execution time, which may be useful to know

at run time.

e S;; is a real number between zero and one, representing the component i5’s slack frac-
tion, that is, the portion of task ¢’s total slack that has to be used for scheduling this
component. S;; is zero for mandatory components, since they are not scheduled in
slack time:

SZZO }/;je{M}a

ViE.A,Vi'EFi,
" T {Si-e[o,l] Yij € (UV, SV, AV}

4.3.2 Dynamic Components

The application set of dynamic components {v{,...,v%,} is defined as a group of compo-
nents, on which each component 7]‘.1 is defined as follows:

v = (Y], Df, M}, &)
where:

. de is the dynamic component’s type which, as for the regular components, can be

mandatory, unique version, successive versions or alternative versions:

Yiie {M, Uy, Sy, AV}

. D;-i is the dynamic component’s deadline. Its value is only required if the dynamic

component is mandatory. Otherwise, this value is not relevant.

o M J‘-’l is the number of versions belonging to the dynamic component. Dynamic manda-
tory components consists of one version, as it occurs for dynamic optional components
of type Unique Version.

4.3. FORMALIZING THE TASK MODEL 39

. <I>§l is the finite set of versions belonging to the dynamic component. It can be expressed
as:

d_¢.d .d d d
= {cjl,ch,...,cjk,...,chf}

Where c;’-lk denotes the worst-case execution time of the kth version of the dynamic
component 714. Its value is only required for mandatory dynamic components.

4.3.3 Model Constraints and Properties

All applications A following the presented formal model have to meet the following con-
straints:

1) All task deadlines are less than or equal to their periods.
Ve A, Dy <=T;

2) The amount of tasks per application (/V), the amount of components per task (M;) and
the amount of versions per component (M;;) are positive, implementation-dependent,
bounded integer constants.

3) Components of type mandatory and unique version consist of exactly one version:
V1; € .A, \Vl’}’z’j c Fi/Yi]‘ S {M,UV}, Mz'j =1
Ve A Y] e MUV}, Mi =1

4) The sum of the slack fraction of all optional components in each task cannot be greater
than one:

M;
VT,’ S .A, ZS” <=1
=1
5) Mandatory components of tasks, as well as mandatory dynamic components, must have
bounded worst-case computation time:

Vri € A, Vi €13/ Yy € {M}, 3C € N—{oo} | cijs < C
Vif € A, /Y € {M}, 3C eN—{oo} | ¢fy < C

Considering all the above, in this task model, the theoretical worst-case execution time?
of each task ¢ can be computed by applying the following formula:

Ve A, C;= Z Cij1 4.1)
Vi €T / Yije{ M}
In Equation 4.1, the wcet of a task ¢ is computed as the sum of the wcets corresponding to
the first (and only) version of all ¢’s mandatory components.

3The term theoretical here means “without considering any overhead produced by the run-time system”.

40 CHAPTER 4. A NEW FRAMEWORK FOR FRTS
4.4 The Software Architecture

This section completes the general framework for building FRTS proposed in this thesis by
adding a software organization (or software architecture) to the task model defined above. In
the next two chapters, this basic framework is enhanced with two specific services related to
synchronization and exception handling, respectively.

The software organization introduced here, inherited from the ARTIS architecture and then
adapted to the new task model, proposes dividing the system in two different, hierarchically
related scheduling levels. Each level schedules and executes a subset of the application com-
ponents by utilizing a different scheduling paradigm. This organization is shown in Figure 4.2.
In the real-time level, depicted in the lower part of the figure, scheduling entities are tasks and
running entities are their mandatory components. In the non-real-time level, depicted in the
upper part, scheduling entities are tasks’ optional components, and running entities are their
versions.

The real-time level applies a fixed-priority preemptive scheduling policy to tasks. By ap-
plying this policy, this level directly runs the mandatory components and releases the optional
components, for them to be executed inside the non-real-time level. This policy, which is
compatible with the feasibility test, permits guaranteeing the application timing constraints.
Also, at the real-time level, the processor spare capacity is reclaimed (by using a sort of slack-
stealing algorithm) in order to detect the intervals where the non-real-time level can be safely
executed. In such intervals, the non-real-time level applies a utility-based policy to the ready
optional components and executes the components’ selected versions. This type of policy can
take into account aspects such as quality characteristics of tasks, the dynamic situation of the
environment and the amount of slack time available at each moment, effectively adapting the
application behaviour at run time. The specific policy to be used by the non-real-time level is
not imposed by the framework, allowing the designer to choose the best suited policy for each
application.

The overall effect of this organization presents a twofold advantage: first, having a dif-
ferent scheduling approach at each level offers a high degree of flexibility at run time while
preserving the required guarantee on tasks’ timing constraints; and second, the master/slave
relation between both levels ensures the correct execution of mandatory components inde-
pendently from the scheduling policy utilized at the non-real-time level. The two scheduling
levels are now presented in detail.

4.4.1 The Real-Time Level

In the software architecture, the real-time level contains the hard real-time part of the applica-
tion. In particular, this is the level where application tasks are created and scheduled, and also
where the tasks’ mandatory components are executed. These actions are actually performed by
the real-time level first-level scheduler, which is analogous to the regular run-time scheduler
in traditional real-time systems. This section describes the main activities to be carried out by

4.4. THE SOFTWARE ARCHITECTURE

A

Shared Memory Space

Real-Time
Level

Mandatory 1
Mandatory 2

Mandatory M1

A

Version 2 ’
Version MN

Non-Real-Time

=D))i§

Level

Schedule

Read/Write

Figure 4.2: The software architecture.

41

42 CHAPTER 4. A NEW FRAMEWORK FOR FRTS

the scheduler, emphasizing its particular version of the fixed priority preemptive scheduling
policy.

Inside the real-time level, the first-level scheduler is in charge of four general activities:

a) Task handling. The first-level scheduler automatically releases each application task
according to its period and its initial offset. Several real-time systems present a contrary
approach, in which the application developer is in charge of explicitly releasing periodic
tasks.

b) Slack computation. The scheduler dynamically keeps track of the slack time available
at each priority level. This allows the system to calculate, whenever necessary, the slack
available, which is used for executing the non-real-time level. In this abstract activity,
the actual slack time algorithm to be used is not relevant, as long as it permits computing
the available slack at any moment.

¢) Acceptance of dynamic mandatory components. Each time a dynamic mandatory
component is released, the scheduler computes an acceptance test, in order to determine
if it can be safely accepted. Accepted components are executed in the real-time level,
since they are mandatory.

d) Fixed priority preemptive scheduling. The scheduler applies this policy in order to
determine which task and component to execute next. This policy is detailed in the next

section.

The Scheduling Policy of the Real-Time Level

This section describes how the fixed priority preemptive scheduling policy can be effectively
adapted to the proposed task model and software organization. As it is usual in many sched-
ulers, and for the sake of clarity, the policy is described here in terms of a unique function,
the schedule function, which is assumed to be invoked at each scheduling point*. Figure 4.3
presents a C-like pseudo-code of this schedule function. The current section utilizes the sched-
ule function for illustrating the first-level scheduler policy, but it does not discuss the calcula-
tions related to the slack stealing algorithm. These calculations are detailed in the following
section.

The key aspect considered by the real-time level scheduling policy is that, according to the
task model, each application task is actually a strict sequence of components. In this sequence,
each component can only be scheduled after having scheduled the previous one. As a result,
only one component inside each ready task is actually runnable. This component is called
the task’s running component. Therefore, the first-level scheduler applies the following basic
policy:

4A scheduling point is a time point at which the scheduler is called in order to handle an event that may make the
running task change. The schedule function is supposed to be called at the end of the handling process, in order to
determine the next task to be run.

4.4. THE SOFTWARE ARCHITECTURE 43

void schedule (void) {
/* Find the new running task and its running component */

next_task = highest_priority_ready_task(list_of_tasks);
running_component = next_task->running_component;
if (running_component->type == OPTIONAL) {

/* Build the list of contiguous optional components */

optional_list = VOID;

slack_fraction = 0.0;

for (comp = running_component;

comp != NULL && comp->type == OPTIONAL;

comp = comp—->next_component) {
list_add(&optional_list, comp);
slack_fraction += comp->slack_fraction;
}
/* Calculate the available slack */
if (first_time_scheduled (running_component)) {
running_component->available_slack =
calculate_slack (next_task, slack_fraction);
} /* ...else, this value is assumed to be updated */

if (running_component->available_slack > 0) {
/* Calculate the interval of time up to the earliest
release of a _higher priority_ task */
time_to_release = next_release(list_of_tasks, next_task)
- get_time();

/* Calculate the interference and the slack interval */
interference = calculate_interference (next_task, get_time());
slack_interval = MIN(time_to_release, available_slack);

/* Send the message and run the non-real-time level */

message—>optional_list = optional_list;

message->deadline running_component->available_slack
+ interference;

message—->slack_interval = slack_interval;

send_message (NON_REAL_TIME_LEVEL, message);
execute (NON_REAL_TIME_LEVEL) ;
return;
} else {
/* No slack => Advance to the next mandatory */
next_task->running_component = next_mandatory (next_task);

}
/* Directly execute the mandatory component */
execute (next_task->running_component) ;

Figure 4.3: Schedule function of the first-level scheduler.

44 CHAPTER 4. A NEW FRAMEWORK FOR FRTS

At each scheduling point, the running component of the highest priority runnable

task is always selected for execution.

After selecting the next running task and its particular running component (see the first few
lines of Figure 4.3), the first-level scheduler distinguishes between two main cases, depending
on the type of the running component:

a) If the running component is mandatory, then the big i f sentence in the schedule func-
tion is skipped and the component is directly executed.

b) Otherwise, if the component is optional, the scheduler has to check if there is enough
available slack for the component. If so, the scheduler activates the component and runs
the non-real-time level, in order to allow the component to be executed. In particular,
three slack-related values are calculated by the scheduler:

e The slack available for the component. Intuitively, this value is the component’s
portion of the slack available for the task the component belongs to. In other
words, it is the component’s slack fraction calculated over the current slack time
available for the task the component belongs to.

e The slack interval. This is defined as the portion of the previous value from the
current time up to the next possible timer interrupt for the real-time level. This
interrupt can be either the end of the available slack or the next periodic release
of a higher priority task. In the latter case, the slack interval is less than the slack
available, while in the former case both slack values match. The slack interval is
thus the interval of time the non-real-time level will be run without any interrupt
from the real-time level.

e The component deadline. This is the last moment the component can be run in
this activation. Intuitively, it corresponds to the end of the slack time available for
the component, which may be later than the end of the slack interval calculated
above’.

If the first value (the slack available) is greater than zero, then the two other values
are also calculated and the scheduler sends a message to the non-real-time level. This
message includes the optional component to be activated, its deadline and the duration
of the slack interval. After sending the message, the scheduler runs the non-real-time
level for an interval equivalent to the slack interval. While running this interval, the
non-real-time level schedules the optional ready optional components according to its
own scheduling policy. When the slack interval is exhausted, the non-real-time level
is automatically preempted by the first-level scheduler, and the schedule function is
invoked again in order to select the next running component.

5 An optional component may be ready during more than one slack interval, as explained in the next section.

4.4. THE SOFTWARE ARCHITECTURE 45

Otherwise, if the available slack for the optional component is zero, then it cannot be
activated. In this situation, the scheduler selects the next mandatory component of the
same task, if any, for execution.

As explained above, the non-real-time level is executed in the so-called slack intervals,
which can be seen as intervals of time at which the non-real-time level runs without any
interrupt from the real-time level. This interface between both levels allows the non-real-time
level scheduling policy to be as autonomous as possible: the level is activated during well-
defined intervals of time and, in each interval, it is informed of the length of the interval and
which components are ready and when their deadlines expire. This autonomy is a fundamental
issue for the non-real-time level, as explained below in Section 4.4.2.

Slack Scheduling

This section explains in detail the calculations related to the slack stealing algorithm incor-
porated to the first-level scheduler. The particular algorithm has been adapted from one of
the strategies which Garcia-Fornes discussed in [Gar96a], called the strategy 3. This strat-
egy was shown to feature an appropriate performance for scheduling the task optional parts,
providing a reasonable amount of slack time and allowing several optional parts to be ready
simultaneously. This is considered a good feature, since it augments the degree of choice for
the non-real-time level scheduling policy.

As explained above, each time the running component selected in the schedule function is
optional, the component’s slack available is calculated. The following present the list of actual
calculations performed by the first-level scheduler, as shown in Figure 4.3:

1. First, a list of contiguous optional components is built. When several optional com-
ponents are defined contiguously in the task sequence, all of them are activated at the
same time. This is an optimization of the original policy stated above, which enforced
scheduling only one component at a time. The optimization is based on two facts. First,
the actual scheduling of optional components and their versions is carried out inside
the non-real-time level, whose policy is supposed to produce better results when more
components are ready simultaneously. Second, this minimizes the overhead related to
the optional component scheduling at the real-time level, since the scheduler does not
have to be invoked for activating each component in the list.

The list of contiguous optional components headed by component -y;; is here repre-
sented by ;. This list can be formally defined as:

. 0 Yi; € {M}
- . 4.2)
T { it Ui Y € {iM}

On the other hand, since all the optional components in the list are to be activated at
the same time, the slack time to be scheduled for them has to incorporate the sum of

46

CHAPTER 4. A NEW FRAMEWORK FOR FRTS

their respective slack fractions. The combined slack fraction for the list of contiguous
optional components headed by component +y;; can be calculated as follows:

Si= > S (4.3)

Please note that, in this and the following equations, the asterisk means that the formula
is defined for the list of optional components ~;; rather than for component ~y;; alone.

. In this step, the available slack for the list of optional components is calculated. This

actually has two cases, depending on whether or not this is the first time that the list of
optional components is being scheduled in the current release of its task.

(a) For each release of a task ¢, the first time a list of optional components +;;, headed
by component ij, is scheduled, their available slack is calculated. Intuitively, one
may think that this value is calculated by multiplying the available slack for task
i by the combined slack fraction .S ;“] calculated above. However, as the available
slack for ¢ is defined as a function of time and the combined slack fraction is a static
value, another value of the slack fraction has to be calculated. This new value,
called the effective slack fraction, takes into account the slack fraction of optional
components of ¢ already scheduled. The following presents the calculation of the
effective slack fraction:

S
1= > Si

1<k<j

ES}; = (4.4)

It can be easily proved that, if component ¢ is optional, the denominator of this
fraction is never zero. The sum factor adds the slack fractions of optional compo-
nents defined before component ¢j in the task sequence, which is a value bounded
by 1, following property (4) in page 39. Since the sum factor excludes the slack
fraction of component ¢3, this factor never reaches 1.

Once this value is calculated, the available slack for the optional components in
7;; can be calculated as follows:

AS3(t) = (SI%ISIIN s,;m(t)) x ESE; 4.5)

In this equation, term S}***(t) represents the available slack for the priority level

k at time ¢. At this level, the particular slack stealing algorithm to use for cal-
culating this value is not relevant, as long as it may be invoked when required.
Furthermore, the value is here assumed to be exact, meaning that if extra factors
(such as blocking among tasks) affect the slack calculation, then these factors are
assumed to have been taken into account.

4.4. THE SOFTWARE ARCHITECTURE 47

(b) Otherwise, if the list 7;; has already been scheduled in the current release of its
task (that is, the list is now being selected again), then its available slack is not
recomputed here. Such a situation happens when (an)other slack interval(s) have
previously been scheduled for the list of optional components (see below) in their
current activation. If this is the case, AS;‘J- (t) is supposed to have been updated
after the execution of every slack interval, without recomputing Equation 4.5. This
update is done as follows: while the list of optional components ;; remains active,
each time a slack interval is scheduled for any higher priority task, the value of the
interval is subtracted from the components’ available slack AS; (t).

3. If there is some slack available then the current slack interval value is also calculated.
The slack interval is defined as the portion of the available slack value, starting at the
current time, up to the next possible time event to be handled by the real-time level.
This event can be either the end of the available slack or the next periodic release of a
higher priority task &, (t). Formally:

SI%(t) = min (lggi(xh (t) — 1), AS], (t)) (4.6)
As explained above, this value indicates the length of the execution interval of the non-
real-time level.

4. This fourth step calculates the deadline for the list of optional components. This value is
required because the available slack for a list of components (AS}; (t)) may be greater
than the slack interval (ST} (t)) calculated in step 3. In such cases, the list of com-
ponents may be active in several following slack intervals. In this situation, the non-
real-time level must know when the components’ activation has expired. Beyond this
expiration time, the components which have not been executed have to be discarded un-
til a future release of their task. The deadline for a list of optional components headed
by component ij, d7; (t), can be calculated by adding the interference of higher priority
tasks to the slack available for the list. Formally:

di(t) =t+ ASH(t) + > Ie(t,di(t) (4.7)

1<k<i

In this equation, d;(t) stands for the next absolute deadline of task 7. Iy(t1,t2) rep-
resents the exact interference due to task k& between times ¢; and ¢, that is, task k’s
execution time between ¢ and ¢5. The calculation of the interference can be performed
by applying the equations calculating the busy period in the exact (optimal) version of
the dynamic slack stealing algorithm (see [Dav93a] for details).

The method introduced above, based on the concepts of available slack and slack interval,
effectively implements Garcia-Fornes’ strategy 3, with an extra advantage: when the slack
scheduled for an optional component is exhausted, the scheduler does not have to recheck the

48 CHAPTER 4. A NEW FRAMEWORK FOR FRTS

slack available at lower priority levels, since each active optional component (belonging to
different tasks) has its own slack available value (AS;‘J- (t)) updated, as explained above. On
the other hand, the strategy has been extended here to the new task model in which a task may
contain several optional components, with each of which having a slack fraction. In fact, the
actual slack scheduling policy has refined this by considering that a task actually contains lists
of contiguous optional components. By following this philosophy, when the first component
in each list is scheduled, the list’s combined slack time is calculated and scheduled for all
the components in the list, which are then activated together (see Figure 4.3). This scheme
allows more optional components to be simultaneously ready inside the non-real-time level
and produces less overhead to the real-time level, since it does not have to be invoked between
the activation of consecutive optional components belonging to the same task.

An example

An example is now presented in order to illustrate the concepts of available slack, slack interval
and optional component deadline. In the example, a certain execution trace of two tasks 7, and
79 is shown. The tasks’ timing attributes, their internal structure and the run-time situation,
which have been chosen for the sake of clarity, are shown in Figure 4.4. For the purposes of
this example, the actual type of each optional component is not relevant, and hence it is not
specified.

The trace is now discussed by describing what happens at each scheduling point:

e t

0. 719 is released and its first, mandatory component v, is executed.

e t = 2. Component 2 ends and the next running component ys2 is optional. At that
moment, the scheduler builds the list of contiguous optional components (7y22 and *y23)
and makes the following calculations:

Available slack for m» = 24

Combined slack fraction = 055+4+02=0.75
Effective slack fraction = 0.75/1.0=0.75
Available slack for components = 24 *0.75=18
Interference = 4

Deadline of components = 2+18+4=24
Slack interval = min((6-2), 18) =4

By applying the slack time algorithm, the available slack for 5 at time 2 is 24 time
units. Since the combined slack fraction for components 22 and 723 is 0.75, which also
matches the effective slack fraction, then the available slack for these components is 18
time units. At time 2, the interference of higher priority tasks in the current release of 7
only includes one invocation of 77, whose total wcet is 4. The deadline for components
Y22 and 23 is the current time (2), plus their available slack (18), plus the interference
(4). Finally, the slack interval is the minimum between the available slack for these

4.4. THE SOFTWARE ARCHITECTURE

Task Period Offset Deadline
T1 100 6 14
T2 150 0 36

(a) Timing attributes of tasks.

Task Component Type Slack Fraction WCET

1 Y11 M - 3
Y12 O 0.4 —
Y13 O 0.6 -
Y14 M - 1
T2 Y21 M - 2
Ya2 (0] 0.55 -
Y23 O 0.20 -
Yo4 M - 2
Y25 O 0.25 —
Y26 M - 4

(b) Internal structure of tasks.

Level -

(c) Execution trace.

Figure 4.4: Example of slack scheduling

50

CHAPTER 4. A NEW FRAMEWORK FOR FRTS

components (18) and the time up to the next release of 77. This time is 4 time units,
since 71 is released at t=6 and the current time is 2.

Therefore, components 22 and ya3 are activated until t = 24, and the non-real-time level
is executed for 4 time units.

t = 6. Release of 7. Its first component ;7 is mandatory, and hence it is directly
executed.
t = 9. Component y;; ends. As the next component is optional, the scheduler builds

the list of optional components (712 and ;3) and performs the following calculations:

Available slack for = 10

Combined slack fraction = 04+0.6=10
Effective slack fraction = 01/1.0=1.0
Available slack for components = 10* 1.0=10
Interference = 0

Deadline of components = 9+10+0=19
Slack interval = min(oo, 10) =10

The main difference regarding the calculations for 75 above is that 7; is the highest
priority task, and therefore there is no interference from other tasks.

As a result, components 12 and ;3 are activated until t = 19, and the non-real-time
level is executed for 10 time units. This time, the available slack and the slack interval
match, and thus the activated components only have one slack interval in which they
may be executed.

t = 19. The available slack expires. The scheduler still has component y; 5 as the run-
ning component but, as there is no available slack for 71 the list of optional components
is skipped and the following mandatory component (y14) is selected.

t = 20. Component ;4 ends. As it is the last component of 71, this task also ends its
current release. At that moment, the running component is again 2 (heading the list of
components Y5, = {722,723 }). Since it is the second time these components are being
scheduled, their available slack is not calculated again, but it is assumed to have been
updated since it was calculated (in t=2). Therefore, the scheduler just checks if there is
still slack available for them. Specifically, the following calculations are made:

4
0
min(co,4) =4

Available slack for components

Interference

Slack interval

Since this is the second time in the current release of 72 that components 725 and 723
are being selected, the available slack for them is not newly computed, but instead, has

4.4. THE SOFTWARE ARCHITECTURE 51

been updated by the scheduler as the previous slack intervals have been scheduled. The
remaining available slack for the components is now 4 time units, which is therefore the
next slack interval scheduled for them.

t = 24. The available slack expires. Since there is no more slack for components y22
and 23, the scheduler advances until the next mandatory component of 7a, y24, which
is selected and executed.

t = 26. Component 724 ends, and the following component within 72, 725, is op-
tional. The list of optional components built by the scheduler is only formed by this
component. As this is the first time the component is scheduled, the complete set of
calculations is done:

Available slack for 7 = 6

Combined slack fraction = 025

Effective slack fraction = 025/025=1.0
Available slack for components = 6*1.0=6
Interference = 0

Deadline of components = 26+6+0=32
Slack interval = min(oo, 6) =6

As shown in the calculations, the remaining slack available for 72 is scheduled in a
single slack interval for component ya5. This case illustrates the purpose of the effective
slack fraction: the combined slack fraction for 25 is 0.25, but its available slack time
is not 25% of the available slack for 79, since 795 is the last optional component within
the task. Thus, the effective slack fraction converts the off-line slack fraction provided
by the designer into an on-line value, which may be directly multiplied by the slack
available for the task in order to calculate the component’s slack.

t = 32. The available slack expires, and the last mandatory component y,4 belonging

to 75 is executed.

t = 36. Component 4 ends, making 7, end its current release.

The presented example shows how the first-level scheduler applies the fixed priority pre-

emptive scheduling policy in order to select which component of which task to execute next.

The main issue here is how the optional components are scheduled by using a particular ver-

sion of slack algorithm, which permits distributing the available slack among them. It also

shows that a list of optional components belonging to a task may be active during several

slack intervals. The optional components are then able to be executed in any of these in-

tervals, according to the scheduling policy inside the non-real-time level. In the example,

components 7y and 713, and potentially 29 and 23, are ready simultaneously in the slack

interval between times 9 and 19. The word potentially means that, since 722 and 23 were

also ready during a previous slack interval (between times 2 and 6), either of them, or both,

52 CHAPTER 4. A NEW FRAMEWORK FOR FRTS

may have been already executed. Therefore, this method of slack scheduling produces a good
degree of choice of optional components inside the non-real-time level.

4.4.2 The Non-Real-Time Level

In the proposed software architecture, the non-real-time level is where optional components
and their versions are scheduled and where these versions are executed. As explained above,
the non-real-time level is always subordinated to the real-time level in such a way that the first-
level scheduler activates the task optional components according to the fixed priority policy
and decides when to execute and when to preempt the non-real-time level according to its
particular slack scheduling. As a result of this method of slack scheduling, the non-real-time
level executes during the so-called slack intervals. This section describes the non-real-time
level, and specially its scheduler, called second-level scheduler.

The Second-Level Scheduler

The second-level scheduler is the non-real-time level scheduler, which is in charge of schedul-
ing the task optional components. Although the actual non-real-time level scheduling policy
is not enforced by the framework, the general internal structure of the second-level scheduler
has to meet the interface between this scheduler and the first-level scheduler. In particular,
the framework proposes the second-level scheduler to be internally designed as an endless
loop, shown in Figure 4.5, iterating once at each slack interval. The loop is structured in the
following four basic steps:

1. Atthe beginning of each loop, the second-level scheduler retrieves the message from the
first-level scheduler indicating the ready optional components (along with their dead-
lines) and the duration of the slack interval. Only new optional components must be
added to the list, because the message may contain optional components which were
already activated in a previous slack interval.

2. After processing the message, the second-level scheduler looks for expired optional
components. These are components which were activated in a past slack interval but
which have not been executed so far, and whose deadlines have expired. All these
components have to be discarded until a future release of the tasks they belong to.

3. Once the scheduler knows which components are ready in the current slack interval, it
applies its own scheduling policy in order to find out which components and versions
to run in the current interval of slack. This is done inside a loop in which one compo-
nent/version is chosen and executed per iteration. The loop ends when either the slack
interval is about to finish or there is not any other ready component to execute.

4. Just before the slack interval runs out of time, the second-level scheduler voluntarily
suspends itself by waiting again for the next message, in order to be in a known and safe
state at the following interval.

4.4. THE SOFTWARE ARCHITECTURE 53

voild second_level_scheduler (void) {

while (TRUE) {
/* Self-suspension until next message */
wait_for_message (&message) ;

/* Process the message */
now = get_time();
end_of_interval = now + message->slack_interval;
for (comp = list_get_head(message->optional_list);
comp != VOID;

comp = comp—->next_component) {

comp->deadline = message—->deadline;

list_add(&ready_comp_list, comp);

/* Check for expired components */
for (comp = list_get_head(ready_comp_list);
comp != NULL;
comp = comp—>next_component) {
if (comp->deadline <= now) {
list_remove (&ready_comp_list, comp) ;

/* Schedule and execute the ready components */

components_left = 1;
while (components_left && now < end_of_interval) {
/*

The policy must select the component and the
version, and _may_ change ‘until_time’
*/
until_time = end_of_interval;
schedule (ready_comp_list, &comp, &version, &until_time);

if (comp != VOID) {
execute_until (comp, version, until_time);
now = get_time();

} else {
components_left = FALSE;

Figure 4.5: Main loop of the second-level scheduler.

54 CHAPTER 4. A NEW FRAMEWORK FOR FRTS

Both the concept of slack interval and the internal structure of the second-level scheduler
allow the two schedulers to work in a synchronized fashion, dynamically alternating the con-
trol of the processor between them. Thus, although the second-level scheduler is completely
subordinated to the first-level scheduler, the former can actually schedule the optional compo-
nents within the slack intervals just as if the real-time level did not exist, because it knows that
it will not be preempted until the end of each interval. Furthermore, the knowledge about the
slack intervals is a key requirement of the synchronization mechanisms introduced in Chap-
ter 5. This knowledge also allows the second-level scheduler to safely share data structures
with the first-level scheduler, as explained in Section 7.3.

The Non-Real-Time Level’s Scheduling Policy

In general, the scheduling policy for the non-real-time level is intended to be some kind of
utility-based or best-effort policy [Loc86]. However, as expressed above, the framework does
not impose any restriction on the actual policy to be used by the second-level scheduler. This
decision has been made in order to allow for the maximum flexibility in the framework, thus
making the incorporation of several alternative second-level policies in the run-time system
possible, and even allowing designers to incorporate their own policies. This is interesting in
complex applications, in which scheduling decisions must take into account the current state of
the environment and/or some quality aspects of tasks, which may vary from one application to
another. This behaviour can thus compensate for the inability of the real-time level to consider
these dynamic and quality aspects.

However, the framework does establish that each scheduling decision made by the second-
level scheduler (inside the function schedule in Figure 4.5) has to at least include the fol-
lowing three decisions:

e The selection of the next component to be run, among all the ready optional components,
according to the second-level scheduling policy.

e The actual version inside this component that must be executed. For SV components,
this decision refers to how many versions will be executed, while for AV components,
it refers to which version will be executed.

e The time up to which the version will be executed, which is bounded by the amount
of slack time scheduled for the component. By adjusting this value, the second-level
scheduler may decide to give the entire slack interval to the current version, or else to
distribute the interval among the runnable components/versions.

By gathering all three decisions in a single function, the framework facilitates the inclusion
of custom policies into the non-real-time level and minimizes the changes to be made in the
run-time system.

4.5. THE FRTL RUN-TIME SYSTEM 55

4.5 The FRTL Run-Time System

Flexible Real-Time Linux (FRTL) is a run-time support system which has been specially de-
signed and implemented in order to provide the designer with the framework proposed in this
thesis. After having introduced the framework’s task model and software architecture, this
section now briefly describes the FRTL system. This basic description, which is centered on
the functional aspects of this RTOS, is required in order to understand some of the issues dis-
cussed in both the next section (presenting the interface functions related to the task model)
and the two following chapters (introducing specific services which complete the framework).
Nevertheless, an exhaustive description of the FRTL system is presented later in Chapter 7.

FRTL is based on the most basic functionality of the RT-Linux v1 (version 1) system,
presented in Section 3.3.2. In particular, it has made use of the following parts: 1) the concept
of rt-task (or real-time thread running inside the Linux kernel address space) and the related
context switching mechanism, 2) the soft interrupts mechanism, 3) the access to the hardware
timer (in order to consult the current time and to program timer interrupts) and 4) the RT-FIFO
facility.

The FRTL support system is divided into two levels, called the real-time level and the
Linux level. These levels implement, respectively, the real-time and non-real-time levels pro-
posed by the software architecture.

e At the real-time level, the original RT-Linux scheduler has been replaced by the first-
level scheduler, which creates a modified rt-task for executing each application task.
These new rt-tasks are internally designed in order to contain the task’s list of compo-
nents, rather than a single function, and to directly execute the mandatory components
in the list.

e The non-real-time level is implemented inside Linux. In particular this level is imple-
mented as a multi-threaded, user-level Linux process called the optional server process,
running at the Linux highest priority. Within this process, the second-level scheduler
creates one thread to run each optional component (or more precisely, each version)
when necessary and uses the Linux timer and signal mechanisms in order to stop the
thread when the version exhausts its given running time. Both schedulers are connected
via RT-FIFOs, which provide the required message-passing and synchronization fea-
tures described in the previous sections.

Applications to be run by the current version of FRTL have to be implemented in C lan-
guage. Due to the two-level organization, the application code is normally placed in, at least,
two different files: one containing the code of the mandatory components and another con-
taining the code of the optional components’ versions. The former file is compiled as a kernel
module, which is loaded into the kernel address space when the application is started. The
latter file is compiled as a regular user module and then linked along with the set of library
functions which logically forms the second-level scheduler. Both sides of the application are

56 CHAPTER 4. A NEW FRAMEWORK FOR FRTS

extern int rt_task_create (RT_TASK *task, RTIME period,
RTIME deadline, RTIME offset,
RTIME block_time, int priority, int id);

extern int rt_task_add_mandatory (RT_TASK task,
void (*func) (void *data),
void *data, RTIME wcet);

extern int rt_task_add_optional (RT_TASK task, COMPONENT comp_id,
rt_comp_type_t type,
float slack_fraction);
extern int rt_task_run_dynamic_mandatory(void (*func) (void *data),
void *data, RTIME wcet,
RTIME deadline);

extern int rt_app_start (void);

extern int rt_app_stop(void);

Figure 4.6: Set of interface functions at the real-time level.

run by means of a special shell script, that loads the kernel modules and executes the op-
tional server process in the appropriate order. This shell script can also be used to stop the
application, if necessary.

4.6 The Set of Interface Functions

This section presents the actual set of FRTL interface functions supporting the creation of
tasks and components. Since the application is divided into the real-time and the Linux level,
there are two different sets of functions: the creation of the application tasks and the release of
mandatory dynamic components are provided by the first-level scheduler, while the creation of
optional components and their versions, and the release of optional dynamic components are
provided by the second-level scheduler. These two sets of functions are presented in Figure 4.6
and Figure 4.7 respectively.

Each application’s real-time side is implemented inside a kernel module which includes
invocations to the functions shown in Figure 4.6. For each application task to be created, the
rt_task_create must be called (including the task’s period, deadline, offset, worst-case
blocking time and fixed priority). The four timing attributes are expressed in the RTIME data
type, which is the RT-Linux original time type. In this function, a symbolic identifier (id) is
also required but only for debugging purposes. After this call is made, a task identifier task
is returned; this identifier is used afterwards in the following functions for referencing this
particular task.

After creating a task, subsequent calls to the functions rt _task_add mandatory and

4.6. THE SET OF INTERFACE FUNCTIONS 57

extern int component_create (COMPONENT comp_id,
component_attr_t *comp_attr);

extern int component_run_dynamic_optional (COMPONENT comp_id,
component_attr_t *comp_attr);

extern void sched_init (void);

extern void app_start (void);

Figure 4.7: Set of interface functions at the non-real-time (Linux) level.

rt_task_add_optional add mandatory and optional components to the task, respectively.
The sequence of invocations of these two functions establishes the actual arrangement of the
components inside the task. For a mandatory component, three attributes are required: the
function and its initial arguments to be run by the component and the function’s worst-case
execution time. For an optional component, its identifier, its type (UV, SV or AV) and its
slack fraction have to be specified. Once all tasks have been created and all their components
added, the application starts running by calling the rt _app_start, which activates both the
real-time and non-real-time levels. A call to rt_app_stop stops running the application
and then removes all tasks. Any required dynamic mandatory component can be released
by calling the rt_task_run_dynamic_mandatory function, specifying the function to
be run (along with its initial arguments), and its wcet and deadline. The component may be
accepted or rejected, depending on the result of the on-line acceptance test applied by the first-
level scheduler. This function returns O when the component is accepted and a negative value
if the component is rejected.

At the non-real-time level, the optional server process has to first initialize the second-
level scheduler by calling the sched_init function. After that, optional components are
created by calling the component_create function, indicating the component’s unique
identifier and a structure containing all its attributes (its type, number of versions, the func-
tion to be executed by each version, etc.). The reason for having all of them inside a struc-
ture (called component_attr_t) rather than specifying them independently, is that it is
likely that different application-dependent scheduling policies need different characteristics
to be specified for optional components. If so, these new characteristics may be easily in-
cluded in the structure, leaving the interface functions unchanged. The app_start function
is invoked when all the optional components have been created, and it basically makes the
second-level scheduler enter in its endless loop, described in Section 4.4.2. At run time, if
any dynamic optional component is needed, it can be requested for execution by calling the
component_run_dynamic_optional function, specifying the same parameters than in
the creation function. If the application needs to define any extra parameter for these dy-
namic optional components (such as their deadline, for example) they can also be added to the

component_attr_t structure.

58 CHAPTER 4. A NEW FRAMEWORK FOR FRTS

4.7 Summary and Contributions

The contributions introduced in this chapter are directly related to the advantages that the
presented framework provides, compared to other architectures supporting FRTS. In partic-
ular, both the proposed task model and software architecture incorporate features which are
appropriate for building FRTS. These features are now summarized.

The framework’s task model is based on the concept of component. This concept helps the
designer to break the solution of a problem down into smaller pieces, and to combine them as
necessary. In addition, designing software in components favors code reusability, which can
be useful even inside the same application. The component concept is used in several aspects
of the model:

e Tasks. Each application task is defined as a sequence of components. This allows the ap-
plication developer to design each task as a sequence of smaller pieces, each one which
is in charge of solving a part of the problem that the task is dealing with. The model
allows each task component to be defined as either mandatory or optional. Manda-
tory components are guaranteed to execute, while optional components are given the
maximum amount of execution time, in order to maximize their execution possibilities.
Thus, the model provides a way of obtaining a guaranteed minimum-quality solution,
which is computed by task mandatory components. The model also helps in achieving
the best possible quality enhancement at run time, by means of executing as many op-
tional components as possible. Furthermore, the model defines three different types of
optional components which can be used depending on the application requirements.

e Dynamic components. The model also provides a way of running some actions occa-
sionally (when the application decides to do so) without implementing such actions as
a fixed part of a task. This is done by releasing dynamic components at run time. Dy-
namic components can be defined as either mandatory or optional. In particular, manda-
tory dynamic components actually behave as firm tasks: they are accepted or rejected
upon arrival, depending on whether or not the system can guarantee their execution.

e Exception handlers. The model allows each task to be attached an extra component, to
be called if the task commits a timing exception. This feature is further presented in
Chapter 6.

Overall, this task model can be seen as a generalization of previous models for Impre-
cise Computations. This new model permits the developer to design a task by following any
of these models, but it also allows the task to be given a more sophisticated structure. This
structure includes several mandatory and optional components arranged without restrictions,
different types of optional components, exception handlers, etc. Taking into account all the
above, the task model may seem to be too complex for directly designing applications. How-
ever, it is worth noting here that the model’s principal aim is not to be easy to use, but rather
to provide all the features required by FRTS. In this context, a development tool or a special

4.7. SUMMARY AND CONTRIBUTIONS 59

compiler could help the developer in designing an application using this task model. Specifi-
cally, a graphical development tool called InSiDE [Jul00], which is currently being built, will
guide designers in the implementation of such applications.

The framework’s software architecture proposes separating the execution of mandatory
and optional components into two different, hierarchically-related scheduling levels. The real-
time level schedules tasks and runs their mandatory components, while the non-real-time level
schedules task optional components and runs the components’ versions. Each level follows
a different scheduling policy. The real-time level applies a fixed priority preemptive policy;
since this scheduling paradigm admits a feasibility analysis, it permits tasks to be guaran-
teed to meet strict timing constraints. This level is also in charge of extracting the maximum
amount of slack time available, in order to offer this time to the non-real-time level. When
the non-real-time level is invoked, it applies a sort of utility-based policy to schedule optional
components. This policy, which is not imposed by the framework, is intended to incorpo-
rate specific knowledge of the problem being solved, quality aspects of tasks and the current
situation of the environment into the scheduling of optional components. As a result, the
non-real-time level can help the system to achieve a more intelligent and adaptive behaviour.

The advantages of such combination of scheduling paradigms can be summarized in three
main points. First, the architecture defines a master/slave relationship between both system
levels, in such a way that the scheduling actions inside the non-real-time level never affect
the schedulability conditions of mandatory components. This property effectively makes the
system more robust and easier to analyze. Second, the real-time level is liberated from the
significant overhead involved in the utility-based policy applied inside the non-real-time level.
And third, the architecture leaves the decision of which non-real-time level policy is best suited
for the application to the application designer. Nevertheless, the framework does establish the
internal structure of the non-real-time level scheduler and the interface between this and the
real-time level scheduler; this provides a safe environment in which the designer is guided in
adapting an existing policy or even in developing a new one.

Overall, the architecture presented makes it possible for each combined paradigm to retain
its best quality. The real-time level guarantees hard deadlines by means of applying a simple,
efficient scheduling policy. The non-real-time level achieves an adaptive and intelligent be-
haviour by means of a sophisticated policy which can be easily adapted to new requirements,
if necessary.

Synchronization Facilities

One of the characteristics of the framework presented in the previous chapter is that commu-
nication among task components, either mandatory or optional, is accomplished via shared
memory. When tasks share memory in a hard real-time system, a synchronization mechanism
or protocol is needed in order to protect both the consistency of the data being accessed and
the application tasks’ hard deadlines. In the context of FRTS, the problem with traditional pro-
tocols is that they typically only address the case of hard tasks accessing the shared data. This
chapter introduces and evaluates two synchronization protocols developed for the presented
framework. The two protocols are actually special versions of the Priority Ceiling Protocol
and the Ceiling Semaphore Protocol, which have been extended in order to allow both manda-
tory and optional components to share memory. The chapter discusses how the two protocols
can be successfully integrated in both the real-time and non-real-time levels, emphasizing the
interactions between them and the slack stealing algorithm utilized at the real-time level. In
relation to these interactions, some weak points of the existing literature have been detected
and then addressed. An exhaustive evaluation of the two adapted protocols is presented at the
end of the chapter. The evaluation is made by comparing their respective theoretical properties
as well as the actual overhead they produce to the FRTL system. The overall result is that the
Ceiling Semaphore Protocol is far more appropriate than the Priority Ceiling Protocol in a
real-time framework where hard and soft tasks share memory.

61

62 CHAPTER 5. SYNCHRONIZATION FACILITIES
5.1 Introduction

When applications are internally designed as a set of cooperating tasks, as occurs in real-
time systems, having some means of communication among tasks is often required. In such
systems, the ability of tasks to share memory results in an appropriate communication mecha-
nism, and, therefore, becomes a common requirement in applications of this kind. When tasks
share memory in non-real-time systems (and even in some soft real-time systems), a synchro-
nization mechanism (or synchronization protocol) is needed in order to protect the consistency
of the data being accessed by tasks; that is, to avoid race conditions [Si194]. In hard real-time
systems, though, synchronization must also guarantee task timing constraints. In the fixed
priority preemptive scheduling paradigm, a set of synchronization protocols has been devel-
oped in order to guarantee both data consistency and hard deadlines. This set of algorithms
includes the Ceiling Semaphore Protocol (CSP) [Raj89], the Basic Priority Inheritance Proto-
col (PIP) [Sha90] and the Priority Ceiling Protocol (PCP) [Sha90]. All these protocols were
originally designed for synchronizing only hard real-time tasks.

As stated in Section 2.6, a common characteristic in FRTS is to combine tasks with dif-
ferent criticality levels into the same system. However, typical research studies in FRTS do
not address the issue of communication among tasks of different criticality, but define soft
tasks (or even all types of tasks) to be independent. Exception of this are the Open System
architecture [Den97], which proposes the Non-Preemptable Critical Section (NPS) protocol
as a mechanism for safely sharing global data, and the HARTIK operating system [Lam97],
in which the Stack Resource Protocol [Bak91] has been adapted in order to allow both hard
and soft tasks to share memory.

The synchronization solutions proposed in this chapter have been developed by revising
some of the well-established protocols in the literature and adapting them to the task model
and software architecture presented in Chapter 4, specially to the slack stealing algorithm.
Furthermore, in order to achieve predictability and efficiency in the run-time system, some
characteristics about the actual FRTL system have also been taken into account. In particular,
the following requirements and constraints have been considered:

1) The solution has to keep the key advantage of RT-Linux, which is the complete isolation
between the real-time tasks and the Linux system, in the sense that no action taken in
the Linux level can affect (i.e., cause a delay to) the RT-Linux level. This is perfectly
achieved by the soft interrupts mechanism (described in Section 3.3.2). Therefore, a
protocol like the NPS cannot be directly implemented in RT-Linux, since it is impossible
to make a section of code within a Linux process non-preemptable.

2) Context switches from an optional component fo a mandatory component for synchro-
nization purposes should be avoided. The first reason is that, in order to produce this
kind of context switch, the optional server process has to make a direct system call to
the first-level scheduler, and there is no fully predictable mechanism for making that
call.

5.1. INTRODUCTION 63

The second reason is that this feature would greatly complicate the interface between
the two schedulers, with no real gain in performance in most of the cases. Consider that
an optional component y;;, belonging to task 7;, is denied entry to one of its critical
sections and because of this another (mandatory) component resumes execution. In this
situation, component ;; will only be able to execute again if there is another (future)
slack interval available for it and if the second-level scheduler chooses it for execution
again. This is a combined situation with low probability. Therefore, it is not worth the
complicated interface and the overhead involved in supporting this feature.

3) The synchronization solution has to be as efficient as possible in order to minimize the
kernel overhead and to maximize the amount of available slack for the optional com-
ponents. Thus, some simplifications has been made, such as the amount of blocking
information available at run time: in complex real-time applications, with a large num-
ber of mutexes and possibly nested critical sections, it is not reasonable for the scheduler
to keep track of the particular critical section each task could be executing (and the re-
maining execution time of each section), given only the lock and unlock requests made
by tasks. This knowledge imposes a degree of overhead in the system that is not worth
the accuracy it brings to the slack stealing algorithm (this is further explained in Sec-
tion 5.3). For this reason, the only blocking information available at run-time is the
worst-case blocking factor of each task, exactly the same value needed by the feasibility
test (denoted by B; in Section 4.3).

4) The solution has to be compatible with both the fixed priority preemptive scheduling
followed at the real-time level and the scheduling policy which is provided at the non-
real-time level. In other words, the synchronization mechanism has to be independent
from the non-real-time level scheduling policy.

The restrictions and properties stated above as well as the analysis of the existing syn-
chronization protocols have led to developing a variation of the CSP and PCP which could be
appropriate for the task model, software architecture and implementation features presented
in the previous chapter. Both protocols are presented and discussed in this chapter. The PIP
was not considered for two reasons. First, compared with the PCP, the PIP provides less syn-
chronization features, since it does not prevent deadlocks or chained blocking. And second,
the PIP behaviour is poorer than the PCP behaviour when these protocols are combined with
the slack time algorithm. In particular, it has been theoretically proven that the PIP produces
higher worst-case blocking factors than the PCP (this is shown in [Sha90]), which leads to
have less slack available at run time. Overall, the PCP presents all the advantages of the PIP,
and exhibits better theoretical properties and run-time behaviour.

The rest of the chapter is organized as follows: Section 5.2 presents significant related
work and some limitations which have been found in it. Sections 5.3 and 5.4 respectively
present the incorporation of the PCP and CSP as valid synchronization mechanisms to the
framework proposed in this thesis. Section 5.5 introduces the set of synchronization functions
provided in the FRTL system to the application components. Section 5.6 evaluates the two

64 CHAPTER 5. SYNCHRONIZATION FACILITIES

adapted protocols from a theoretical point of view, and also presents some empirical results,
showing a significant difference in performance between them. Section 5.7 summarizes and
discusses the contributions of this chapter.

5.2 Related work

5.2.1 Priority Ceiling Protocol

In the context of operating systems, the term inferference describes a situation in which a
runnable task has to wait to get the processor because another task is currently running. In
fixed priority preemptive systems without synchronization, a task can only suffer interference
from higher priority tasks. However, if tasks synchronize their access to shared resources, it
can actually occur that a higher priority ready task ¢ has to wait because a lower priority task
7 holds a resource which task ¢ is requesting; this effectively makes task ¢ suffer interference
from the lower priority task. In such scenarios, generically called priority inversion situations,
the higher priority task ¢ is said to be blocked by (or to suffer blocking from)the lower priority
task j. A valid synchronization protocol for a hard real-time system has to bound the max-
imum priority inversion time for each task ¢, hence allowing for the calculation of the task’s
worst-case blocking factor (or B;). This factor can then be introduced in the formula testing
the task feasibility.

The work in [Sha90] describes the PCP as a valid synchronization protocol for uniproces-
sor hard real-time systems using fixed priority preemptive scheduling and synchronizing tasks
by means of binary semaphores or mutexes. Hereafter, the term semaphore will always refer
to binary semaphore and thus both terms (mutex and semaphore) will be used indistinctly.

The PCP is presented below. Although the following are not the original terms by which
the PCP was described in [Sha90], they are nearer to a valid PCP’s implementation, and prob-
ably describe its behaviour more clearly:

1) The PCP sometimes makes a task execute at a priority level different from its original
priority level. Therefore, for each task, the protocol distinguishes between its base
priority (that is, its original fixed priority) and its current priority, which can vary as
the task executes. Each time a task is periodically released, its current priority is made
equal to its base priority. The run-time scheduler always chooses the ready task with the

highest current priority for execution.

2) A priority ceiling (or simply ceiling) is defined for each semaphore. This ceiling, calcu-
lated off-line, is defined as the base priority of the highest priority task which uses the
semaphore.

3) When a task ¢ requests to lock a mutex S, the system checks the system ceiling, de-
fined as the ceiling of the highest priority semaphore locked by any other task. This
semaphore is denoted by S*. If the current priority of ¢ is strictly higher than the ceiling
of S*, then task ¢ is allowed to lock S and it enters the critical section.

5.2. RELATED WORK 65

Otherwise, if 4’s priority is not higher than S* ceiling, task 4 is then blocked by the
lower priority task j holding the lock of S*; that is, 7 is blocked in S*. Then, the current
priority of j is raised up to the priority of ¢ (i.e. j inherits the priority of ¢), and hence j

resumes execution.

4) When a task i requests to unlock a mutex S, the highest priority task j blocked in S, if
any, is awakened, and S is unlocked. Task j is then allowed to lock the semaphore it
requested before, which may be S or another one. Besides, the current priority of ¢ is
reevaluated, being set to the current priority of the highest priority task still blocked by
1. If there is no task blocked by ¢, then i retrieves its base priority.

It is demonstrated in [Sha90] that, by following the behaviour above, chained blocking'
and deadlock? situations are naturally avoided. Furthermore, the worst-case blocking time
(B;) of each task 7; is confined to the longest critical section within a lower priority task
whose guarding mutex has a ceiling which is higher than or equal to ¢ (that is, the priority of

Ti).

B; = iinjaS)J(V(zjk / ceiling(sji) < i) G-D

This is formally expressed in Equation 5.1, where zy; represents the cost of the k-th critical
section in task j and sy is the guarding semaphore of that critical section. In this equation the
identifier of each task corresponds to its priority, with a lower number representing a higher
priority.

5.2.2 Ceiling Semaphore Protocol

The Ceiling Semaphore Protocol, also known as the Highest Locker protocol, or the Ceiling
Locking protocol in the Ada community, is the simplest of the priority inheritance protocols.
Its behaviour can be summarized in the following terms:

1) As explained for the PCP, each task in the CSP has a fixed base priority and a dynamic
current priority. At run time, each time the task is released, its current priority is made
equal to its base priority. The scheduler always chooses the ready task with the highest

current priority for execution.

2) The ceiling of each semaphore is calculated off-line. This ceiling is defined as the
base priority of the highest priority task using the semaphore. The CSP requires this
ceiling calculation to be revised recursively when there are nested critical sections. In
particular, when a critical section is defined inside another critical section, the ceiling

!Chained blocking occurs when a task i, in a given release, has to wait for several semaphores, each one held by
a different lower priority task. This produces potentially large blocking times to tasks.

2A deadlock is defined for a set of tasks as a run-time situation in which each task in the set is waiting for a
resource which is held by another task in the set. When a deadlock occurs, the entire task set is blocked without any
possibility of evolution.

66

3)

4)

CHAPTER 5. SYNCHRONIZATION FACILITIES

of the semaphore guarding the inner section is recalculated as the maximum between
its ceiling and the ceiling of the semaphore guarding the outer section. If a semaphore
ceiling is changed because of this rule, the rest of semaphore ceilings also have to be
reevaluated, which may produce other ceilings to change, and so on.

When a task ¢ requests to lock a semaphore S, the current priority of the task is imme-
diately raised to (or inherits) the ceiling of this semaphore.

When a task i requests to unlock a semaphore S, the current priority of the task is set to
the priority it had when it requested to lock S.

The computation of each task’s worst-case blocking factor (B;) under the CSP can be

performed in the same terms as under the PCP (expressed in Equation 5.1). Furthermore, the

theoretical blocking properties of both protocols are equivalent (the CSP also avoids chain

blocking and deadlock situations).

However, the CSP exhibits some particular run-time properties which are worth noting:

Under the CSP, whenever a task requests to lock a semaphore, the lock is always granted.
Therefore, a locking request cannot produce a suspension of the calling task or a con-
text switch. Another implication is that the queue of each semaphore always remains
empty. In fact, what the protocol does is to dynamically adjust task priorities to achieve
synchronization, rather than actually using semaphores in the traditional sense.

A task 7 can only be blocked in one situation: when it is released while a lower base-
priority task j is running at a priority higher than ¢’s priority, because it has locked a
semaphore. In this situation, the blocking of task ¢ remains until task 7 unlocks the
semaphore(s) that it locked previously and recovers a previous priority which is lower
than ¢’s priority. Once this potential blocking is over, task ¢ cannot be blocked again
during its current release. This property, which can be referred to as early blocking, is
shown later in this chapter to be a a very interesting feature.

The CSP lock and unlock operations are more efficient (i.e., they produce less overhead)
than the corresponding PCP operations. In particular, the PCP lock operation has a cost
of O(n), with n being the number of mutexes, because it must search for the highest
priority locked mutex; the PCP unlock operation also has a cost of O(n) because it has
to recompute the system ceiling, searching again for the highest priority locked mutex.
Both lock and unlock operations have a cost of O(1) under the CSP.

The first and second properties clearly show that the CSP usually produces a lower num-

ber of context switches than the PCP, having the same run-time situation. Overall, the CSP

is a much simpler and more efficient algorithm than the PCP, having the same theoretical

properties and producing the same worst-case blocking time for the application tasks.

5.2. RELATED WORK 67

5.2.3 Slack Stealing Algorithm and the Priority Ceiling Protocol

In [Dav93a], it is shown how a system using the Dynamic Slack Stealing (DSS) algorithm to
execute soft tasks can also use PCP mutexes to synchronize hard and soft tasks. This work
also states that exactly the same approach holds if the CSP is used instead of the PCP. This
section presents a brief summary of that work and describes some problems detected in it.

The DSS algorithm computes the slack time in a per-priority basis, with each task being
assigned a different priority. The slack time available at time ¢ at each priority level ¢ is
denoted by S!**(¢t). This value is calculated, over a certain interval of time, by subtracting
the interference due to higher priority tasks from that interval. However, as described in
Section 5.2.1, when tasks share resources, a task can also suffer interference from a lower
priority task (which is called blocking in this case). Protocols such as the PCP bound that
blocking by calculating the worst-case blocking factor, or B; for each task. Therefore, since
interference of tasks are worsened by blocking, the slack stealing algorithm must also subtract
the blocking factor from the slack available, in order for all tasks to finish by their deadlines.

However, always subtracting B; from the slack available at the ¢ priority level is a pes-
simistic approach, since the blocking situations of tasks do change at run time, not always
being at their worst case. For this reason, the current blocking factor, denoted by b;(¢) is
introduced. This factor is bounded by B;, but it can be dynamically updated by applying the
following rules:

1) Each time task ¢ ends its current release the factor b;(t) is set to B;.

2) When task s is released again, this value can be reduced. First, the system ceiling (the
ceiling of S*, according to the definition of the previous section) is checked. If the
priority of task 4 is strictly higher than the current system ceiling, then b;(t) is set to
zero. Otherwise, the task j holding S* is checked. If the base priority of task j is higher
than the priority of task ¢, then b;(t) is set to zero. Otherwise, b;(t) is set to z;(t), which
is the remaining execution time of the critical section currently being executed by task
J.

3) Each interval of time (from ¢! to #2) that a task j is blocking another task i, (and

hence, task j is running at a raised priority), the blocking factor b;(#) can be reduced in:
bi(t?) = by(t') — (t* —).

When blocking among hard tasks is present, factor b;(t) has to be introduced in the slack
stealing main equation which calculates the slack time available at time ¢ for running soft tasks
(8™ (t)). This is presented in Equation 5.2. In this equation, k represents the highest priority
ready task and Ip(k) is the set of tasks with priority lower than or equal to %.

S™e(t) = min (S77(0) = bu() 5.2)

In systems where PCP mutexes are only used by hard tasks, the DSS algorithm must
include the modifications presented above, but the PCP itself is not changed. However, if soft

68 CHAPTER 5. SYNCHRONIZATION FACILITIES

tasks are also allowed to use mutexes, the PCP must take into account the slack time available,
in order to prevent the execution of a soft task critical section from jeopardizing the timing
constraints of any hard task. It is stated in [Dav93a] that when a soft task tries to lock a mutex
with ceiling j, the lock can only be granted if the task has enough slack time to execute its
critical section in preference over all hard tasks with priority j or less. Equation 5.3 shows
this test, with c being the cost of the critical section in the soft task.

in (S"9(t) — b(t)) > 5.3
o (S7(8) = bi(t)) > ¢ (5.3)

5.2.4 Problems Detected in this Work

The condition stated in Equation 5.3 has a significant problem: it does not consider the case
in which the mutex has already been locked. Under the PCP, when a hard task requests a lock,
the test used to grant or deny the request simply checks the priority of the task against the
system ceiling. The protocol itself ensures that this test is enough to avoid granting the lock
to a mutex previously locked by another task. However, in Equation 5.3 neither the system
ceiling nor the priority of the soft task are considered. In fact, the priority of the soft task is not
relevant here because the DSS makes the soft task execute at the priority level of the highest
priority ready task, which can be any task depending on the moment at which the soft task
arrives to the system. Thus, it can actually occur that when a soft task requests a mutex lock
it verifies Equation 5.3 but the mutex has already been locked by a (lower priority) hard task.
The proposed test is therefore not sufficient to safely grant the lock request, because although
it does guarantee the timing constraints of tasks, it does not ensure the consistency of shared
data. One possible solution to this problem is to include the current mutex’s internal status
(i.e. whether it is locked or not) in the condition used to grant lock requests made by soft
tasks. Another solution would be to set the ceilings of the semaphores that may be used by
soft tasks to the highest priority, which on the other hand would increase the blocking time of
hard tasks.

It is also worth noting that in the presented work by Davis, nothing is stated about what
happens to the soft task if it is not allowed to lock the mutex, which is not a trivial problem.
When the system denies a mutex lock to a soft task, it has two possibilities: the first one is to
abort (or kill) the soft task. The second one is to preempt and suspend the task and insert it into
the mutex queue (or in another, special queue), until a future moment at which the request can
be granted. This second possibility obviously leads to much more complicated interactions
between the DSS and the PCP, which would have to be carefully evaluated. Furthermore,
the second alternative is not valid for this architecture, since it violates the second restriction
expressed in Section 5.1: it would provoke a context switch from the soft task which has been
denied the mutex lock to the hard task holding the lock of that mutex.

5.3. INTEGRATION OF THE PRIORITY CEILING PROTOCOL 69
5.3 Integration of the Priority Ceiling Protocol

Since the software architecture proposed in the previous chapter establishes two different lev-
els of computation, PCP mutexes have to be offered at each application level, by means of
the first-level scheduler and the second-level scheduler. Nevertheless, the mechanism must be
coherently designed as a single synchronization facility for all components.

5.3.1 The PCP at the Real-Time Level

Taking into account that at the real-time level, scheduling entities are tasks and running enti-
ties are their mandatory components, the first level scheduler includes this slightly modified
version of the PCP:

1) A base priority and a current priority is defined for each application task. Whenever a
task is periodically released, its current priority is made equal to its base priority. The
scheduler always chooses the running component belonging to the ready task with the
highest current priority for execution. On the other hand, the definition of both priorities
for each task is naturally extended to all the components of the task.

2) The ceiling of each semaphore, calculated off-line, is defined as the base priority of the
highest priority task using the semaphore. In this case, a task is said to use a semaphore
when any of its mandatory components uses it.

3) When a mandatory running component y;; belonging to a task ¢ requests to lock a
mutex S, the system checks the ceiling of the highest ceiling locked semaphore, S*. If
the current priority of ¢ is strictly higher than the ceiling of S*, ~;. is allowed to lock S
and it enters the critical section.

Otherwise, if ¢ priority is not higher than S* ceiling, then ;. (and hence the whole task
i) is blocked by the mandatory running component y;; (belonging to lower priority task
7) which holds the lock of S*. In this latter case, the current priority of j is raised up to
the priority of ¢ and hence +y;; resumes execution, while ¢ remains blocked in S*.

4) When a mandatory running component ;; belonging to a task 7 requests to unlock a
mutex S, the highest priority task j blocked in S, if any, is awakened, and S is unlocked.
Then, the running component y;; of task j is allowed to lock the semaphore it requested
before, which can be S or another one. Also, the i current priority is reevaluated, being
set to the current priority of the highest priority task still blocked by 4, if any, or else to
1 base priority, if there is no such task.

The worst-case blocking time (B;) can be computed by using Equation 5.1, constraining
the critical sections to be examined to only those belonging to mandatory components of tasks.

70 CHAPTER 5. SYNCHRONIZATION FACILITIES

5.3.2 The PCP and the Slack-Stealing Algorithm

According to the theory presented in Section 5.2.3, the slack algorithm used by the first-level
scheduler must introduce the computation of the current blocking factor (b; (%)) at each priority
level . However, this computation cannot be performed exactly as it was introduced since,
as stated in Section 5.1, the scheduler does not know the cost of each critical section (it only
knows the worst-case blocking factor B; for each task). As a result, the second rule presented
above for calculating each task b;(¢) factor is reformulated in the following terms:

“When task i is released again, if its priority is strictly higher than the system

ceiling, then b;(t) is set to zero. Otherwise, it is not changed”.

Compared to the original rule, the two cases in which task ¢ is not strictly higher than the
system ceiling have been removed here, for different reasons. The first case (when the task j
holding S* has a higher base priority than ¢) is not considered because the first-level scheduler
never releases a task while a higher priority task is running; thus, this situation cannot occur.
The second case (when j has a priority level lower than ¢) has been removed because the
first-level scheduler does not keep track of factor z;(t) for each task j. As a result, z;(t) is
here approximated by B;. This adds pessimism to the computation of the available slack,
leading to a potentially reduced slack-time value for each task. Nevertheless, this pessimism
can be bounded: for each task i, the difference between the available-slack value presented in

Section 5.2.3 and the one here is limited by max (B;).
vielp(i)

Therefore, the first-level scheduler dynamically keeps track of these approximated block-
ing factors and introduces them in the formula calculating the available slack for optional
components. This formula (previously presented in Equation 4.5, page 46) is thus reformu-
lated as follows:

ASK(t) = (min, (S7"(t) - bk(t))) x ES;, (5.4)

5.3.3 The PCP at the Non-Real-Time Level

Access to mutexes at the non-real-time level is provided to optional components by the second-
level scheduler. The algorithm used by the scheduler must consider the theory and limitations
shown in Section 5.2.3, as well as the constraints in Section 5.1, in order to implement a valid
synchronization mechanism in this system.

In particular, the PCP lock operation for optional components is set to feature the following
behaviour:

1) As occurs for mandatory components, when an optional component wants to enter one
of its critical sections, it must first obtain the lock of the semaphore guarding that sec-
tion.

5.4. INTEGRATION OF THE CEILING SEMAPHORE PROTOCOL 71

2) As stated in Equation 5.3, the second-level scheduler needs to know the duration of that
critical section. Optional components are hence forced to specify both the semaphore
they want to lock S and the duration ¢ of the critical section they want to enter at each
lock request operation.

3) When an optional component actually makes a lock request, lock (.S, ¢), the second-level
scheduler applies the following test:

“if the requested mutex S is not locked and the duration c of the critical sec-
tion is less than or equal to the remaining time of the current slack interval,

then the lock is granted; otherwise, the lock is denied”.
This test can be performed very efficiently (with a cost of O(1)).

4) When a lock request is granted, the optional component is allowed to enter its critical
section, but the state of the semaphore itself is not changed. This is because since the
critical section will be finished by the end of the current slack interval, any manda-
tory component that subsequently requests to lock that semaphore will find it unlocked
anyway.

5) When a lock request is denied the optional component is killed.

The PCP unlock operation for optional components is void, because the state of the semaphore
is not changed in the lock operation, as explained in the rule 4 above.

5.4 Integration of the Ceiling Semaphore Protocol

The last section has presented a valid PCP-based protocol for synchronizing mandatory and
optional components in this architecture, with the term valid meaning that hard tasks are
not jeopardized and shared resources are consistently accessed. However, that protocol is
somewhat restrictive: an optional component might be denied the lock (and therefore killed)
even in the case of having enough slack time to atomically finish its critical section, due to the
fact that another lower priority mandatory component may hold the lock on the corresponding
semaphore. The CSP-based protocol presented in this section reduces the probability of this
situation to a very rare case.

The CSP has been introduced in the system in a similar fashion as explained above for the
PCP. In fact, the FRTL run-time system supports both protocols, and the actual protocol to be
used by a particular application is set at the initialization stage.

5.4.1 The CSP at the Real-Time Level

The first-level scheduler implements the regular CSP lock and unlock operations, in order to
offer them to the mandatory parts. The protocol’s behaviour has been changed a little, in order

72 CHAPTER 5. SYNCHRONIZATION FACILITIES

to take into consideration that mandatory components instead of tasks run at the real-time
level:

1) In the CSP, each task has a fixed base and a dynamic current priority. Each time the task
is released, its current priority is made equal to its base priority. The scheduler always
chooses the running component belonging to the ready task with the highest current
priority for execution.

2) The ceiling of each semaphore, calculated off-line, is defined as the base priority of the
highest priority task using the semaphore. In this case, a task is said to use a semaphore
when any of its components, either mandatory or optional, uses it.

3) When the running component +y;; belonging to task ¢ requests to lock a semaphore S,
the current priority of task ¢ is immediately raised to the ceiling of this semaphore.

4) When the running component <y;; of a task ¢ requests to unlock a semaphore S, the
current priority of the task is set to the priority it had when it requested to lock S.

The worst-case blocking time (B;) can be computed here by using Equation 5.1, but con-
sidering only the critical sections defined inside the mandatory components of tasks.

5.4.2 The CSP and the Slack-Stealing Algorithm

The slack-stealing algorithm is adapted here in the same terms as was explained for the PCP,
with the only difference being the computation of the dynamic blocking factors (b;(t)). In this
case, the first and third original rules also hold, and the second one is reformulated as follows:

“On each release of a task i, when it starts running for the first time after being
released, b;(t) is set to 0. This value will be valid until the task ends its current

release”.

This computation of b;(¢) is also approximate for the same reason as for the PCP: B; is
used as an approximation of z;(t), when task j blocks task ¢. The difference here is that, due
to the early blocking, whenever a task 4 starts running, its blocking factor can be safely set
to zero. Then, when Equation 5.2 is used to know the slack time available for running an
optional component, the computed slack at its priority level will be exact. Therefore, task ¢
can only receive a reduced available-slack value if lower priority tasks are being blocked at

that moment. Under the CSP the worst-case reduction in the slack value is ma(x) (Bj).
vj€lp(i)~i

It is worth noting that, on one hand, the reduction above is potentially smaller than its
equivalent under the PCP, since B; is not included. On the other hand, the probability for
a task to receive a pessimistic available-slack value is also smaller here, because this only
occurs when lower priority tasks are being blocked when a task has to execute one of its
optional components.

5.4. INTEGRATION OF THE CEILING SEMAPHORE PROTOCOL 73

The first-level scheduler dynamically keeps track of these blocking factors. Whenever an
optional component needs its available slack to be calculated, the same equation defined for
the PCP (Equation 5.4) is used to do so. However, the amount of slack time here is potentially
greater than it is for the PCP, since the computation of the dynamic blocking factors for the
CSP is more accurate (less pessimistic) as shown above.

5.4.3 The CSP at the Non-Real-Time Level

The behaviour of the CSP lock and unlock operations provided by the second-level scheduler
to the optional components is analogous to the behaviour explained above for the PCP at the
non-real-time level. The difference in this case is that, due to the early blocking, the probability
of an optional component finding a mutex which is already locked is reduced here to a unique
and very rare case, explained below. The test applied by the second-level scheduler on a CSP
lock request made by an optional component can be expressed in the following terms:

“If the requested mutex S is not locked and the duration c of the critical section
is less than or equal to the remaining time of the current slack interval, then the

lock is granted; otherwise, the lock is denied”.

Here, again, when the lock is denied to an optional component, the component is killed.
However, this is less behaviour restrictive in practice than the one explained for the PCP, since
the semaphore will be unlocked at almost every lock request. Therefore, in practical terms,
the lock will be granted if the optional component has enough slack time to atomically finish
the critical section.

The CSP unlock operation at this level is void (as explained in the PCP) since the second-
level scheduler does not change the mutex status at a successful lock request made by an
optional component.

The CSP anomaly

The case in which the semaphore is already locked when an optional component tries to lock
it is now discussed. In the original terms of the CSP, a task always finds mutexes unlocked,
due to the early blocking property discussed above. This property applies perfectly to the
real-time level in the framework’s CSP version, since this level strictly follows a fixed priority
preemptive scheduling. Thus, no mandatory component would ever find a CSP mutex locked.
However, this is not true at the non-real-time level. Due to the way slack intervals are sched-
uled for optional components, an anomaly can occur in the CSP. This anomaly is presented in
Figure 5.1.

The anomaly is based on the fact that optional components can be scheduled during sev-
eral (consecutive) slack intervals. When this occurs, it is probable that optional components
belonging to several tasks are ready simultaneously, leading to a situation in which an optional
component is selected for execution inside a slack interval which was scheduled for optional

74 CHAPTER 5. SYNCHRONIZATION FACILITIES

a m =

Figure 5.1: CSP anomaly at the non-real-time level.

components belonging to another task. Consider the case in the figure, on which three tasks,
T1, T2 and 73, are executed. Task 73 starts running first (at t=t;), and its first component 3
is mandatory. At t=ts, this task starts running a set of optional components (y3,) during an
initial slack interval [t2, t3]. At t=t3, task 7 is released. The first component of this task 25 is
mandatory and, at t=t4 it requests to lock a semaphore S, shared with task 73. As the ceiling
of S is 2 (task 71 does not use it), the 72 keeps running at priority 2. At t=t5, while ~y; is
executing the critical section guarded by .S (shaded box in the figure), task 7y is released and
starts running its first mandatory component y;1. At t=tg, 71 schedules a slack interval for its
optional component(s) 7, up to t=tg, when the slack available for ~}, expires. Precisely at
this slack interval is where the anomaly may occur: imagine a time ¢; inside the slack inter-
val [tg, tg] in which an optional component belonging to 73, requests to lock S and finds the
mutex locked.

Thus, the general conditions for the anomaly to occur are:

A list of optional components ~7, belonging to a lower priority task 77, are released
and scheduled during one or more slack intervals in which not all of the components are
executed.

e While the list 77, remains active, a mandatory component s, belonging to a medium
priority task 757 runs and locks a semaphore S, which is shared with some components
in task 7.

e While component 7yz; is running the critical section guarded by S, a higher priority
task 7 which does not use S is released.

A slack interval is scheduled for an optional component belonging to 7g. During this

5.5. INTERFACE FUNCTIONS 75

slack interval, a component belonging to 7, which has not yet been executed, is se-
lected for running.

e This component belonging to 7, requests to lock S.

The long list of conditions gives an idea of the low probability of this situation happen-
ing, specially taking into account that critical sections inside mandatory components can be
reasonably considered to be short in time. Thus, there is not a great likelihood of the medium
priority task being preempted by the release of the higher priority task in the middle of such a
critical section.

In any case, this anomaly could be prevented if every mutex in the system were assigned
a ceiling of 1. In many applications, this solution obviously leads to a potentially greater
amount of blocking time for every application task. The designer thus has to balance between
the schedulability conditions for mandatory components versus the run-time scheduling con-
ditions for optional components.

5.5 Interface Functions

The PCP and CSP algorithms have been introduced to the FRTL system by following the
indications explained in sections 5.3 and 5.4, respectively. Figure 5.2 presents the actual set
of synchronization functions available to application components within the FRTL system.
These functions allow all the application components to synchronize their access to shared
memory by locking and unlocking PCP or CSP mutexes. This set (like the set of task-related
functions in Section 4.6) is divided into two subsets: in Figure 5.2, the functions with the rt
prefix are provided to mandatory components by the first-level scheduler, while the rest of
them are provided to optional components by the second-level scheduler.

int rt_mutex_set_pcp_mode (void) ;
int rt_mutex_set_csp_mode (void) ;

int rt_mutex_create (RT_MUTEX mutex, int ceiling);
int rt_mutex_destroy (RT_MUTEX mutex);

int rt_mutex_lock (RT_MUTEX mutex) ;

int rt_mutex_unlock (RT_MUTEX mutex) ;

int mutex_lock (RT_MUTEX mutex, systime_t time);
int mutex_unlock (RT_MUTEX mutex) ;

Figure 5.2: Set of synchronization functions.

The protocol to be used by a particular application is decided inside the real-time level, at
the initialization stage, by means of calling one of these two functions: rt mutex_set _pcp_mode

76 CHAPTER 5. SYNCHRONIZATION FACILITIES

or rt_mutex_set_csp-mode. This design decision has been made in order to allow the rest
of the interface functions to be independent from the protocol used. It is therefore possible
to decide which protocol to use just by calling the appropriate initialization function, without
any change in the rest of functions (basically, lock and unlock) invoked within components.
Obviously, it is not possible to change the protocol while the application is running.

Mutexes are also created at initialization time (and at the real-time level) by invoking
the rt _mutex_create. Once a mutex has been created, it can be accessed at run-time
from both levels. In order to permit this access in a straightforward manner, the identifier of
each mutex is specified (not returned) in the rt mutex_create function. That is, mutex
identifiers are decided at design time and thus, the particular mutex to be used by each lock
or unlock operation (inside the code of mandatory and optional components) can be directly
determined. The function rt _mutex_destroy is used to delete a mutex, at the end of the
application execution.

At run time, mutexes are accessed by means of the two sets of lock and unlock oper-
ations shown in the figure, with each set available for one type of components. Functions
rtmutex_lock and rt mutex_unlock provide the traditional PCP or CSP primitives to
mandatory components. At the non-real-time level, the mutex_lock function needs to in-
clude both the identifier mut e x of the mutex to be locked and the duration t ime of the critical
section the optional component wants to execute. This, as explained in the previous section,
is required because both values are needed by the second-level scheduler in the two protocols.
The mutex_unlock function for both algorithms is void, because the lock operation at the
non-real-time level never changes the internal status of the mutex (see Section 5.3.3). This
function is nevertheless provided for completeness.

5.6 Evaluation of the Two Protocols

This section reviews first the theoretical properties of the special PCP and CSP versions in-
troduced in this chapter, specially discussing their similarities and differences. Then, it shows
some experimental run-time results that basically reveal significant differences in performance

between them.

5.6.1 High-Level Evaluation

The two synchronization solutions presented above maintain the requirements imposed in
Section 5.1, so, in this sense, both are valid solutions for this architecture. In particular, the
isolation requirement still holds because, although both the real-time and Linux subsystems
do share memory and synchronize their access to that memory, no action executed in the Linux
side can ever cause a delay to the real-time side.

Both algorithms may be considered to be rather simplistic at the non-real-time level, due to
design decisions such as killing an optional component when it is denied a mutex lock. Such
simplistic behaviour is justified if one takes into account two aspects. First, the framework

5.6. EVALUATION OF THE TWO PROTOCOLS 71

design has tried to minimize the interactions between the first-level and second-level sched-
uler, in order to give the second-level scheduler policy a great deal of autonomy. And second,
the framework intends to provide a basic synchronization mechanism which can be valid to
any scheduling policy at the non-real-time level. A sophisticated scheduling policy could, for
example, use the information of which semaphores are locked in order not to run an optional
component using one of these semaphores.

From the designer point of view these solutions have two main advantages. First, both
PCP and CSP are well known and widely used in the real-time community. And second, the
way mutexes are offered makes their use fairly simple at the design and implementation stages
of the application. Both aspects are now presented.

At design time, the necessary number of mutexes is determined in the usual way (for
PCP and CSP), depending on the pieces of data to be shared and the different tasks accessing
them. This must be done by considering that a task is using a piece of data whenever any of its
components accesses it. On the other hand, calculating each mutex ceiling is also easily carried
out, just by checking which components (for the CSP) or which mandatory components (for
the PCP) use each mutex and the priority of the tasks the components belong to.

At implementation time, the use of mutexes is also quite simple: since the system designer
has to identify each mutex at design time and this identifier is specified (nof returned) when the
rt_mutex_create function is called, then this mutex can be easily used for implementing
every lock call and unlock call on both sides of the application.

Thus, the two protocols have been proven to be valid for the framework presented in the
previous chapter and, for this reason, both are supported by the FRTL run-time system (so
that the application designer can choose between them). However, from a theoretical point
of view, the CSP has proven to be far more appropriate than the PCP. In general, the CSP
is a simpler algorithm featuring less overhead and the same blocking properties, which is in
itself reason enough to be considered better than the PCP. Furthermore, the CSP has proven to
fit better the particular requirements imposed by this framework, in two main respects. First,
given the same (limited) run-time information about blocking, the CSP provides more accurate
dynamic blocking factors, which produces more slack time available for optional components.
And second, the condition to grant or deny the lock to a mutex at the non-real-time level is
less restrictive (in practice) in the CSP; this leads to a higher probability of success in locking
the application mutexes by optional components. Both benefits are mainly due to the CSP’s
early blocking, a feature shown to be especially appropriate in a system where hard and soft
tasks must share memory. As a curiosity, it is interesting to note that Lamastra et al. [Lam97]
reached a similar conclusion in their operating system, HARTIK, which also mixes hard and
soft tasks but uses a different scheduling paradigm (Earliest Deadline First) and a different
synchronization protocol (Stack Resource Protocol).

78 CHAPTER 5. SYNCHRONIZATION FACILITIES

Lock

Protocol | # mutex | Min. Max. Avg. Var.
4 6 15 9.7050 1.7389
PCP 8 6 18 9.6122 2.6009
16 6 22 10.7260 6.9184
4 5 10 8.4673 0.3323
CSP 8 5 11 8.2139 0.3699
16 5 10 8.2210 0.3637

UNLOCK

Protocol | # mutex | Min. Max. Avg. Var.
4 6 13 9.1353 0.5643
PCP 8 6 13 8.9780 0.4852
16 6 14 9.5054 0.7727
4 5 11 8.3006 0.3919
CSP 8 5 11 8.0882 0.3768
16 5 11 8.0687 0.3567

Table 5.1: Measured values of the cost of lock and unlock operations.

5.6.2 Run-Time Evaluation

This section introduces some experimental results for the two protocols implemented in the
FRTL system. Please note that the purpose of this section is only to compare the two protocols.
A complete description of the measurement mechanisms is introduced later in Section 7.4 and
exhaustive measurements of all the sources of kernel overhead are presented in Section 8.5.

The experiments were performed by running several sample applications on a PC with
an AMD K6-2 333 Mhz. processor, with the FRTL system running above RedHat Linux 5.2
(kernel 2.0.36). Data were collected at run time and stored in a piece of the shared memory
by the first-level scheduler, a mechanism used for measuring the scheduler overhead and for
debugging purposes (this mechanism is described in Chapter 7). The amount of physical
memory available constrained the collected data to about 90,000 events per execution, which
normally corresponds to approximately one minute of execution time. The set of sample
applications was implemented with from 2 to 8 tasks and from 4 to 16 mutexes. Task periods
were chosen, within 20 and 200 milliseconds, in such a way that the hyperperiod was less
than 60 seconds, which ensures that the results about the available slack time for each task are
consistent. All the measurements presented here are expressed in ticks, which is the regular
time unit in RT-Linux, corresponding to 0.838 microseconds.

The measured costs of the lock and unlock operations for applications using 4, 8 and 16
mutexes are summarized in Table 5.1, which shows the maximum, minimum, average and
variance values. The results show how the cost of both lock and unlock operations are greater
(in average and in worst case) for the PCP than for the CSP, and also how the PCP lock
operation becomes clearly costlier as the number of mutexes increases.

5.7. SUMMARY AND CONTRIBUTIONS 79

Another interesting feature which was tested was the impact caused by each protocol on
the slack time computation. That is, which protocol produced a lower reduction in the slack
time available. It must be noted that there is not one best application in which to test this
feature, since each task’s timing characteristics, the number of mutexes, the actual usage of
these mutexes (the moments at which lock and unlock operations are called, the length of the
critical sections, etc.) affect the results. However, the experiments showed that the CSP gen-
erally leaves more slack time available to tasks than the PCP does. The actual detected gain in
slack time, though significant, is small in absolute terms because the CSP better performance
is due to better accuracy in the computation of b;(t), which normally is a small number com-
pared with the regular intervals of slack time. Finally, another property detected was that the
percentage of slack time available to higher priority tasks was normally greater under the CSP.
This is also due to the better accuracy of the b;(t) factor, which produces more slack time
available at all priority levels. The actual increase is greater in higher priority levels because
of the behaviour of the slack algorithm itself: the amount of slack time not available to (or not
used by) higher priority tasks can be reclaimed by lower priority tasks.

5.7 Summary and Contributions

This chapter presents a variation of two well-known protocols (the PCP and the CSP) which
have been proven to be valid synchronization protocols for mandatory and optional compo-
nents, in the context of the proposed framework and run-time system. The design of the
synchronization solutions has pointed out some limitations in the existing literature (related to
the combination of the PCP and the slack stealing algorithm), which have been addressed.
The second main issue discussed in this chapter is to exhaustively compare the two pro-
tocols, in order to determine which one better fits the requirements of the framework. The
evaluation of the protocols has stated that their different run-time behaviour leads to a signifi-
cant difference in performance between them, which can be summarized in two major points:

1) The CSP is a much simpler and more efficient algorithm. Both its lock and unlock
operations have a cost of O(1), while the corresponding PCP’s operations have a cost
of O(N), with N being the number of application mutexes. The CSP clearly produces
less overhead at run time, also taking into account that one of its theoretical properties
is that it produces fewer context switches than the PCP.

2) The CSP has an interesting property that might be called early blocking. This refers to
the fact that a task can only be blocked from the moment it is released to the moment
it starts execution, and also that a lock request made by a task is always granted. This
early blocking feature has a twofold advantage: first, it leads to smaller b;(¢) factors,
because when a task starts execution its factor can be safely set to zero until the end of
its release; and having smaller b;(t) factors leads to more available slack.

The second advantage is that this feature produces a less restrictive lock test because
the protocol ensures that each mutex will be always unlocked when a task tries to lock

80 CHAPTER 5. SYNCHRONIZATION FACILITIES

it. In this framework, this general property is maintained at the real-time level, and,
therefore, every mandatory component always finds mutexes unlocked. At the non-real-
time level, this property holds in the regular case, but there is one exception: the way
optional components are scheduled in this framework produces an anomaly in the CSP
at the non-real-time level. In this anomaly, an optional component may find a mutex
locked when it attempts to lock it. However, this chapter has characterized the anomaly
as a very rare and improbable situation. As a result, in the regular case, the only reason
by which an optional component is denied a mutex lock is because it does not have
enough slack time to complete the critical section.

Overall, although the PCP and CSP present similar theoretical properties (they both pre-
vent chain blocking and deadlock situations) and both originate the same worst-case blocking
factors, the CSP is clearly a much more appropriate protocol for this architecture. The CSP
algorithm exhibits more efficient behaviour, with fewer context switches and less overhead at
each lock and unlock operation. Furthermore, the CSP algorithm also produces better schedul-
ing possibilities for the optional components, providing both more available slack time (spe-
cially for higher priority tasks) and a higher probability of successfully locking application
mutexes.

Timing Exception Support

As explained at the end of Chapter 2, one of the key requirements of FRTS is to have fault
tolerance capabilities. In real-time systems, one of the key issues related to fault tolerance is
to make the system able to deal with timing exceptions produced by tasks. A timing exception
or fault occurs when an application task fails to meet its timing requirements (that is, its
deadline) at run time. Hard real-time systems avoid timing exceptions by design and then
verify that design by means of a feasibility analysis. Both the design and the analysis are
based on the system following a specific, well-defined run-time behaviour. Among the rules
defining this behaviour, the most sensitive is the one ensuring that each application task never
utilizes more processor time than its worst-case execution time. Because of this, a situation
in which a task executes beyond its wcet can also be considered a timing exception in itself.
This chapter introduces specific mechanisms dealing with timing exceptions produced at run
time. Although both wcer and deadline exceptions are considered, the proposal here is that by
only controlling wcet exceptions (that is, by never allowing an application task to execute for
more time than its wcet) it can be guaranteed that no task will miss its deadline. Overall, the
timing exception support mechanisms proposed in this chapter have three main goals: first, the
mechanisms have to be completely integrated in the framework presented in previous chapters
in order to take advantage of all the framework flexibility. Second, the mechanisms have to be
efficiently designed and implemented in the FRTL run-time system. And third, the overhead
related to these mechanisms has to be introduced into the system complete feasibility test.
The present chapter describes the design of these mechanisms in detail and introduces their
related FRTL interface functions. The mechanism implementation details and their impact on

81

82 CHAPTER 6. TIMING EXCEPTION SUPPORT

the feasibility test are presented, respectively, in Chapter 7 and Chapter 8.

6.1 Introduction

Hard real-time systems require a strict guarantee on the fulfillment of their timing require-
ments, which in practice means proving that the deadlines of their tasks are always met at run
time. In the context of fixed priority preemptive systems, this guarantee is obtained by means
of a feasibility test that mathematically proves the ability of each task to meet its deadline
under worst-case load conditions. This test is based on a set of hypotheses (or constraints)
which are related to the task model and to the run-time behaviour of the system. Although
several of these constraints have been progressively removed or relaxed, as the scheduling
theory has evolved (see Section 2.4), some of them still hold. The following list summarizes
the constraints usually imposed by the feasibility test:

1) The set of hard tasks is fixed and known.

2) All hard tasks are either periodic or sporadic (the sporadic having a known minimum
inter-arrival rate).

3) Each task is assigned a fixed priority.

4) At run-time, tasks are scheduled according to their fixed priorities, in a preemptive
manner. That is, the system always executes the runnable task with the highest priority.

5) A hard task cannot voluntarily relinquish the processor nor delay itself once it is selected
for execution.

6) The maximum requirement of processor time is bounded and known a priori for each
hard task. This time is named the task’s worst-case execution time (or wcet). The wcet
value which is introduced to the feasibility test for each task cannot be exceeded at run
time. This also applies to the run-time support system: the system maximum overhead
must also be known in order to be introduced to the test.

The former four constraints are straightforward, because they are enforced by either the
task model ((1) to (3)) or the run-time scheduler ((4)). Conversely, the two latter constraints
depend on how the designer has implemented the application tasks, and, therefore, they rep-
resent the most sensitive aspect of the feasibility analysis. Constraint (5) may be easily met,
by avoiding the arbitrary use of delay sentences' and the access to hardware devices in such a
way that the accessing task is temporarily suspended until the device completes the request.

The last constraint is the most difficult to achieve, since it relies on the designer to be able
to accurately measure the wcet of each task. The existing techniques for calculating task wcets

In many real-time systems, such as applications developed in Ada, delay-like sentences are used to suspend the
execution of a task at the end of each release, until the beginning of the following one. Clearly, this use of a delay
sentence does not violate the constraint (5) above.

6.1. INTRODUCTION 83

can be divided into two broad categories: analytical and empirical. Analytical techniques
analyze the binary code of each task in order to calculate its execution time. Unfortunately,
this is a very complex problem, where existing methods cannot be applied to all possible
hardware platforms; furthermore, some advanced features of new generation processors (such
as caching or pipelining) produce significant variations in the processing speed, making the
problem still harder to solve. Even the trivial approach of disabling the processor cache when
calculating execution times does not ensure the worst case since, as shown in [Lun99], in
certain circumstances, a cache miss may result in a shorter execution time than a cache hit.
The empirical approach is based on executing each task thousands of times on the particular
hardware the final application will run on and measuring each execution time. Then, the task
wecet is set as the longest measured time plus a certain safety factor. This approach, which is
the most frequently used in the industry, is not completely safe since tasks cannot normally be
measured under every possible data entry or run-time condition.

The issue of accurately calculating task wcets is thus a serious problem in real-time sys-
tems. This is even more difficult in FRTS, since these systems may have to deal with complex
problems and unpredictable environments. In such conditions, application tasks will normally
be complex (i.e., their binary code will be difficult to analyze) and run-time conditions may be
quite different from the testbed conditions in which task wcets can be measured. As a result,
since a framework for building FRTS cannot be completely sure of the accuracy of wcet esti-
mates, the system reliability would be improved if specific mechanisms dealing with run-time
timing exceptions were introduced. In a real-time system the obvious timing exception which
has to be avoided is the missed deadline. However, as presented above, the main reason for
which a task can miss its deadline is that this task or another one exceeds its wcet. Thus,
the wcet of each task can also be considered a timing requirement, with its violation being
considered a timing exception.

Technically speaking, a run-time exception is defined as a system event associated with
some error or violation (e.g., a division-by-zero operation, an illegal memory access, etc.)
executed by an application task. Traditionally, operating systems detect these exceptions (with
some help from the hardware) and define a treatment or handling® for each of them. This
chapter presents specific mechanisms for detecting and handling wcet and deadline timing
exceptions in the context of the framework for FRTS proposed in this thesis.

The rest of the chapter is organized as follows: Section 6.2 reviews some significant previ-
ous work on this issue. Section 6.3 discusses the requirements and design principles imposed
over the developed support mechanisms. This support is then described in detail within Sec-
tions 6.4 and 6.5. Section 6.6 presents the set of FRTL interface functions related to timing
exceptions. Finally, Section 6.7 summarizes the ideas introduced within the chapter and eval-
uates its contributions.

2The handling mechanism typically includes a notification of the exception to the faulty task (which may then
execute particular handling actions), or even the abortion of the task, if the error is unrecoverable.

84 CHAPTER 6. TIMING EXCEPTION SUPPORT
6.2 Previous Work

The most relevant work on timing exception handling for hard real-time systems is probably
the set of mechanisms developed by Stewart and Khosla [Ste96], which have been imple-
mented within the Chimera II operating system [Ste92]. The set of run-time mechanisms
includes the detection and handling of timing exceptions (both wcet and deadline exceptions),
and an automatic task profiling facility. These mechanisms are now described.

The detection of run-time timing exceptions is performed differently depending on the
type of exception, but both are based on the fact that the kernel is tick driven®. To detect
deadline exceptions, a kernel virtual timer is dynamically set to the earliest deadline; if that
programmed time is reached by the current system time, then the scheduler is notified about
the task(s) that have missed their deadlines. To detect wcet exceptions, a software counter is
defined for each task. Whenever a task is released, its counter is set to the task’s wcet; at each
clock tick, the running task’s counter is decremented; if the counter of the running task ever
reaches zero, then the scheduler is notified.

When the scheduler is notified about a timing exception, it automatically invokes a task-
specific, user-defined timing failure handler (TFH). Handlers are thus developed by the ap-
plication designer and associated to the application tasks. A TFH can include all kinds of
recovery actions, such as aborting the failing task, sending messages to other tasks, activating
an alarm, etc. TFHs have two special features: first, a TFH may be defined to be executed at
a different priority than the priority of the task it belongs to; and second, invocation of han-
dlers may be temporarily disabled when, for example, the running task is executing a critical
section.

The task monitoring is performed by means of the automatic task profiling (ATP) software
mechanism, which collects dynamic timing information about tasks at each context switch.
For each task, the collected data include the number of releases, the execution time for the
current release, the number of timing exceptions, etc. This information is immediately made
available to soft tasks, for further processing, via shared memory.

Overall, these timing exception and profiling mechanisms are actually simple, low-level,
policy-independent mechanisms, which have been designed from the viewpoint of the RTOS,
rather than by considering any particular task model or scheduling policy. The positive effect
of designing such mechanisms as a fundamental part of the kernel is that they are accurate
and can be efficiently implemented, therefore producing very little overhead. However, the
support that the mechanisms provide to the designer is poor, including only the possibility of
calling a function (the TFH) in the context of the failing task. No other specific services (such
as killing, restarting or resuming the task, or other tasks), are provided; if needed, all these
actions have to be entirely implemented by the application programmer. On the other hand, as
the proposed mechanisms are independent from any particular scheduling scheme, the work
by Stewart and Khosla does not address any kind of feasibility analysis.

3In a tick driven kernel, the system time is measured in fixed-length intervals or ficks, periodically signaled by
means of a hardware timer interrupt.

6.3. DESIGN PRINCIPLES 85

6.3 Design Principles

The timing exception support mechanisms introduced here have been designed in order to
achieve two main goals. First, the mechanisms have to be fully integrated within the frame-
work proposed in this thesis; this means that they must be flexible, consistent with the task
model, and predictable in order to be introduced into the feasibility test. And second, the
mechanisms must be efficiently designed and implemented in the FRTL run-time system, in
order to produce a reasonably low overhead.

Two different cases have been considered in the design of the exception mechanisms. This
classification depends on the expected timing behaviour of the run-time system or kernel.
Please note that, although the classification has been made in the context of the FRTL system,
it can be applied to most real-time kernels:

a) The first case occurs when the kernel overhead can be assumed to be accurately mea-
sured; that is, when the worst-case overhead is perfectly calculated and introduced into
the feasibility test. In this case, any application which is guaranteed by the feasibility
test maintains this guarantee at run-time as long as no application task consumes more

execution time than its wcet.

b) The second case occurs when the assumption above cannot be made, that is, when the
kernel produces more overhead than expected. Because of this excessive overhead, tasks
can lose their deadlines even if no application task violates its wcet restriction,

In the first case, the run-time system can ensure meeting the deadlines of feasible tasks
only by detecting wcet timing exceptions. This is a direct consequence of the schedulability
test: if the run-time system never allows a task to execute beyond its wcet then the task cannot
jeopardize any task’s deadline. As a result, the timing exception support proposes including
both a detection mechanism for wcet faults and a flexible handling mechanism. The handling
mechanism includes the automatic and immediate termination of the faulty task and, option-
ally, the execution of a user-defined handler, which is intended to contain application-specific
actions that have to be executed after the exception. This support for detecting and handling
wcet exceptions is detailed in Section 6.4.

In the second case, in which the kernel itself may exceed its expected overhead, the sup-
port for wcet exceptions proposed above is not sufficient to ensure that task deadlines are not
violated. In this case, an explicit mechanism for detecting missed deadlines has to be intro-
duced. Obviously, this can only occur if the kernel has not been sufficiently tested and thus
its overhead measurements are not accurate. Such a situation happens, for example, while
the kernel is being ported to a different hardware or when the kernel is not working properly.
For this reason, the timing exception support proposes an optional detection mechanism for
missed deadlines, which can be activated if the application decides to do so. This optional
mechanism should actually be considered as a tool for the FRTL development and tuning up
phases, rather than a mechanism for the application developer. This support is described in
Section 6.5.

86 CHAPTER 6. TIMING EXCEPTION SUPPORT

6.4 Support for wcet Exceptions

The framework support dealing with task wcet exceptions is actually formed by two separate
activities: detection and handling of the exceptions. Both activities are provided at the system
real-time level, because this is the level affected by timing exceptions. In particular, the fault
detection as well as some common handling actions are directly established by the framework.
These fixed handling actions basically enforce the immediate abortion of the current release of
the faulty task. In order to compensate for this fixed behaviour, the framework also proposes
providing the designer with the ability of implementing a custom exception handler for each
task, which is invoked when that task produces a wcet exception. Following the framework
philosophy, the handling mechanism allows the designer to define handlers as either manda-
tory or optional components, which can be attached to the application tasks. Furthermore,
the importance (or urgency) of a particular task’s handler is considered here to depend on the
task’s characteristics, rather than on its priority; for this reason, the priority of a handler can
be different from the priority of its associated task.

The framework offers a highly flexible exception handling support to the designer, which
is fully integrated with the task model presented in Section 4.2. The following describes the
support for defining application handlers:

e A different handler may be implemented for (and attached to) each application task.
However, this is only an option: different tasks may be attached to the same handler,
and a task may not have any handler.

e Each handler can be defined as either mandatory or optional. Mandatory handlers are
considered as hard tasks for scheduling purposes, while optional handlers are executed
in slack time. Please note that being mandatory or optional is only a scheduling type,
rather than an execution type: despite their type, handlers are always executed at the
real-time level. This permits them to execute in the context of the faulty task®. If a
handler is defined as mandatory, its wcet has to be specified, in order to be considered
as interference at the appropriate priority level.

¢ In either of these two types, each handler is given a specific, fixed priority, which may be
different from the priority of its related task. At run time, having a ready handler and a
ready task with the same priority, the first-level scheduler chooses the handler first. This
provides the designer with the ability to execute a handler at the highest possible priority
in the system (ensuring that it may be executed immediately and without interference),
without having to explicitly reserve the highest priority level for such handlers. This
semantic has to be taken into account when assigning priorities to tasks and handlers.

The rest of the section first details the detection and handling mechanisms, and then ex-
tends the framework formal task model presented in Section 4.3 in order to include formal
definition of the user-defined wcet handlers.

4A wcet exception can only be produced while an application task is running a mandatory component, at the
real-time level.

6.4. SUPPORT FOR WCET EXCEPTIONS 87

6.4.1 Detection of wcet Exceptions

A wcet timing exception occurs when a hard task consumes more execution time than the value
expressed as its wcet in the feasibility test. Since hard tasks in this framework are composed
of mandatory and optional components, this definition has to be somewhat refined.

In the task model introduced in Section 4.2, there are actually two different entities with
a known wcet: mandatory components and tasks. On the one hand, the designer is forced to
provide the wcet of each mandatory component; on the other hand, each task’s total wcet is
automatically calculated by adding up the wcets of its mandatory components. Thus, a wcet
exception can be detected at either the mandatory component level or the task level. These
two alternatives are now discussed.

In the first approach, a wcet exception is detected for a task as soon as one of its manda-
tory components exceeds its wcet. This approach is safe, in the sense that the system detects
the fault as soon as the minimum-size entity with a known wcet violates its computation re-
striction. However, this alternative is not optimal because the feasibility test guarantees the
computation time at the task level, meaning that if a given task does not consume more execu-
tion time than its rotal wcet, then the schedulability of lower priority tasks is not jeopardized.
In other words, if some mandatory components inside task ¢ consume more than their wcets,
but this is compensated by other ¢’s mandatory components consuming less than their wcets
(in such a way that the task as a whole does not exceed its total wcer), then the system is safe.
Thus, this second approach (in which wcet exceptions are detected at the task level) is less
pessimistic.

For this reason, the framework proposes considering a wcet exception only when a task
consumes more than its total wcet. Nevertheless, mandatory components exceeding their max-
imum computation times have to be detected (even if not producing an actual exception) in
order to be able to correct their wcet estimations. Considering all this, the framework mecha-
nism for detecting wcet exceptions is stated by means of the following rules:

1) In absence of previous timing errors, the system is said to be in no-fault mode for each
application task 4. In this mode, when a mandatory component y;; consumes less execu-
tion time than its wcet, ¢;;1, the remaining time is considered as gain time. The concept
of gain time (introduced within the context of slack stealing algorithms (see [Dav93al))
is defined as the portion of a hard task’s guaranteed wcer which the task does not con-
sume in a particular release. When the task ends each release, any gain time available
for the task can be reclaimed as slack time for this task’s priority level and all lower
priority levels. The framework here proposes to reclaim the available gain time at the
end of each mandatory component, rather than at the end of the task release.

2) A situation at which a mandatory component y;; consumes more than its wcet, but task
1 does not exceed its fotal wcet, is considered as a local fault. Local faults do not pro-
duce an interrupt and they are not considered as wcet exceptions. After component y;;
has produced a local fault, the system enters into the so-called compensation mode for
task ¢ and stores the fault as part of the profiling information that the system records

88 CHAPTER 6. TIMING EXCEPTION SUPPORT

at run time. The profiling mechanism is a part of a general-purpose debugging mecha-
nism defined for the FRTL system, by which the run-time information produced at the
real-time level is stored in a piece of main memory; this information can be retrieved
afterwards by a Linux process in order to be appropriately presented to the designer.
This mechanism is described in Section 7.4.

In this particular case, the profiling information stored for the local fault includes the
moment at which the fault has occurred, the identifier of the faulty component and the
actual execution time consumed by the component. By later analyzing this information,
the designer can detect which mandatory components are not keeping their computation
constraints, the moments at which the faults occurred and how much execution time
these components actually consumed.

3) While the system is in compensation mode for a task ¢, the gain time produced by its
subsequent mandatory components, if any, is used for compensating the previous exe-
cution excess, rather than being reclaimed as slack time. If the excess can be completely
compensated, the system returns to the no-fault mode for ¢, expressed by rule (1).

The system knows when local faults have been compensated by keeping track of the
execution left for each ready task ¢. This value is set to the ¢’s total wcet when task ¢
is released and it is decremented as mandatory components of ¢ are executed. Thus,
the system knows that any previous fault has been compensated when, at the end of a
mandatory component 7y;;, the execution left of task ¢ matches with the sum of the wcets
of 4+’s mandatory components following component ;.

4) If, while running any of its mandatory components, a task exhausts its total wcet, then
the task is immediately interrupted by the system and a wcet exception is raised. At this
moment, the handling mechanism described below in Section 6.4.2 is invoked.

Figure 6.1 presents an example of this mechanism, illustrating some of the situations that
may occur during the execution of the mandatory components inside a task . Section (a) in the
figure presents a table showing the characteristics of the task components, including the wcet
of each mandatory component forming the task. Section (b) shows a possible logical execution
trace. Please note that this figure is not an actual execution chronogram, but a representation
of the actual execution time consumed by mandatory components and the available gain time
at the end of each component. In this execution diagram, the upper part depicts the mandatory
components as contiguous boxes, with their widths being their respective wcets. The lower
part of the diagram shows the actual execution time consumed by each component. Arrows
between both parts point out the difference between the expected (logical) starting time of
each component and the real time. For the sake of clarity, the example task does not contain
any optional component.

When task ¢ is released, its execution time left is made equal to the task’s total wcet, 28
time units. Then, the execution of each component is as follows:

6.4. SUPPORT FOR WCET EXCEPTIONS

Component Type Wecet Slack Fraction
Yi1 M 5 _
Yi2 M 6 -
Vi3 M 3 -
Yia M 11 _
Yis M 3 _

(a) Internal structure of the example task <.

WCETs

Execution

Gain Time

(b) A possible execution of task ¢, illustrating the actual execution time consumed

by each mandatory component and the gain time produced.

Figure 6.1: Example of the compensation mechanism.

89

90 CHAPTER 6. TIMING EXCEPTION SUPPORT

e Component ;1. This component has a wcet of 5 time units, but it consumes only 3 of
them. Thus, at the end of its execution, there is a gain time of 2 time units (this time
is added to the slack time available at all priority levels equal to or lower than ¢). The
execution time left of task ¢ at this point is set to 23 time units.

e Component ;2. The second component executes for 7 time units, that is, one time unit
beyond its wcet. Since the task has not exceeded its total wcet, this situation is detected
by the system at the end of ~y;5. The system stores the local fault as profiling information
and enters in compensation mode for the task. The execution time left of task i is set
to 16 time units (that is, one time unit lower than the theoretical remaining wcet of the
task).

e Component ;3. The third component also executes for one time unit more than its wcet,
which is 3 units, producing another local fault for the task. As for the previous compo-
nent, this local fault does not produce an actual wcet exception since the task’s wcet has
not been violated (the task’s execution time left has not reached zero). Nevertheless, the
previous excess of one time unit produced by component ;5 has been incremented in
another time unit due to this fault. As a result, the execution time left of task ¢ is set to
12 time units (that is, two time units lower than the theoretical remaining wcet of the
task).

e Component ;4. This component consumes 5 out of the 11 time units of its wcer. When
the component ends, the task’s execution time left is then set to 3 time units, which
matches the remaining wcet for the task. Thus, the component’s unused execution time
is utilized for compensating the excess due to the previous two local faults (2 time units).
Furthermore, after the compensation, there is still some gain time (4 time units), which
can be turned into slack time. As a result, after the execution of this component, the two
local faults produced previously have been corrected and the system turns again into the
no-fault mode for task 4.

e Component ;5. The fifth component then executes in no-fault mode, and its gain time
(1 unit) is normally reclaimed as slack time. Note that, if this component had tried to
execute for more than 3 time units, the execution time left for task # would have reached
0, and then the system would have immediately detected it and raised a wcet exception.

Overall, by following the presented behaviour, the system is able to compensate (whenever
possible) for the local faults produced by mandatory components inside the task. Therefore,
the proposed mechanism effectively delays raising a wcet exception up to the last possible
moment (i.e., when the total wcet of the task is exceeded). This maximizes the amount of
mandatory components that can be executed and increases the probability of solving the local
faults by means of the compensation mechanism.

At this level, there are actually two alternative compensation mechanisms and it is inter-
esting to note why the framework has selected the one presented above. The two possible
mechanisms are based on:

6.4. SUPPORT FOR WCET EXCEPTIONS 91

a) Reclaiming each task’s gain time at the end of the task’s release. This alternative ac-
cumulates the gain time being produced at the end of each mandatory component and
only turns this time into slack time when a/l the task’s mandatory components have been
executed.

b) Reclaiming gain time at the end of each mandatory component. This is the alternative
adopted by the framework, in which gain time is reclaimed as soon as each mandatory
component finishes.

At first glance, alternative (a) seems more reasonable, since it reserves the gain time each
task may be producing in order to compensate in advance for a potential local fault. In other
words, here gain time is turned into a time budget for a potential later excess. Furthermore, all
the remaining gain time can be reclaimed as slack time at the end of the task’s last mandatory
component. However, this alternative prevents the optional components of each task (at least
these defined between mandatory components) to get any extra slack due to its own task’s
gain time. As a result, alternative (a) optimizes the case where faults do occur, but worsens the
scheduling possibilities of optional components during the normal execution of the system.
Conversely, the selected alternative (b) offers the best gain-time performance in absence of
faults (which is obviously the regular case), and a compensation mechanism after a local fault
has actually been produced.

6.4.2 Handling of wcet Exceptions

According to the detection mechanism introduced in the previous section, when a wcet excep-
tion is raised at run time, the handling mechanism now presented is invoked. The handling
mechanism is based on the framework’s premise that no task can be allowed to run beyond its
wcet. Therefore, the first action taken by the system when a task produces a wcet exception
is to terminate this task. The termination process releases any resource (e.g, locked mutexes)
allocated for the faulty task and then forces the task to immediately finish its current release.
Furthermore, the task’s context is reset to its initial status. Thus, at its next periodical release,
the task will not start running at the point it was interrupted because of the exception; it will
start running its first component, just as if the fault has not occurred. If there is not a handler
associated to the faulty task, then the handling mechanism ends with this termination process;
otherwise, the task’s handler is activated and executed. This option is now presented.

As introduced at the beginning of this section, handlers are defined as extra components
(either mandatory or optional) which are attached to the application tasks. In absence of a wcet
exception, these ‘components’ are always omitted. On the contrary, when a task for which a
handler is defined produces an exception, this handler is activated. The handler will then be
scheduled according to its type, as follows:

a) Mandatory handlers. Once released, they become ready entities to be scheduled at the
real-time level. For scheduling purposes, a mandatory handler is considered as a ready
task, at the priority defined for the handler, containing a single mandatory component.

92 CHAPTER 6. TIMING EXCEPTION SUPPORT

This allows the first-level scheduler to schedule it away from any particular task, and to
select it in advance of a task with the same priority. The handler wcet, provided by the
application designer, is required in order to calculate each task’s worst-case interference.
This interference is needed for both the off-line feasibility test and the run-time slack
time computation.

b) Optional handlers. These components, when released, are also considered as ready
tasks at the real-time level. In particular, the first-level scheduler considers an optional
handler as a ready task, at the particular priority defined for the handler, which wants to
execute an optional component with a slack fraction of 1.0. Following the scheduling
policy introduced in Section 4.4.1, the handler has to wait until it is the highest priority
ready task and a slack interval can be scheduled for it. When both conditions hold, the
system executes the handler in the slack interval, but at the real-time level. If the slack
interval is exhausted before the handler has finished, then the handler has to wait until
a future moment at which the two mentioned conditions are simultaneously satisfied
again.

There is an important issue about handler scheduling that needs further discussion here: to
define what happens if a mandatory handler exceeds its wcet at run time. This is a real pos-
sibility, although obviously it should never be produced, and hence it is explicitly addressed
by the framework. When a mandatory handler is executed, the mechanism of detecting task
wecet exceptions is used in order to control if the handler consumes its maximum computation
time. The issue here is to establish which actions to take if the handler actually produces a
wcet exception. The framework’s premise of never allowing a task to exceed its wcet implies
terminating the handler, but it may be dangerous for the application to just kill running han-
dlers without executing any correcting action. Besides, it is not reasonable for the designer to
define handlers to deal with handler’s exceptions, because these new handlers would require
more handlers, and so on. The solution adopted by the framework is that, if a mandatory han-
dler commits a wcet exception, the system interrupts it, and continues its execution in slack
time until the handler ends. In other words, from the moment at which the handler fails up to
the end of its current release, the system schedules it as an optional handler.

6.4.3 Introducing User-Defined Handlers into the Task Model

This section revises the framework formal task model, formerly presented in Section 4.3, in
order to add the user-defined handlers to the task definition.

In the formal task model previously presented, each application task 7; is defined in the
following terms:

7; = (T;, Dy, O;, C;, B, H;, M;, Ty)

In this tuple, the factor H;, which represents the exception handler that the designer may
create for task ¢, is now discussed. The handler H; is formally defined by:

6.5. SUPPORT FOR DEADLINE EXCEPTIONS 93

H; = ()/;ha Czh’ ch)

Within this tuple, the super-index h indicates that the attributes refer to a handler rather
than to a task. These attributes are now described:

. Yz.h is the handler’s type, which can be void (if no handler is defined for task 7;), manda-
tory or optional:

Y e {y,M,0}

e C! is the handler’s wcet, which must be known and bounded if the handler is defined as

mandatory:

VTiEA, Hi:(y'ihjczzah),y;h E{M} = ECEN—{OO}lczh <C

e P! is a positive integer number, greater than zero, expressing the fixed priority of the
handler. This priority has to be explicitly specified in the model because it may be
different from the priority of the task for which the handler is created (7).

It is explained above that if a mandatory handler is associated with an application task 4,
then the handler’s wcet value, C?, has to be explicitly considered in the feasibility test. How-
ever, this value cannot be be directly incorporated to the formula calculating task i’s wcet, C;
(Equation 4.1, page 39), because both handler and task may be defined with different priorities.
Therefore, in the general case, mandatory handler wcets have to be explicitly incorporated to
the test’s equation. This is presented in Chapter 8.

6.5 Support for Deadline Exceptions

This section presents the framework mechanisms for detecting and handling deadline excep-
tions. According to the classification discussed in Section 6.3, an explicit support for deadline
exceptions is not required in systems meeting three conditions:

a) the system has been guaranteed by means of a complete feasibility test, including both
the application tasks and the kernel overhead.

b) The application tasks are never allowed to exceed their wcets at run time.

¢) The kernel never produces more overhead than expected.

Both the proposed framework and its corresponding FRTL system are designed in order to
fulfill these requirements and thus, tasks are completely guaranteed to meet their deadlines by

design.

94 CHAPTER 6. TIMING EXCEPTION SUPPORT

However, in practice, there are situations where it is convenient to count on an extra degree
of control and safety at run time: for example, this mechanism was useful while the FRTL was
under development; even now, it is useful if FRTL is running on a new hardware platform. In
situations like these, the measurements of the kernel overhead factors may not be accurate,
potentially jeopardizing task deadlines. The deadline detection mechanism actually allowed
the detection of problems within the kernel more easily.

The support for detecting deadline exceptions was incorporated to the FRTL system in
the early stages of its development, mainly for debugging the kernel itself. This mechanism
basically includes a dynamic tracking of the active deadlines. An active deadline is the mo-
ment at which the next absolute deadline of a ready tasks will expire. The tracking is done
as follows: when a task is released, its deadline becomes active and it is set as the current
time plus the task’s deadline. Then, if the task ends its release before the system time reaches
the task’s active deadline, then this deadline is no longer considered active until the task is
released again; otherwise, if the system time reaches the task’s active deadline, then a dead-
line exception is produced for the task. This exception is signaled by an interrupt which is
explicitly programmed by the run-time system.

When a deadline exception is produced, the handling mechanism which is then invoked is
different from the wcet handling introduced above, since deadline faults are not provoked by
any application task but by the kernel itself, and these faults have to be corrected off line. The
handling mechanism includes the following: when the exception is raised, the system writes
the event, as well as some specific information about the fault, as profiling information. Then,
it stops the application. After the application has been stopped, the profiling information about
the fault can be recovered in order to determine the causes of the fault.

The deadline exception support is thus intended to be used by the system developer rather
than by the application developer, but it is nevertheless available in the FRTL system as an
extra security mechanism. However, since the mechanism itself suffers from significant over-
head®, it is offered as a run-time option. The application may decide to use it or not, by
means of an initialization setting. This option is disabled (by default), unless the application
explicitly enables it.

6.6 Interface Functions

Figure 6.2 contains the profiles of the FRTL interface functions related to the exception support
presented in this chapter. These three functions are available only at the application real-time
level and may only be called at the initialization stage. The rt task_associate_handler
function is called to create a handler for a specific task, which has to be previously created.
The function arguments include the task for which the handler is defined and the name and
initial arguments of the function that the handler will run. The initial data to be passed to a
handler function are useful when different tasks share the same function as a handler, because

5The detection mechanism involves the dynamic maintenance of an ordered list of active deadlines, inserting and
removing these deadlines as tasks start and end their releases.

6.7. SUMMARY AND CONTRIBUTIONS 95

extern int rt_task_associate_handler (RT_TASK task,

void (*func) (void *data),
void *data,

int scheduling_type,
RTIME wcet,

int priority);

extern int rt_deadline_exception_on (void);

extern int rt_deadline_exception_off (void);

Figure 6.2: Set of exception-handling interface functions.

the data may be used to identify the faulty task in the handler’s common code. The rest of the
arguments are the handler’s scheduling type, its wcet and its priority. As explained above in
this chapter, the scheduling type may be either mandatory or optional. If the handler’s type
is mandatory, the wcet argument is required; otherwise, it is ignored. Finally, the priority pa-
rameter is optional: a value of zero within this argument means that the handler inherits the
priority of the task for which it is defined.

The last two functions in the figure are used respectively to activate and deactivate the
deadline exception mechanism inside the first-level scheduler.

6.7 Summary and Contributions

The present chapter has introduced explicit detection and handling mechanisms for timing
exceptions into the framework proposed in this thesis, as a way of giving the framework fault
tolerance capabilities. It has first been justified that, if the run-time kernel can be assumed to
be predictable and its worst-case overhead is known, task deadlines cannot be missed as long
as tasks are never allowed to exceed their wcets. Taking this as a basic premise, the chapter
has presented a sophisticated support for detecting and handling wcet exceptions at run time.

The detection of wcet exceptions has been fully integrated with both the framework task
model and the slack time algorithm used by the first-level scheduler. In this mechanism, the
gain time of tasks is utilized for compensating (whenever possible) the local wcet faults com-
mitted by mandatory components inside the task. The presented compensation mechanism
permits delaying the moment at which the exception is raised as much as possible, effectively
maximizing both the amount of components that can be executed and the probability of com-
pensating the local faults.

The support for handling wcet exceptions presents a well-defined behaviour, in which the
faulty task is immediately aborted and a user-defined handler, if defined, is activated. This
support has taken advantage of all the flexibility present in the framework task model, in such
a way that the designer can implement task handlers and associate them to the application
tasks in the form of extra mandatory or optional components. The definition of handlers is

96 CHAPTER 6. TIMING EXCEPTION SUPPORT

quite sophisticated. It includes several alternatives, such as associating a different handler to
each application task, making several tasks share the same handler, and defining tasks without
any handler. Besides, each handler is defined to be executed at a particular priority, which can
be different from the priority of the task the handler belongs to.

Finally, detection of deadline exceptions is also provided but only as an option, since in this
context a deadline exception can only occur due to excessive overhead produced by the FRTL
kernel. When the appropriate measurements of the kernel overhead are introduced within both
the feasibility test and the run-time system, this detection mechanism can be safely disabled.

Design and Implementation of
the FRTL Run-Time System

This chapter presents the run-time support system (or kernel) implementing the framework
proposed in this thesis in detail. This system is called Flexible Real-Time Linux (FRTL). As
its name suggests, FRTL is an RTOS developed by enhancing the original capabilities of RT-
Linux v1 in order to achieve a sophisticated support which is appropriate for building FRTS.
The FRTL run-time system (or simply FRTL) explicitly offers the framework features dis-
cussed in previous chapters: the task model based on mandatory and optional components, the
two-level software architecture and the synchronization and exception handling facilities. This
chapter explains how these features have been added to RT-Linux. The key design principle
observed throughout the development of FRTL has been to maintain the RTOS as predictable
and efficient as the original RT-Linux system. Predictability is necessary in order to be able to
characterize the RTOS timing behaviour, which can be then introduced in the feasibility test.
Clearly, a real-time application cannot be predictable if the RTOS itself is not predictable. Ef-
ficiency (that is, low overhead) has to be provided as well, since the response speed demanded
by hard real-time applications usually requires exploiting the system processor up to its maxi-
mum speed. In this sense, the RTOS would not be useful in practice if a significant part of the
processor time were “wasted’ by the kernel. The design and implementation issues discussed
in this chapter have made FRTL feature both qualities. This is demonstrated by means of the
complete feasibility test and actual overhead measurements, respectively, which are both pre-
sented in Chapter 8. Besides the run-time system itself, FRTL also includes a set of system

97

98 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

debugging and profiling tools. These tools are also described at the end of the chapter.

7.1 Overall Description of FRTL

This section introduces an overall description of FRTL, emphasizing how the framework func-
tionality has been implemented. The internal design and the implementation details of each
level are then exhaustively discussed in the two following sections.

The general design of FRTL has been developed by combining the functional requirements
of the framework software architecture (described in Section 4.4) and the original RT-Linux
philosophy. The resultant FRTL system is thus decoupled in two levels, the real-time level
and the Linux level. These levels assimilate the framework real-time and non-real-time levels,
respectively. This general scheme is shown in Figure 7.1. In the figure, square boxes in light
grey represent the different parts of the FRTL support system: in the real-time level, these parts
are the first-level scheduler and the frames defining the application tasks; in the non-real-time
level, the FRTL parts are the second-level scheduler and the frames defining the application
optional components. Inside both the application tasks and the application optional compo-
nents, rounded white boxes represent the actual application code. This code corresponds to the
task mandatory components and the optional component versions, respectively. Ovals, such
as the one located at the top of the figure or inside the Linux kernel box represent memory
areas. Finally, white boxes depict parts of Linux which have not been changed.

7.1.1 FRTLs Real-Time Level

According to the framework proposal, the FRTL real-time level has to include the first-level
scheduler and the real-time side of the application (that is, the definition of tasks and the code
of their mandatory components and exception handlers). This level has been implemented
by modifying the original support provided by RT-Linux v1. This support is formed by a few
simple, well-designed, efficient abstractions and services providing hard real-time capabilities.
These capabilities include the soft interrupts mechanism, the rz-task abstraction (or thread
periodically running an application function, inside the Linux kernel address space), a real-
time scheduler dispatching rt-tasks according to their priorities, and the RT-FIFO facility (a
communication channel between rt-tasks and regular Linux processes). All these features have
been described in Section 3.3.2.

Chapters 4 to 6 have introduced the functionality which is expected from the first-level
scheduler, including both specific services to be provided to the application and certain internal
activities which have to be performed. The following subsections summarize these services
and activities, explaining their implementation in FRTL.

7.1. OVERALL DESCRIPTION OF FRTL

RT-Tasks '

Mandatory 1

Mandatory 2
Mandatory M1

The Storage
|
Linux Optional
Server
Process
1
1)2
Version 1 2
Version 2 N
N
Version MN
Other
Processes
Linux kernel é

¢ Read/Write ZF

* Schedule T

Send

Receive

(1) | Sched RT-FIFO

(2) | Events RT-FIFO

Interrupt

Figure 7.1: The Flexible Real-Time Linux system.

99

100 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

Task handling

The framework’s task model defines each application task as a sequence of components. At
the real-time level, only one component inside each ready task is actually able for execution
(the task’s running component). Thus, only one execution thread is actually needed for imple-
menting each application task. For this reason, the first-level scheduler creates one rt-task run
each application task and releases this rt-task according to the task’s period. Each time the rt-
task is released, it executes the functions implementing the mandatory components belonging
to that particular task in order.

To do this, each rt-task is made to run a generic, private *wrapper’ function! which inter-
nally executes the components of a given task ¢. This function is is structured in two nested
loops. The first outer loop is an endless loop which iterates once each time the task is period-
ically released. In each iteration, it completely traverses ¢’s list of components by means of
an inner loop. The rt-task suspends itself at the end of this inner loop, when every component
has been visited. Then, the scheduler will release the rt-task again at ¢’s following period. The
inner loop visits one component <y;; per iteration. This component can be either mandatory
or optional (in the optional case, the rt-task actually considers the list of contiguous optional
components 7;;). If component 7;; is mandatory, the rt-task invokes 7;;’s function, that is,
it directly executes the component. Otherwise, if v;; is optional, a message is sent to the
second-level scheduler (by means of a dedicated RT-FIFO, called events fifo) for each optional
component in 7y;;. These messages include the identifiers of the components and their dead-
lines, so that they can be activated inside the non-real-time level. Then, the scheduler checks
whether or not a slack interval can be scheduled for the non-real-time level.

Slack computation

The FRTL first-level scheduler uses the system slack time in order to determine the execution
intervals of the non-real-time level, according to the calculations presented in Section 4.4.1.
These calculations are based on the available slack time at each priority level, which the sched-
uler has to dynamically update. This slack update may be performed by using a standard slack
stealing algorithm. Among the different algorithms proposed in the literature, the scheduler
utilizes the Dynamic Approximate Slack Stealing algorithm (DASS) [Dav93b]. The DASS
algorithm has been selected, after a performing a comparative study presented in [Gar97b],
because it features an appropriate balance between its performance (i.e., the amount of slack
time it is able to steal) and the overhead it produces.

Release of dynamic mandatory components

The FRTL first-level scheduler includes the algorithm of accepting firm tasks introduced
in [Dav95] as the test for accepting mandatory dynamic components when they are released.

YA wrapper is a function used to enclose the invocation of other function(s). This is used in situations where the
invocation involves other specific actions that must be hidden from the function(s) being called.

7.1. OVERALL DESCRIPTION OF FRTL 101

The test actually implemented has adapted the original algorithm in order to use the DASS
algorithm instead of the original exact slack stealing algorithm (DSS). The current imple-
mentation only allows a dynamic mandatory component to be released by another mandatory
component (either dynamic or defined inside a task). That is, mandatory dynamic components
cannot be invoked from the non-real-time side of the application.

Scheduling policy

The first-level scheduler implements the scheduling policy described in Section 4.4.1. This
policy is rewritten here in terms of the implemented run-time system.

e If the running component y;; of the highest priority runnable task ¢ is mandatory, the
scheduler directly puts ¢’s rt-task to execution since, as explained above, mandatory
components are executed by rt-tasks.

e Otherwise, if vy;; is optional, the scheduler checks whether there is slack available for
7;;- If so, the scheduler calculates the next slack interval and sends a message to the
second-level scheduler (by means of another dedicated RT-FIFO called the sched fifo),
indicating the length of the interval. Then, the scheduler runs the Linux task* during this
interval. The FRTL non-real-time level, which is actually implemented as a user level
process inside Linux, can be subsequently executed, as explained below.

However, if slack is not available for 'y;-“j, then the scheduler executes ¢’s rt-task. Inside
this rt-task, the optional components belonging to ;; are skipped and the next manda-
tory component of 4, if any, is then executed.

Please note that the abstract message queue, which according to Section 4.4.1 is used
for communicating the two schedulers, is actually decoupled in two RT-FIFOs, the events fifo
and the sched fifo. The former is used by rt-tasks to inform the second-level scheduler about
the optional components to activate and their respective deadlines. The sched fifo is used each
time the non-real-time level is executed during a slack interval, to both inform the second-level
scheduler about the length of the interval and to achieve the synchronization between the two
schedulers imposed by the software architecture. This is further detailed below.

Synchronization mechanisms

As presented in Chapter 5, the framework proposes two alternative synchronization mecha-
nisms in order to serialize the access of the application components to their shared data. The
mechanisms provide mutexes following adapted versions of PCP and CSP algorithms, respec-
tively. Since mandatory and optional components are executed at different running levels,
access to mutexes has to be provided at each level by means of the corresponding scheduler.
Howeyver, this has to be done in a coordinated manner. Thus, both schedulers have to be able
to access the same information about the status of each mutex; because of this, the internal

2Please recall that in RT-Linux, the entire Linux is run by means of a special rt-task, usually called the Linux task.

102 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

information about mutexes is stored in a shared memory area which is accessible from both
system levels. This area is called the storage in Figure 7.1. A portion of the storage is re-
served in advance for the schedulers’ private use, including the mutex support and the debug
mechanism described at the end of this chapter, in Section 7.4.

Timing exception mechanisms

The timing exception support defined by the framework includes the detection and handling
of wcet faults and (optionally) the detection of deadline faults at the real-time level. Thus,
these actions are performed by the FRTL first-level scheduler. In particular, the scheduler de-
tects wcet exceptions by keeping track of the remaining execution time of each runnable task.
Deadline exceptions are detected by keeping track of the active deadlines, that is, the next ab-
solute deadline of all ready tasks. At each scheduling point, the first-level scheduler programs
a timer interrupt for the nearest potential exception (that is, the nearest active deadline or the
remaining execution time of the task which is about to execute) and then raises the exception
if this interrupt is actually produced.

According to the exception support described in Chapter 6, when a wcet exception is pro-
duced, the faulty task is terminated and the task’s handler, if any, becomes runnable. There-
fore, the task’s handler requires an execution thread which is different than the task’s thread.
For this reason, the first-level scheduler creates a rt-task for each wcet handler and makes it
run another generic wrapper function. This wrapper is internally structured in an endless loop,
which internally invokes the handler’s function and then suspends itself until the scheduler re-
leases the handler again. As a result, each time the handler rt-task executed, it runs the handler
once. On the other hand, the framework requirement of scheduling tasks and threads indepen-
dently also forces the FRTL first-level scheduler to create a different thread for executing each
one.

7.1.2 FRTLs Linux Level

As shown in Figure 7.1, the framework non-real-time level is implemented as a regular user-
level Linux process, called optional server. In this process, the application code corresponding
to the optional component versions is linked along with a set of library functions implementing
the second-level scheduler. The optional server process is executed at the Linux real-time class
highest priority, which ensures that each time the first-level scheduler executes Linux, the
optional server process always takes control in preference to any other runnable user process.

The optional server process is a multi-threaded process, with one thread running the
second-level scheduler. The scheduler then creates a different thread for each optional com-
ponent version which has to be run. This allows each version to be independently selected and
executed, according to the scheduler policy. The internal design of this process ensures that
each time the process is executed by Linux, only the scheduler thread is actually able to run.
The threads corresponding to all the versions are stopped in such a way that they can only be
executed by the second-level scheduler. The second-level scheduler runs an endless loop, with

7.1. OVERALL DESCRIPTION OF FRTL 103

one iteration per slack interval. The following describes the implementation of the sequence
of actions executed by the scheduler in each iteration:

1. At the beginning of the loop, the scheduler is suspended by having previously read the
sched fifo in a blocking manner. The entire process is thus stopped until the message
from the first-level scheduler arrives. When this occurs, the second-level scheduler
wakes up and gets the length of the slack interval during which it will execute from the

message.

2. The scheduler then retrieves the messages in the events fifo. These messages indicate
the optional components to be activated and their deadlines. The fact of having two
message queues instead of one allows for a more efficient and flexible implementation
of the second-level scheduler. Also, this solution is more efficient because if an optional
component is ready during more than one slack interval, its activation is reported only
once to the scheduler (in its first slack interval); hence, the time spent checking which
new components have to be activated is reduced. Having two queues is also more flex-
ible, because the events fifo can also be used by the application components in order to
inform the second-level scheduler about other dynamic information which is significant
for its particular scheduling policy (e.g. changes in the environment). Thus, the sched
fifo is only used for synchronizing both schedulers, while the events fifo is only used for
communicating all the events required for the non-real-time level scheduling policy to
the second-level scheduler.

3. At this point, the scheduler has to remove all the expired optional components (those
whose deadlines have been reached) from the list of active components.

4. The rest of the slack interval is used by the scheduler for running the versions belonging
to the ready optional components. In order to do so, it enters into an inner loop, in which
it iterates while the end of the slack interval has not been reached and there are optional
components still to schedule. In each iteration, it selects a particular version of a ready
optional component, and then runs this version for a certain time, which is always less
than or equal to the remaining slack interval. The three decisions taken by the scheduler
in each iteration (component, version, and time to run) are the output parameters of a
single function inside the second-level scheduler code. Thus, the non-real-time level
scheduling policy can be changed, if necessary, by simply reprogramming this function.

5. The scheduler exits the inner loop when either the slack interval is almost consumed or
the scheduler determines that there is nothing else to execute. At this moment, before
Linux is actually preempted by the real-time level, the second-level scheduler suspends
itself by reading the sched fifo. This suspends the entire optional server process until
the following slack interval, when this sequence will start again. The time remaining
(i.e., the time from the suspension of the second-level scheduler to the actual moment at
which Linux is preempted by the real-time level) is then used by other Linux processes.

104 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

In the development of the FRTL non-real-time level, two alternative design approaches
were evaluated. The first one is to consider that the entire Linux is the non-real-time level,
while the second one is to implement this level inside a user-level process. It is now explained
why the second alternative was finally chosen. In the first approach, the second-level sched-
uler corresponds to the Linux scheduler, and the optional component versions could be imple-
mented as either different processes or different kernel threads running in the same process.
Compared to the second alternative, this approach eliminates one step in the non-real-time
level execution, making both FRTL schedulers be more tightly coupled. Although this is a
good feature, the first alternative design was rejected for two reasons. First, as the Linux ker-
nel is in constant development (new versions appear very often), the code of the second-level
scheduler would require constant reviews in order to keep it compatible with these new ver-
sions. And second, the addition of new scheduling policies to the non-real-time level would
be extremely more complex for the application developer. As a result, the decision of building
the non-real-time level at the Linux user level was taken for both compatibility and scalabil-
ity reasons. Furthermore, the specific design and implementation of the non-real-time level
inside the optional server process has achieved a reasonable degree of responsiveness at the
user level, which is considered to be sufficient for the non-real-time level.

7.1.3 The Storage

The shared memory area by which mandatory and optional components communicate is called
the storage in the FRTL system, as depicted in Figure 7.1. Access to this shared memory
is provided by the so-called Storage Manager. This is an abstract entity which provides a
structured way of accessing the memory (that otherwise would be a raw set of bytes) to the
application. As happens for other parts of FRTL, the functionality provided by the Storage
Manager has been decoupled and implemented inside both the first-level and the second-level
schedulers. The Manager’s functionality includes two facilities:

a) A special mechanism which allows both system levels to physically share a memory
region. This mechanism has been developed by the RT-Linux community?. Part of this
shared memory is reserved to be used by the first-level scheduler in order to implement
the debug and profiling mechanism described at the end of this chapter. The rest of
the shared memory is the area actually called the storage, which the Storage Manager
makes available for allocating shared memory objects.

b) A predictable dynamic memory allocator of objects in the storage. This allocator al-
lows the two schedulers and the application components to allocate memory objects in
(and to deallocate them from) the storage in a bounded time. Once allocated, objects
are transparently accessed from both levels of the system. A part of the storage is re-
served for the schedulers’ private use, which includes the implementation of mutexes:

3The actual mechanism of memory sharing implemented in RT-Linux v1 has an upper bound on the amount of
memory that can be shared, despite of the amount of physical memory available on the computer. This limit is exactly
of 4 megabytes minus one byte.

7.2. THE REAL-TIME LEVEL 105

the structure storing the internal status of each mutex created by the application is al-
located in the storage by the first-level scheduler; then this structure can be accessed
by either scheduler when needed. The rest of the storage is then made available for the
application components in order to allocate (and use) their own memory objects at run

time.

The Storage Manager is not further detailed here because it has not been developed by the
author of this thesis. A complete description can be found in [Esp98].

7.2 The Real-Time Level

This section describes the FRTL real-time level in detail, specially discussing the design and
implementation of th first-level scheduler. The section first discusses the main design princi-
ples which form the basis of both the scheduler internal structure and its run-time behaviour.
By following these principles, the FRTL real-time level has been implemented as a predictable,
efficient and scalable real-time kernel. Second, the section presents some relevant implemen-
tation details of this level.

7.2.1 Interrupt-Driven Kernel

The first design decision that influences the timing behaviour of the real-time level is that it
is interrupt driven, as opposed to being tick driven. This means that, rather than producing
an interrupt at each clock tick, the hardware timer is programmed to interrupt only at certain
time points. These particular points are significant for the first-level scheduler because they
signal time events, such as the release of a periodic task, the end of the scheduled slack time
or a wcet exception.

The interrupt-driven scheme is more efficient than the tick-driven approach, because it
produces less overhead: interrupts are produced only at instants which have relevancy for the
system. However, this design results in a more complex implementation, since the use of
the hardware timer has to be multiplexed among all the different time events required by the
kernel. This multiplexing can be done by both maintaining a list of future time events and
executing the following actions each time an interrupt is produced:

1. Consulting the hardware timer in order to set the current system time.

2. Checking the list of time events in order to find out the particular time event (or events)
for which the current interrupt was programmed. This may cause the execution of fur-
ther code dealing with this particular interrupt.

3. Removing the time event(s) corresponding to the current timer interrupt from the list
and programming the timer to interrupt at the following (nearest) time event.

This scheme is not only relevant for the real-time level internal design but also for the
system schedulability test, as shown in Chapter 8.

106 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

7.2.2 Common Entry and Exit Points

As every operating system, the first-level scheduler is an event driven system, meaning that
its code is always executed as a result of a system event. A system event is typically either
a hardware interrupt or a system call invoked by the application. In response to such an
event, the system respectively executes the handler associated with the interrupt (usually called
Interrupt Service Routine (ISR)) or the function associated with the system call.

Some real-time scheduling policies require that the functions implementing interrupt han-
dlers and system calls see an updated snapshot of the system, specially of the dynamic timing
information (such as the current system time). Therefore, this timing information must be
updated before these functions are executed. In particular, dynamic slack stealing algorithms
need such an update, which must include not only the current system time but also the recal-
culation of the slack time at each priority level.

In order to meet this requirement, the first-level scheduler has been designed to have a
homogeneous scheme for handling every system event. In this scheme, the scheduler code
dealing with each particular system event is structured in the following three sequential steps:

1. System Update. This update is performed by calling a function that updates both the
system time and the dynamic timing attributes of each application task (such as its slack
time, execution left, blocking factor, etc.). This function is also in charge of releasing
tasks according to their periods and of storing profiling information about the execution
of tasks.

2. Specific code. In this step, the code dealing with the particular event produced is in-
voked. Typically, the scheduling conditions for the running task or other tasks are mod-
ified by this code. For example, the specific code for a PCP mutex lock system call may
suspend the calling (running) task.

3. Rescheduling. After an interrupt or system call is produced, the scheduler is normally
required to choose the task (and component) to be run next. This is done by calling
a rescheduling function. If the selected new task is the same one that it was running
before the event was produced, then the call to the rescheduling function simply ends,
making that task resume execution. Otherwise, an explicit context switch is produced to
the new running task. In any case (before either ending or producing a context switch)
this function has to reprogram the hardware timer to interrupt at the next time event.

Thus, the update and rescheduling functions may be considered, respectively, as the com-
mon entry and exit points of all the events processed by the first-level scheduler. The design
decision of having common entry and exit points has been adopted not only for the reasons
expressed above, but also because it actually simplifies the system timing behaviour and the
addition of new facilities. This effectively makes the FRTL system easier to analyze as well
as more scalable.

7.2. THE REAL-TIME LEVEL 107

7.2.3 The Scheduler’s Layered Structure

Many general-purpose operating systems are conceptually structured in levels or layers, with
each layer being supported by the functionality provided by the previous one(s). Some of
those systems are even implemented in perfectly isolated parts, related only by some means
of communication mechanism (such as the Minix operating system [Tan97]). This layered
internal design, either conceptual or actually implemented, permits building up the system
in a progressive fashion, reasoning about it at different abstraction levels and detecting (and
correcting) errors more easily, as shown by Dijkstra in [Dij68].

Application Layer

Scheduling Layer

Core Layer

Hardware Abstraction Layer

HARDWARE

Figure 7.2: The internal layered design of the FRTL’s real-time level.

This design paradigm may also be applied to hard real-time kernels, even though they are
usually simpler than typical general-purpose operating systems, in order to be small and to
provide a predictable behaviour. As a result, the FRTL real-time level has been designed to be
structured in the following four layers, as depicted in Figure 7.2:

a) Hardware Abstraction Layer. The purpose of this layer is to hide all particular details
of the hardware architecture. It contains the hardware-dependent code, normally written

108 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

in assembly language, which basically includes the lowest level of the hardware inter-
rupt handling and the rt-task context switch code. Practically all of this layer’s code is
hardcoded into the Linux kernel and most of it has not been changed from the original
RT-Linux vl version.

b) Core Layer. This layer provides the upper levels with the functionality which is in-
dependent from the specific scheduling policy and task model that the kernel offers to
the application. This functionality includes the task context abstraction and some basic
actions which are needed regardless of the system scheduling policy.

The task context abstraction hides the actual low-level elements forming an rt-task con-
text (the stack, the Floating Point Unit (FPU) registers, the hardware interrupt mask,
etc.) by providing functions for creating, destroying and executing a rt-task context.
A specific function for creating the context of the Linux rt-task (i.e. the task that ex-
ecutes Linux) is also provided, since this rt-task has some special characteristics that
differentiate it from the application regular rt-tasks.

According to this layered design, the two common steps which are executed when pro-
cessing a system event (that is, system update and rescheduling, as presented in Sec-

tion 7.2.2) have also been decoupled into two functions, one at the Core layer and an-

other at the Scheduling layer. The system update step is decoupledin the rt _update_system
and the rt _update functions, while the rescheduling step is decoupledin the rt .dispatch
and the rt_schedule functions.

This layer provides the rt _update_system and rt_dispatch functions, which
execute the policy-independent actions of the related steps. The rt .update_system
is the first function to be called at each event being processed by the first-level scheduler,
since it updates the system time (clearly, this is required by any further update). The
rt_dispatch is the last function to be called at the end of processing the event, after
the scheduler has decided the next task to execute and the moment corresponding to the
next time event. Taking these two parameters, the rt _dispatch function programs
the hardware timer to interrupt at that moment and then restores the context of the
selected rt-task®.

According to this design, the rt _update_systemand rt_dispatch functions are
actually the first and last function being invoked within the first-level scheduler at ev-
ery system event. This actually permits the implementation of two interesting built-in
mechanisms. The first one is the automatic disabling of hardware interrupts within the
scheduler code: when an event is produced, the rt _update_system saves the inter-
rupt state of the running rt-task in its context and then disables the hardware interrupts;
in its turn, the rt _dispatch function restores the interrupt state of the rt-task selected

“If the selected rt-task was the same one that was running before processing the system event, then its context is
not actually restored. In this case, the rt _dispatch function finishes, returning to the invoking function, which also
ends, and so on. When the all the pending functions inside the scheduler code have finished, the rt-task automatically
resumes execution.

7.2. THE REAL-TIME LEVEL 109

c)

d)

to run, just before either returning or context switching to this rt-task’s context. As a
result, the kernel code is always executed with the hardware interrupts disabled with-
out requiring any action from the upper layers. The second mechanism implemented
by means of these two functions is a policy-independent mechanism for measuring the
kernel overhead. This mechanism is further explained in Section 7.4.

Scheduling Layer. This layer supports the particular task model and scheduling policy
provided by the first-level scheduler and implements the actual services available to the
application. In particular, the scheduling policy is implemented within the rt _-udpate
and rt_schedule functions. These functions include the policy-dependent code of
the update and rescheduling steps executed at each system event. Figure 7.3 illustrates
the internal structure of a generic interrupt handler or system call (represented in the fig-
ure as the rt_system_event () function), illustrating the actual functions involved.
The figure also indicates the sequence of function calls performed each time a system
event produces the execution of this generic rt _system_event () function.

The rt_update function first calls the Core layer’s rt _system_update function
to update the system time and then performs the specific update required by the first-
level scheduler policy (it recomputes the slack time at each required priority level and
releases periodic tasks according to their periods). After processing the specific event
produced, the rt_schedule function is called. This function decides which rt-task
has to be executed next and which is the next relevant time event for the real-time level;
then it calls rt_dispatch indicating both data.

Application Layer. This layer contains the real-time level of the application. It only
uses the services provided by the previous layer, which altogether form the set of sys-
tem calls available. These services can be divided into three groups: the initialization
functions, the system calls and the cleanup functions. This classification is the topic of
the following section.

The proposed layered design, besides the advantages mentioned at the beginning of the

section, provides a rational structure by which the kernel can be enhanced with a reason-

ably low number of changes required. The separation between the Hardware Abstraction and

the Core layers permits the system to be ported to other hardware architectures by simply

re-implementing the Hardware Abstraction layer. The separation between the Core and the

Scheduling layers allows the scheduling policy and task model to be easily changed by simply

changing the Scheduling layer. Furthermore, new facilities can be easily added to the system,

in the Scheduling layer, without having to deal with several kernel low-level details. Overall,

this design has facilitated the addition of functionality to FRTL in a progressive and consistent

manner.

110 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

System
Call

Application

int rt_system_event(...) {

rt_update();
@ . \@) Scheduling
/* Specific code */

rt_schedule() j———0— |
}

A

rt_update_system() ; rt_dispatch();

Core

Hardware Abstraction Layer

Hardware
Interrupt

Hardware

Figure 7.3: Sequence of calls when processing a system event: (1) The system event is produced
when either the application invokes a system call or the hardware timer interrupts the processor;
each possible event produces the execution of a scheduler function which is here generically called
rt_system_event. (2) rt_update first calls rt _system_update and then executes its own up-
date. (3) The particular event produced is processed inside rt_system_event. (4) After processing
the event, rt_scheduler is invoked; this function selects both the next rt-task to run and the next
instant for a time event, and, finally, it invokes rt_dispatch to run that rt-task and to program the

hardware timer to interrupt at the time event instant.

7.2. THE REAL-TIME LEVEL 111

7.2.4 Taxonomy of System Calls

In many RTOSs, and also in the Realtime Extensions of the POSIX standard, each interface
function offered to the real-time application can be called at any time during the application
execution. For example, there is no restriction for creating new threads while the application
is running. This presents a problem since the application cannot be sure in advance that all
the resources it sequentially requests are available. Following the example, if an application
invokes a system call for creating a new thread and the creation function fails, then the ap-
plication may completely crash while actually running. Clearly, this is not acceptable in hard
real-time systems.

Because of this, the set of interface functions provided to the Application Layer in FRTL
has been divided into three groups, depending on the moment at which they are allowed to be
called:

a) Initialization functions. Functions in this group can only be called before the appli-
cation starts running. These include the functions for creating the application tasks,
components, and all other resources required (mutexes, exception handlers), the func-
tions for configuring the first-level scheduler (in aspects such as the mutex policy or the
deadline exception mechanism), and the function to start running the application (called
rt_app-start). This function presents two purposes. The first purpose is calculating
some values required by the time the application starts running but that cannot be cal-
culated after all tasks have been created (such as the initial slack time at each priority
level). The second purpose is to stop accepting calls to initialization functions. This fact
ensures that all the resources needed by the application are available before it actually
starts running, or else it is not started.

b) System calls. The set of system calls groups all the services the first-level scheduler
offers to the application real-time level, while it is running. In the current FRTL support,
this group is formed by the following functions: rt mutex_lock, rt mutex_unlock
and rt _task_run_dynamic_mandatory.

¢) Cleanup functions. Since hard real-time applications are normally used for controlling
some environment, they are supposed to work continuously, without any stop. How-
ever, there are circumstances where the application must be switched off (e.g., during
the application test phase or during some software or hardware fixing). Stopping such
an application involves to carefully deallocate all the resources being used, which can
be a non-trivial process. For this reason, the FRTL system offers a special function to
safely stopping the application (rt _app-stop). This function is in charge for correctly
deallocating all the resources and for properly stopping all hardware devices, thus en-
suring that the system remains in a safe state until the moment to start the application
again. This has been very useful during the testing phase of FRTL.

112 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

7.2.5 Implementation Details

This section presents the implementation issues that influence the timing behaviour of the
first-level scheduler. The discussion presented here is referenced afterwards in the sections
analyzing this timing behaviour, in Chapter 8.

Disabling of Hardware Interrupts

Consider a situation in which an operating system is running a system call on behalf of the
running task and a hardware interrupt arrives, making the system execute the corresponding
service routine. In situations like this, more than one thread may be executing the operating
system code. Thus, sensitive sections of the system code, such as access to global variables,
have to be protected from race conditions. The disabling of hardware interrupts is one of
the most widely used mechanism for obtaining mutual exclusion in the code of an operating
system. This mechanism has the negative effect of delaying the notification of a hardware
interrupt, if the interrupt is received while the scheduler has disabled interrupts. The disabling
may be done locally, in order to protect only certain sections of code, or globally, that is,
affecting the entire operating system code. Systems using local disabling are more efficient,
but have to consider the possibility of multiple execution threads in the sections of code in
which interrupts are not disabled, which normally leads to more complex design and coding.
The global disabling generally produces longer delays in the processing of interrupts, but
allows for a clearer implementation of the operating system. Obviously, this issue has to be
carefully considered when designing an RTOS.

The FRTL first-level scheduler uses a global disabling of interrupts as a means of internal
synchronization. In particular, as stated in Section 7.2.3, interrupts are automatically disabled
at the beginning of rt _update_system and enabled again at the end of rt _dispatch,
just before returning (or context switching) to the running task. This decision is based on
the fact that the scheduler code is relatively small and has been designed and coded very
efficiently. Therefore, disabling interrupts only in special sections of code is not worthwhile,
since this would lead to a small gain in performance but to a great increase in code complexity.

Implementation of the Application Tasks

From the application’s point of view, tasks are actually a sort of frame containing optional
and mandatory components which are periodically executed. In fact, the application designer
writes the code of components and then defines tasks by adding their corresponding compo-
nents. Therefore, an important issue in the FRTL first-level scheduler is how application tasks
are internally implemented.

In the FRTL real-time level, each application task is executed by an rt-task that is made
to execute a private function called rt _task_runner. A simplified version of this function
is presented in Figure 7.4. This generic function receives a single argument: a pointer to the
private structure containing all the information about the particular application task that the

7.2. THE REAL-TIME LEVEL 113

voild rt_task_runner (rt_task_t *task) {
rt_component_t *comp;

while (1)
comp = first_component (task);
while (comp != NULL) ({
task—->running_component = comp;
if (is_mandatory (comp)) {

(comp—>func) (comp—->data) ;
rt_gain_time_update (task, comp) ;
comp = comp->next;

} else {
rt_run_optional (taks, comp) ;
comp = next_mandatory (comp) ;

}
rt_task_end();

Figure 7.4: The rt_task_runner function.

function has to execute. From that structure, the rt task_runner function extracts the
information about the specific components belonging to the task.

The rt _task_runner contains two nested loops. The outer loop is endless, performing
one iteration each time the task is periodically activated. In its turn, the inner loop is in charge
of completely traversing the task list of components, starting at the first component and call-
ing the rt _task_end function after the last one. Each iteration of the inner loop examines
one component. This component is set as the task’s running component (this attribute is later
checked in the rt _schedule function). If the running component is mandatory, its function
is directly called; after that, the rt _gain_t ime_update function is invoked. Otherwise, if
the component is optional, the rt _run_optional function is invoked; after this call is fin-
ished, the rest of contiguous optional components are skipped until the task’s next mandatory
component, if any, is found.

An important issue at this level is that these three functions invoked within the rt _task_runner
function (rt_gain_time_update, rt_run_optional and rt_task_end) are actually
implicit system calls for the first-level scheduler. The term implicit here means that these in-
vocations are hidden to the application programmer. Nevertheless, these three functions are
proper system calls, meaning that they are internally designed by following the three-step
scheme explained above in Section 7.2.2 and executed with the interrupts disabled. The pur-
pose of each of these functions is now briefly reviewed.

The rt_gain_time_update function is used to keep track of the task’s gain time. As
explained in Section 6.4.1, the first-level scheduler uses the gain time corresponding to manda-
tory components for two alternative purposes: if a task has committed one or more local faults,
then the gain time produced by each of the task’s mandatory components is used to compen-

114 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

sate for the fault(s). Otherwise, this gain time is reclaimed as slack available for the task’s
priority level and all lower priority levels. These two alternative actions are performed inside
this system call.

When the current running component -y;; is optional, the rt_run_optional function is
invoked. This system call first builds the list of contiguous optional components y;;, with the
current component leading this list. Then, it checks whether or not there is slack time available
for ~7;. If there is some slack available, the rt_run_optional function sends a message
to the second-level scheduler for each optional component in the list. In each message, the
component’s identifier and its deadline are included. These messages are sent through the
events fifo, as explained in Section 7.1. At the end of this system call, the rt _schedule
function is called. In this case, the function will select component y;; for execution and, after
calculating the current slack interval, it will execute Linux during the interval. Please note
that, since all the contiguous optional components in +y;; are activated at once, there is no need
to return to the rt-task (hence to the real-time level) in order to activate and schedule each one.
For this reason, when control returns to the rt-task code, it has to advance not just to the next
component, but specifically to the next mandatory one.

Finally, the rt _task_end is invoked when there are no more components to be run in the
task. In this situation, the current release of the task is finished and the task must be suspended
until its next periodic release. Then, this system call calculates the slack time at the task’s
priority level and changes the task’s status (from ready to delayed). This necessarily makes
another task be selected to run when the rt _schedule function is called at the end of this
system call.

Handling of Timer Interrupts

The first-level scheduler has direct access to the hardware interrupts, meaning that it can cap-
ture any of these interrupts in preference to the Linux kernel. To do so, it has to install a
handler for a particular interrupt. This handler is automatically invoked when this interrupt is
produced.

The only hardware interrupt used by the first-level scheduler is the timer interrupt, which is
captured by the rt _timer_handler function. As explained in Section 7.2.1, the scheduler
has to multiplex this timer in order to produce the different types of time events required by the
real-time level. Specifically, the first-level scheduler distinguishes three types of time events:

a) The release of an application task.
b) The end of a slack interval.

¢) A timing exception (either a wcet or a deadline exception) caused by a task.

The multiplexing of the hardware timer is done by means of two actions, executed by the
first-level scheduler:

7.2. THE REAL-TIME LEVEL 115

volid rt_timer_handler (void) {
rt_task_t *task;

/* (1) System Update */
rt_update () ;

/* (2) Wcet and Deadline exception checking */
if (running_task != LINUX_TASK
&& running_task->execution_left == 0) {
rt_raise_exception (running_task, WCET);
}
if (deadline_exception_support_activated) {
task = list_get_head(list_of_active_deadlines);
now = get_time();
while (task != NULL && task—->next_deadline <= now) {
rt_raise_exception(task, DEADLINE) ;
list_remove_head (&list_of_active_deadlines);
task = list_get_head(list_of_active_deadlines);

/* (3) Rescheduling */
rt_schedule();

Figure 7.5: The rt _timer_handler function.

e At the end of executing each system event (inside the rt _schedule function), the
first-level scheduler examines the time events (corresponding to any of the three types)
to be produced in the future and programs the timer hardware to interrupt at the nearest
of them.

e When a timer interrupt is produced, the timer handler of the first-level scheduler (called
rt_timer_handler) is automatically invoked. In this function, the scheduler exam-
ines the event(s) corresponding to the current system time. Please note that several time
events may be produced at the same time (for example, the release of two tasks and the
end of a slack interval may happen at the same time). A specification in pseudo-code
of this function is presented in Figure 7.5. This function only deals with time events
corresponding to timing exceptions explicitly, because the other two types of events (a
task release and the end of a slack interval) are processed inside the rt _update and
rt_schedule functions, respectively.

Implementation of Timing Exception Support

As introduced in Chapter 6, the first-level scheduler includes a specific mechanism for detect-
ing wcet and deadline timing exceptions at run time. This mechanism is actually implemented

116 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

by using the two-action technique for multiplexing the hardware timer, described in the previ-
ous section.

Within the first action (programming the timer) two issues related to the exception detec-
tion need further discussion:

e A potential wcet fault only has to be considered in the programming of the nearest
interrupt if the scheduler has selected a mandatory component for execution. Obviously,
if the non-real-time level has been chosen, a wcet fault cannot occur.

e The nearest deadline exception has to be considered only if executing a mandatory com-
ponent, but for a different reason: the dynamic slack time calculation itself ensures that
any slack interval scheduled for the non-real-time level will be finished before any task
can miss its deadline. In order to determine the next potential deadline exception, the
first-level scheduler maintains an ordered list of pending active deadlines. This list is
updated each time a task is released and each time a task ends its current release.

As presented above in Figure 7.5, each time a timing fault is detected inside the rt _t imer handler

function, the rt _raise_exception function is invoked, indicating both the faulty task and

type of exception produced. The support for detecting deadline exceptions is activated and de-

activated by means of a global variable, whose value can be set by calling the rt _deadline_exception_on
function. Inside the rt_raise_exception, the actual handling mechanism defined for

each type of exception is different: a wcer exception produces an automatic reset of the faulty

task’s context, the release of all its occupied resources (e.g., locked mutexes) and the acti-

vation of the task’s user-defined exception handler, if any. A deadline exception makes the

application stop by invoking the rt _app_stop function.

7.3 The Linux Level

As described above in Section 7.1, the FRTL non-real-time level is implemented as a regular
user-level Linux process, called the optional server process. This section presents the main
design and implementation issues related to this process. These issues are basically aimed
towards two major goals: first, to synchronize the second-level scheduler with the first-level
scheduler in such a way that both schedulers agree on how to dynamically share the processor.
And second, to achieve the highest possible reliability and predictability at the Linux user
level, without any modification of the Linux kernel.

7.3.1 Internal Design of the Second-Level Scheduler

The framework software architecture proposes that the first-level and second-level schedulers
dynamically share the processor according to three general rules:

7.3. THE LINUX LEVEL 117

1) The first-level scheduler determines when to execute and when to preempt the non-real-
time level. This is performed by calculating the slack intervals or intervals of execution
of the non-real-time level.

2) After programming a slack interval for the non-real-time level, the first-level scheduler
is committed not to interrupting this level in the middle the interval. This property al-
lows the second-level scheduler to execute without interruption within such intervals.
The advantage of this approach is that the second-level scheduler can schedule the ap-
plication optional components being almost unaware of the existence of the real-time
level. In fact, this scheduler does not need to know anything about tasks or mandatory

components, at least in theory>.

3) The second-level scheduler is committed to finishing each slack interval in a known
state before being actually preempted by the first-level scheduler.

While the first and second rules are enforced by the first-level scheduler, the third rule is
entirely under the responsibility of the second-level scheduler. The scheduler is supposed to
be suspended by synchronously reading the sched fifo at the beginning of each slack interval.
In order to achieve such behaviour, the scheduler is provided with a special design, by which
each of the phases inside the scheduler’s endless main loop (see Section 7.1.2) is actually a
time-bounded phase. The term time-bounded means that each phase has a pre-computed wcet.
At run time, there is a checkpoint before entering each phase. At that checkpoint, the phase’s
wcet is compared with the remaining slack interval before entering the phase. If the phase
cannot be completely executed in the remaining slack interval, then that phase is not even
started and the scheduler immediately suspends itself at the sched fifo until the next interval.

This design consisting of time-bounded phases also has to be applied to the final phase, in
which the second-level scheduler selects and executes the ready optional component versions.
This is done by means of the so-called timed execution. This is a method by which the sched-
uler executes a particular version for a certain interval of time, which is always smaller than
the remaining slack interval. The utility of this method is primarily to permit the scheduler
to finish this final phase before being preempted. However, the timed execution method is
actually a general scheme that may be used for implementing very sophisticated scheduling
policies. For example, some RTAI policies discussed in Section 2.2 are able to build a calen-
dar or plan of task execution, in which each task is given a limited time, so that a task quality
value is maximized. Such policies could use the timed execution to give each task the exact
time stated in the calendar.

Overall, by following this design, the second-level scheduler can always suspend itself
on time, at the beginning of its loop, before Linux is preempted by the real-time level. This
has only one exception: the scheduler needs some initial time at each slack interval in order
to read the message indicating the slack interval, to consult the current time and to check if

5The actual second-level scheduling policy may require information about the application tasks and their structure.
If so, this information can be added to the data associated to each optional component when this component is created
(see Section 4.6).

118 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

its first phase can be executed. In other words, the scheduler cannot suspend itself before
reaching its first checkpoint. This case is therefore solved by the first-level scheduler: if the
slack interval to be programmed for the non-real-time level is not long enough to 1) allow the
optional server process to start running, and 2) allow the second-level scheduler to achieve its
first checkpoint, then the first-level scheduler does not send the message which wakes up the
second-level scheduler. In this case, although Linux is executed during this (small) interval,
the optional server process is not awakened.

7.3.2 Synchronization Between the Two Schedulers

Since the first-level and second-level schedulers work in a cooperative manner, they need
to share information. This sharing has to be carefully designed, since it has to be done in
such a way that data consistency is guaranteed and the particular run-time behaviour of each
scheduler is maintained. In FRTL, the schedulers actually exchange information by means of
two mechanisms, each of which has a different synchronization method:

a) Message passing. The first-level scheduler uses two RT-FIFOes (the sched fifo and
the events fifo) for sending messages to the second-level scheduler. In this case, syn-
chronization is achieved by the RT-FIFO mechanism itself: from the real-time side,
RT-FIFQOes are wait-free structures, and thus accessing them never causes delays to the
first-level scheduler. From the Linux side, the Linux kernel manages them like other
special files (such as regular fifos or pipes), internally protecting the consistency of the
data stored inside them. Reading an RT-FIFO from a Linux process may be done both
synchronously and asynchronously, and the associated delay for the process cannot be
strictly bounded, but it is usually small.

b) Sharing memory. The two schedulers share common memory variables, such as the
structures storing the information about the application mutexes®. Synchronization in
this case is obtained by using the concept of slack interval. As explained in the last
section, the slack interval concept ensures an uninterrupted execution interval of the
optional server process at the Linux level. This provides the second-level scheduler
with the ability to safely share memory variables with the first-level scheduler without
using an explicit synchronization mechanism between them, just by ensuring that the
access is completed in the current slack interval.

7.3.3 Implementation Details

The support provided by the second-level scheduler inside the optional server process has
been implemented as efficiently as possible, having special care of achieving the scheduler’s
expected run-time behaviour. This section discusses the most relevant implementation details,

6The particular case of sharing the mutex information needs only synchronization for reading access since, ac-
cording to the PCP and CSP algorithms (see Section 5.3.3 and 5.4.3), the mutex status is not actually changed inside
the lock or unlock functions at the non-real-time level.

7.3. THE LINUX LEVEL 119

including the mechanism used for the multi-threading support and the set of Linux system
calls invoked by the scheduler.

Multi-Thread Support

In the early stages of the optional server process development, the support for running multiple
threads inside the process was implemented by using the pthreads (POSIX threads) library
available in Linux. The POSIX threads support creates threads at the kernel level, that is, each
thread is an known entity in the Linux kernel and is scheduled by the Linux schedule. This kind
of support is appropriate when Linux scheduling policy is compatible with the requirements of
the multi-threaded application. However, when the multi-threaded application requires its own
scheduler (for special policies and custom synchronization mechanisms) and needs to create,
destroy or restart threads frequently, then the POSIX thread support becomes inefficient and
tricky to use. In particular, the following problems were detected:

e Context switches among pthreads are not explicitly provided, nor are functions for sus-
pending and waking up threads. This complicates the design of a multi-threaded process
which requires that only one thread be running at a time. An explicit context switch can
only be implemented by using a complex mechanism involving special synchronization
primitives (mutexes and variable conditions), and fiddling with thread priorities in order
to ensure a proper sequence in the suspension or awakening of the threads during the
switch. Explicit cancellation points must also be included within the thread’s code in
order to allow the thread to be asynchronously killed. This is required in FRTL if, for

example, a version runs out of time in its timed execution.

¢ Inside such a multi-threaded process, a special pthread must be created to run the sched-
uler code. That thread is in charge of creating the other threads and performing the
explicit context switches required to execute them. All this requires invoking several
Linux system calls, hence adding a great deal of overhead and unpredictability to the
scheduler.

e Tests showed how the system call to create a new pthread (pthread_create) takes
about 20 to 50 milliseconds on a AMD 333 Mhz K6-2 computer with low load (this cost
gets much worse if the system is loaded with many processes). This is an intolerable
overhead for the FRTL system, since that time may easily be the same order as many
slack intervals in a typical application.

These problems have led to a completely different implementation of the thread support
within the optional server process. This support has been implemented by using the traditional
Unix set Jmp and 1ongjmp facilities’, which respectively allow saving the context of the
running process at one execution point and restoring it later when needed. By means of these

"The optional server process actually uses a modern version of these facilities, called sigset jmp and
siglongjmp, which add information about the blocked signals to the context to be saved or restored.

120 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

two functions, it has been possible to implement a user-level thread facility, that is, a mech-
anism that achieves a multi-threaded behaviour inside a process which is still considered as
single-thread by the Linux kernel.

In the support implemented here, a thread is created for every version of each optional
component at the initialization stage of the second-level scheduler. After creating a thread,
its initial context is stored in a special structure associated to the corresponding version. At
run time, when a version has to be executed, the process saves the context of the second-level
scheduler at that point and loads the version’s initial context (with a cost of a few microsec-
onds), effectively producing a context switch to that version. When the version finishes (or
alternatively when the timer produces an interrupt indicating the end of the version’s sched-
uled time) the scheduler saved context is restored, then producing another context switch to
the point at which the scheduler began executing the version. If that particular version must
be executed again, the scheduler simply has to restore its initial context again.

Overall, although this mechanism has to be very carefully implemented, it has interesting
advantages over the pthread support in the particular case of the optional server process, First,
its overhead is practically nil, since the set jmp and 1ongjmp are not proper system calls
(they are library functions). Second, from the Linux scheduler point of view, the optional
server process is a single-threaded process (running at the highest priority all the time), and
hence the Linux internal handling of threads does not affect the optional process behaviour.
This solution is thus more straightforward, efficient and predictable. The only drawback of
this mechanism is that it is not possible to suspend a version in order to be continued after-
wards. This implies that any version which cannot be completely executed in a particular
slack interval has to be killed; this version has to be started again at the next slack interval if
its component is still ready and the scheduler decides to execute the version again.

Set of Linux System Calls Invoked by the Scheduler

The second-level scheduler uses the least possible number of Linux system calls, in order to
minimize the unpredictable effect of the Linux kernel over the optional server process. The
list of utilized system calls include the following: gettimeofday, in order to know the
current system time; setitimer, in order to program (and to stop) the Linux timer which
signals the end of the version’s scheduled execution time; and sigaction, in order to set
the function to execute when the signal produced by the timer (STGALRM) is delivered to the
process.

Finally, it is worth noting that, although the system calls actually invoked from the optional
server process are the minimum possible, and although that process runs at the Linux highest
priority, it may still suffer interference from the Linux kernel, specially due to the execution of
Linux interrupt handlers. For this reason, the actual coding of the second-level scheduler has
introduced some security intervals. These intervals are subtracted from the available slack at
each slack interval. The security intervals are placed to compensate for the Linux interference
due to hardware interrupt handling and for potential delays in the timer interrupt mechanism

7.4. SYSTEM TOOLS 121

and the STGALRM signal delivery. Conservative decisions of this type inside the second-level
scheduler permits increasing the reliability of the non-real-time level, while leaving the Linux
kernel code unchanged.

7.4 System Tools

Debugging an application normally involves keeping track of the application’s steps in order
to find out exactly where the error is produced in the code. This tracking can be done by
simply printing data to the screen as the application executes or by using more sophisticated
debug programs (such as the gdb tool available in Linux). Such tools allow the designer to put
breakpoints in the application’s source code, to execute the application step by step, to consult
the values of application’s internal variables while running this application, etc. However, all
this cannot be used for for debugging the FRTL real-time level, since it runs inside the Linux
kernel address space, in privileged mode; in these conditions, standard debug programs are not
available. Furthermore, storing information to a disk file is also not possible (since it produces
unbounded latencies), and even the existing facility for printing data to the console (called
printk) is rather limited.

These difficulties can also affect the system monitoring or profiling. This activity involves
the collection of run-time performance data about the application tasks and the run-time sys-
tem and its later analysis. The information derived from this analysis is very important in a
real-time system, since it allows the designer to find out if the system is running as expected
(i.e., tasks are meeting their deadlines, interrupts are being produced at the right rate, the ker-
nel is not producing an excessive overhead, etc.). If the profiling is done by software methods®,
the limitations stated in the previous paragraph also apply here, since the information stored
at the real-time level cannot be stored in disk or appropriately presented on the screen.

In order to overcome these limitations, the FRTL system incorporates an integrated debug
and profiling mechanism which is implemented in shared memory. This mechanism is decou-
pled in two parts: an on-line collection of data and an off-line analysis of these data. These
parts are now detailed.

7.4.1 Collection of Run-Time Data

Each time the first-level scheduler executes in response to a hardware timer interrupt or a
system call being invoked, part of its code is devoted to collecting run-time information. The
collected information is stored in main memory, in an area which can be later read by the
Linux process(es) performing the analysis of this information (see below). The collection
mechanism has been designed in order to produce the minimum overhead possible. This is

8Profiling can be done by hardware, software or hybrid methods. Hardware monitoring is performed by attaching
special measurement devices to the computer’s processor, buses, etc. This type of profiling is very accurate but
difficult to use. Software monitoring is done by means of a piece of software, which can be either a special task or a
part of the run-time system. Hybrid monitoring is a combination of hardware and software methods.

122

CHAPTER 7. THE FRTL RUN-TIME SYSTEM

achieved by preventing the scheduler from performing complex statistical calculations. The

run-time information is directly extracted from scheduler’s variables, and, therefore, the cost

of this mechanism is actually the cost of storing a few bytes in main memory, each time

the scheduler executes. All the required calculations are performed off line by the analysis

programs.

The run-time information recorded by the scheduler may be classified in the following

groups:

a)

b)

c)

d)

Static information. Since tasks and their components are created at the real-time level,
the tools analyzing the run-time data need to know about the number of application
tasks and their structure (the number and particular arrangement of components inside
tasks). This is called static information. It is collected once by the scheduler, after all
tasks have been created and just before starting to run the application.

Trace information. In a general sense, the trace information of a process allows for
a later reproduction of the execution steps of this process. In a real-time application,
the trace information normally includes events such as the moments at which tasks are
released, task deadlines, execution intervals of each task, etc. In general, this is the in-
formation normally required for depicting a chronogram of the application’s execution.

The first-level scheduler collects trace information about the execution of both the ap-
plication tasks/components and its own, by means of recording a well-defined set of
significant events. Table 7.1 presents the actual types of events that the first-level sched-
uler keeps track of. Although the scheduler records all the events belonging to each type,
the overhead involved is actually very low. All the kernel-related events, plus the task-
release event are collected by the following simple method. Each time the scheduler
executes, it consults the system time in two instants: at the beginning of its code, in the
rt_update_system function (¢1), and at the end of its code, in the rt _dispatch
function (¢3). Then, interval [¢,t2] is actually the cost of processing the event and in-
terval from ¢ in one event to ¢; in the following event is the execution interval of the
task which was selected in ¢;.

Profiling information. Most of the profiling and statistical information about the ap-
plication and kernel execution is computed by the off-line programs described below,
by means of analyzing the frace information. However, some of this information is
collected by the first-level scheduler, since it can provide it directly from its variables
without any extra calculation. This class of information includes the following types:
the total execution time consumed by a task mandatory component, the amount of slack
time used for running a task optional component, and the response time of a task at each

release.

Debug information. This basically includes strings and values of variables. Its primary
purpose is to debug the first-level scheduler code. This class of information is not actu-

7.4. SYSTEM TOOLS 123

ally analyzed by the tools described below; it is just stored to a particular file for being
read by the kernel programmer.

In order to facilitate the ulterior analysis of the run-time data, every piece of information
collected by the first-level scheduler is actually stored in a common structure allocated in
shared memory. In this sense, the memory area used by the profiling mechanism can be seen
as a linear array of such structures. This structure is basically formed by a time stamping (i.e.,
the recording of the time at which the information is collected), a descriptor indicating the
type of information, and the particular data associated to this type. Related to this, the amount
of information recorded by the first-level scheduler depends on the actual size of the shared
memory area reserved for this mechanism. Since the retrieval of the profiling data is not done
in parallel with the application execution but rather once the application has been stopped, the
size of shared memory devoted to this mechanism puts a limit on the amount of information
that can be collected each time the application is executed. In the current version of FRTL,
there is a limit of four megabytes in the amount of memory that can be shared between the
system levels. The profiling mechanism normally uses two out of these four, leaving the other
two to be used as “the storage” for the application (see Section 7.1.3). These two megabytes
permit storing about 90,000 events per execution.

7.4.2 Off-line Analysis of the Collected Data

The profiling and debug information recorded by the first-level scheduler at run time is pro-
cessed after the application has been stopped by two special FRTL tools. The first tool is
called wt race. This tool is responsible for both reading the shared memory area containing
the profiling and debug information and generating three files with the retrieved data:

a) quivi file. The wtrace generates this file by reading the trace data stored in shared
memory, preprocessing these data, and writing them in a special syntax. This is the syn-
tax expected by the quivi program, a graphical display tool for visualizing execution
chronograms. In the guivi file, all the events related to the kernel are considered as exe-
cution intervals for a special kernel task which has the highest priority. The task-related
events are associated to their corresponding tasks with their corresponding priorities.
Thus, the quivi chronogram depicts the execution of the FRTL first-level scheduler, the
application mandatory components and the non-real-time level.

b) debug file. The items of information corresponding to debug events are stored in this
file in text format. Thus, this file can be directly read by the programmer.

c) raw file. All the trace and profiling information found in shared memory is written to
this file. The purpose of this file is to save all the useful information stored in memory
for further processing, which is carried out by the at race analysis tool.

By processing the raw file, the at race tool can analyze several execution aspects of the
system. This program is basically in charge of calculating statistical values of the trace and

124

CHAPTER 7. THE FRTL RUN-TIME SYSTEM

TASK EVENTS

Type Description

Activation Release of an application task. This event includes the mo-
ment at which the task is released and the deadline relative
to this release time.

Execution Interval of execution of a task. This interval is defined by a

Local wcet exception

Global
tion

wcet excep-

Deadline exception

starting and an ending time.

This is a local wcet exception produced by a mandatory
component inside a task. This event is detected inside the

rt_gain_time_update function.

This signals a task completely consuming all its wcet.

When the deadline exception support is activated, this event

is reported when a task misses one of its deadlines.

KERNEL EVENTS

Type

Description

Timer interrupt

Exception interrupt

Gain time

Run optional
End task

End handler
Mutex lock
Mutex unlock
Execute dynamic

Cost involved in processing one timer interrupt, correspond-
ing to either a “task release” or an ‘“end-of-slack” time
event.

Cost involved in processing one timer interrupt correspond-
ing to a weet or a deadline exception.

Cost of

rt_gain_time_update implicit system call.

executing a single invocation of the
Idem for the rt_run_optional implicit system call.
Idem for the rt_task_end implicit system call.

Idem for the rt_handler_end implicit system call.
Idem for the rt _mutex_lock system call.

Idem for the rt _mutex_unlock system call.

Idem for the rt_task_run_dynamic_mandatory sys-

tem call.

Table 7.1: Trace information collected by the first-level scheduler. This table classifies the trace data into
two groups: information collected for each task, and information collected for the events being executed
by the scheduler.

7.5. SUMMARY AND CONTRIBUTIONS 125

profiling information collected by the first-level scheduler. In particular, at race computes
the number of instances, and the average, minimum, maximum and variance values of the
following data: each kernel event defined in Table 7.1, the actual execution consumption of
each mandatory component of each task and the actual slack time assigned to each optional
component of each task. This information, which is presented to the screen in a tabular form,
is very useful to the application developer, since it clearly shows aspects such as mandatory
components exceeding their wcets, tasks exceeding their deadlines, the maximum overhead
involved in processing each kernel event, etc. In fact, the measurements of the kernel overhead
presented in Chapter 8 have been obtained by means of the information provided by this tool.

7.5 Summary and Contributions

The purpose of this chapter has been to show that the framework’s theoretical proposals can be
achieved in a real system. The proposed run-time system, called FRTL, has taken advantage
of the RT-Linux basic functionality in order to feature sophisticated capabilities for building
flexible real-time applications. Furthermore, the careful design and implementation of FRTL
have succeeded in producing an RTOS which is as predictable and efficient as the original
RT-Linux.

The FRTL system is actually formed by a two-level run-time system and a set of off-line
analysis tools. The run-time system real-time level has been implemented by modifying the
RT-Linux real-time support. In this level, the implemented first-level scheduler offers the task
model and real-time services proposed by the framework. This includes the definition of tasks,
dynamic mandatory components and exception handlers, the specific versions of the fixed
priority preemptive policy and the slack stealing algorithm, access to PCP and CSP mutexes,
the detection and handling of timing exceptions, etc. Besides presenting how these features
have been implemented, this chapter has detailed the internal design of the real-time level.
This design is based on two paradigms: a layered structure and a homogeneous approach for
dealing with every run-time system event. The real-time level has been structured in a set of
layers, each of which is based on the functionality provided by the previous layer(s). This
presents several advantages, such as the incremental building of the system, the isolation of
errors, the more direct porting to distinct hardware platforms, etc. The homogeneous handling
of system events proposes designing every hardware interrupt handler or system call provided
by the first-level scheduler in a common three-step scheme (system update, particular actions
dealing with the event produced and rescheduling). This allows the timing behaviour of the
scheduler to be more homogeneous (which effectively facilitates its timing analysis) and also
favors scalability, since new features can be added more straightforwardly

The FRTL non-real-time level has been implemented inside a user-level Linux process,
called optional server. The optional server process is a multi-threaded process running at the
Linux highest priority, which ensures that every time the first-level scheduler runs Linux, this
process gets the CPU in preference over any other user process. Inside the optional server
process, the second-level scheduler provides the application optional components and their

126 CHAPTER 7. THE FRTL RUN-TIME SYSTEM

versions with a utility-based scheduling policy and access to shared memory through the use
of mutexes. This scheduler has been internally designed in order to meet two requirements.
The first requirement is to perfectly synchronize its execution with the execution of the real-
time level; this can be expressed (in practical terms) as getting the second-level scheduler to
be in a specific execution state at the end of every slack interval, just before being preempted
by the real-time level (this ensures the scheduler will start running from this particular point,
at the beginning of the next slack interval). This requirement is met by structuring the sched-
uler’s main loop in a set of time-bounded phases, in such a way that the scheduler voluntarily
interrupts its execution before starting a phase which may not be able to finish before being
preempted. The second requirement is to make minimum use of Linux facilities (i.e., system
calls), in order to limit the unbounded overhead produced by the Linux kernel and, specially,
to circumvent the possibility of the optional server process being suspended by Linux.

Overall, the design and implementation of the non-real-time level inside a Linux process
has achieved three main goals: first, this level features all the requirements and services im-
posed by the framework, including the synchronization with the first-level scheduler (which
allows for the dynamic sharing of the processor between both system levels). Second, the
non-real-time level has achieved an appropriate degree of predictability and reliability while
leaving the Linux kernel code unchanged. This permits a direct porting of the FRTL non-
real-time level to future versions of Linux. And third, the implementation of the second-level
scheduler at the user level facilitates changing the scheduler policy, if required by the applica-
tion designer.

Finally, the set of FRTL system tools are actually a part of the its integrated debug and pro-
filing mechanism. This mechanism uses a portion of the shared memory area for storing debug
and profiling data at run time (this information is collected by the first-level scheduler). After
stopping the application, the system tools retrieve this information from memory and write it
in a set of files, for further processing. This processing includes the display of the application
execution chronogram, the writing of the debug information in a text format and the statistical
analysis of several timing attributes of both the application tasks and the kernel. By means
of this analysis, it is possible to calculate the minimum, maximum, average and variance of
every overhead source of the FRTL real-time level. The analysis also includes information
about task and component wcet exceptions, task response times, slack time consumption, etc.

Complete Feasibility Analysis

Any run-time support system or kernel intending to be useful in building hard real-time appli-
cations must be provided with information about its internal overhead. This overhead has to
be taken into account when testing the application, since it can affect the timing behaviour and
the schedulability conditions of tasks. The typical approach of many commercial RTOSs is
to provide time measurements of different system parameters for specific hardware platforms.
Typical measurements include the costs of context switches, system calls, etc. However, by
only providing this kind of information, the kernel is still offered as a black box. Thus, sig-
nificant aspects of the kernel internal design actually affecting its timing behaviour (such as
private kernel tasks, hidden synchronization mechanisms or sections of code executed with
interrupts disabled) cannot be determined. Some RTOSs solve this lack of information by
providing the kernel source code to the application designer, usually at a huge price. The
designer then has to analyze and measure the application and the kernel, in order to verify
the feasibility conditions of tasks. This thesis proposes an alternative approach, based on pro-
viding a complete feasibility test to the designer. The test is said to be complete because it
incorporates the exact timing behaviour of the kernel. As a result, the designer can check the
feasibility of the complete system by simply adding the timing information about tasks to the
test. This chapter presents a complete feasibility test of the FRTL system and actual run-time
measurements of its overhead on different hardware configurations. The system is thus proven
to be both predictable and efficient.

127

128 CHAPTER 8. COMPLETE FEASIBILITY ANALYSIS
8.1 Introduction

In several hard real-time systems, feasibility analysis is the typical method for verifying that
the application tasks can always meet their timing requirements. In the context of fixed pri-
ority preemptive systems, feasibility is checked by means of an off-line feasibility test that
demonstrates if a particular application (or task set) is able to meet its timing constraints.

Feasibility tests can be divided into two categories, depending on their coverage [Aud95]:
sufficient tests and sufficient and necessary tests. The response of the latter tests is exact, in
the sense that an application can be scheduled to meet its constraints (i.e., it is feasible or
schedulable) if, and only if, the test is satisfactory. However, for realistic task models, these
exact tests have an excessive complexity (this problem is NP-Complete in the general case).
Hence, their applicability is limited. Sufficient tests have polynomial costs but they are more
pessimistic, in the sense that they may reject applications that are schedulable in practice.

In general, feasibility tests study ideal systems, assuming simplifications that do not hold
in real applications. The most important limitation of such tests is not to consider the effect
of the run-time support system or kernel. The execution of the kernel code produces what is
called overhead, an extra processor load which is generally related to, but not included in, the
application tasks’ code. Nevertheless, when this kernel code is actually executed, typically as
a result of either a system call invoked by the running task or a hardware interrupt, it produces
areal interference to the application tasks. Since this interference obviously provokes a certain
impact in the tasks’ feasibility conditions, it must be carefully studied and reflected in the test.
In this sense, the present chapter distinguishes between theoretical tests, which do not consider
any run-time overhead, and complete tests, which incorporate all kinds of execution sources
that cause interference to the tasks. Both theoretical and complete tests can be either exact or
only sufficient, depending on their coverage, as explained above.

From the viewpoint of feasibility, introducing the kernel interference in the test is not so
straightforward. This code is executed sometimes as a result of a task action (e.g., a system
call being invoked) and sometimes because of some internal reasons (e.g., a timer interrupt
used for updating the system time), making it difficult to exactly characterize when the inter-
ference is produced. The exact interference the kernel produces at each moment and the subset
of affected application tasks are also difficult to determine, since several implementation de-
tails affect the kernel timing behaviour. Examples of such details are: mechanism(s) used for
internal synchronization, maximum amount of hardware interrupts per time unit, the cost of
handling these interrupts, execution of internal tasks for system maintenance processes, sec-
tions of code executed with hardware interrupts disabled, etc. Hence, how the kernel has been

designed and implemented become very important issues for its timing characterization.

This chapter introduces a sufficient, complete feasibility test of the FRTL run-time support
system, explicitly including all its particular sources of overhead. These sources are introduced
in the test as symbolic constants, because their actual costs depend on the particular hardware
the system is running on. In addition to the generic test, actual measurements of these sym-
bolic constants are also presented. By means of these real measurements, the FRTL system is

8.2. PREVIOUS WORK 129

also shown to produce a reasonably low overhead. The system will therefore be proven to be
both predictable and efficient.

The contents of the chapter are organized as follows: the next section presents the relevant
previous work in the field of feasibility tests for fixed priority preemptive systems. Section 8.3
adapts this work for the particular computational model proposed in this thesis. Then, Sec-
tion 8.4 presents a timing characterization of the FRTL run-time system, and introduces each
significant factor to the test. This section then presents the complete feasibility test for the
FRTL system. Section 8.5 shows actual measurements of the overhead factors introduced in
the test for particular hardware platforms. Finally, Section 8.6 concludes and presents the
contributions of this chapter.

8.2 Previous Work

This section presents the typical feasibility test for general real-time systems using fixed prior-
ity preemptive scheduling, which is based on the computation of the worst-case response time
of each task [Jos86, Aud90]. The test assumes a task model in which the following conditions
hold:

e The task set is ordered according to task priorities, with the subindex of each task ;
denoting its priority (2).

e Each task ; is periodic or sporadic and does not arrive at the system more frequently
than a known value (either its period or minimum inter-arrival rate), denoted by T;.

e Each task 7; has a known weet, denoted by C;.

e Each task 7; can be blocked by lower priority tasks for, at most, the duration of its
worst-case blocking time, denoted by B;.

e Each task 7; is released as soon as it arrives to the system and does not voluntarily
suspend itself.

e All tasks are initially released at the same time.

e Context switches between tasks and kernel overhead are assumed to be zero.

Equations 8.1 and 8.2 show the feasibility test for such a model. The former equation
computes the worst-case response time of application task 7;. This time is defined as the
longest time between when the task arrives to the system and when it completes, and its
calculation is based on formalizing the run-time situation in which this task suffers the worst-
case (highest) interference.

i—1
R?
n+l _ v, . i .
R =C;+ B + ;:1 [—TJ_ W C; 8.1)

130 CHAPTER 8. COMPLETE FEASIBILITY ANALYSIS

As the factor R; appears in both sides of the equation, the equation is typically solved by
means of a recurrence relation that converges to a concrete value of R;. Once calculated, the
feasibility of task 7; can be easily evaluated by checking this value against 7;’s deadline (D;),
as stated in equation 8.1.

Task 7; is feasible iif R; < D; (8.2)

Since equation 8.1 computes the exact value of R; for the task model presented above, the
resulting test is both sufficient and necessary. The same test can be used if tasks are allowed
to feature arbitrary initial offsets, but then it turns into an only-sufficient test.

8.3 Theoretical Test Adapted for the Framework

The feasibility test expressed by Equations 8.1 and 8.2 cannot be directly utilized for analyz-
ing applications implemented according to this framework (even not considering the FRTL
kernel’s overhead) because the framework computational model is different from the model
assumed above. The purpose of this section is to adapt this theoretical test to the framework
task model. In the following section, the new test will incorporate the kernel overhead.

In this framework, each task 7; is potentially made up of mandatory and optional compo-
nents. According to both the definition of each type of component and the fixed priority policy
applied by the system, only mandatory components of tasks have to be guaranteed, and they
only suffer interference from other mandatory components. Because of this, each task’s wcet
which has to be introduced to the test is calculated as the sum of the wcets corresponding to
the task’s mandatory components. This calculation, initially expressed in terms of the formal
task model by Equation 4.1 (in page 39), has been rewritten here for the sake of simplicity and
is shown in Equation 8.3.

Vr; € .A, C; = Z Cikl (8.3)

Vkeman(i)

where:

e The term man(z) denotes the set of mandatory components of task i:

man(i) = {k : yix € T; A Yy, € {M}}

e The term c;; represents the wcet of the first (and unique) version of mandatory com-
ponent y;, that is, v;’s wcet.

Therefore, by including this particular calculation of each term C; into Equation 8.1, the
test above guarantees the execution of all tasks’ mandatory components.

The execution of mandatory wcet handlers also has to be introduced in the test for two
reasons. First, mandatory handlers are application-defined actions whose execution has to be

8.3. THEORETICAL TEST ADAPTED FOR THE FRAMEWORK 131

guaranteed. And second, the execution of mandatory handlers actually causes interference to
the application mandatory components. Given that each handler is associated to a given appli-
cation task, the obvious method of considering this handler in the test would be to incorporate
its weet in the computation of its task’s wcet (in Equation 8.3). However, this simple method
is not valid here, because both the handler and its associated task may be assigned different
priorities. As a result, the effect of executing mandatory handlers has to be directly considered
in the calculation of R;. This is now presented.

In the worst case, each task produces a wcet exception at each release, producing the
execution of its handler. Then, the equation computing R; should contain the execution of all
mandatory handlers defined with a priority greater than or equal to ¢. The key issue here is
how to characterize the release of handlers, since they behave differently than their associated
tasks. A mandatory handler is released exactly when its related task commits a wcet exception.
Although the task is released periodically, it may produce a timing exception at a different
moment at each release. That is, the exception is not a pure periodic event. In particular, if
task ¢ is released at time ¢, it may cause a wcet exception at any moment between C; and
D;, depending on the actual interference which task ¢ suffers from higher priority tasks and
handlers. As a result, mandatory handlers are introduced to the test as sporadic tasks, which
are released by their related tasks. This is shown in Equation 8.4.

i—1
R R
RM' =Ci+Bi+) [?ﬂ Ci+ D [T—;-‘ cp (8.4)
j=1

Vkehand(i) '~k

where:

e hand(i) is the set of tasks having mandatory handlers with priorities higher than or
equal to 4:

hand(i) = {k : 7, € A, Y} € {M} A P} <4}

e T} is the minimum inter-arrival rate of the handler associated to task k (this is calculated
below).

e O is the weet of the mandatory handler associated to task k.

Therefore, mandatory handlers are considered as sporadic tasks with a minimum inter-
arrival rate of T}, calculated below in Equation 8.5. This minimum separation between con-
secutive releases of the handler is produced in the following scenario, depicted in Figure 8.1.
Consider a task 73, producing a wcet exception in two consecutive releases. The first release of
the task is produced at time ¢. In this release, the task produces an exception in the last possible
moment, that is, when reaching its deadline at £ + Dy,. In the second release, produced at time
t + T}, the task commits the exception in the earliest possible moment, that is, after running
for C, time units with no interference from any higher priority tasks or handlers. This second
exception is thus produced at time ¢ + T} + C}. The minimum inter-arrival rate of the handler

132 CHAPTER 8. COMPLETE FEASIBILITY ANALYSIS

Ty

Worst-case interference]
T, - -3 ﬁc |
A !

t t+Dy t+Ty t+T +C,

Figure 8.1: Calculation of the minimum-inter arrival rate of a task mandatory handler.

release can thus be calculated by subtracting the two extreme exception times, ¢ + 1% + C},
and ¢t 4+ Dy. The result is shown in Equation 8.5.

T{ = Ty + Cy, — Dy, (8.5)

In this section, the theoretical feasibility test adapted for this particular framework has been
presented. This test is formulated by combining the new computation of R; in Equation 8.4
with the test in Equation 8.2. This theoretical test is turned into a complete test in the next
section, by incorporating the timing characterization of the FRTL kernel.

8.4 Developing a Complete Test

This section is focussed on upgrading the framework test presented above by introducing
the overhead factors derived from the specific features supported by the FRTL system. In
the following discussion, and for the sake of clarity, the kernel will first be assumed to be
executed with the hardware interrupt disabled. This is equivalent to considering that the kernel
can be preempted at any time. By making this assumption, the overhead directly related to a
particular task ¢ may be considered as being executed at that task’s priority. The assumption
thus permits considering this overhead in the test by directly adding it to the task’s wcet, C;.
Thus, the following sections calculate a new factor for each task ¢, containing the theoretical
C; plus the kernel overhead related to this task. This new factor is named real wcet and is
denoted by C7 eal - After considering each source of kernel overhead, the assumption of the
kernel being executed with the interrupts enabled is removed at the end of this section, and
then the test’s final equations are presented.

8.4. DEVELOPING A COMPLETE TEST 133

All the feasibility discussion presented here, as well as the actual measurements taken
from the implemented system, take into consideration only the system real-time level. Since
the non-real-time level completely runs in slack time, in such a way that it cannot affect the
feasibility conditions of the real-time level, its effects do not have to be included in the test.
For this reason, the term kernel refers hereafter to the FRTL first-level scheduler.

8.4.1 Kernel Design Issues

This section summarizes some of the design aspects of the FRTL system, already presented in
Chapter 7, which affect the kernel timing behaviour:

e The first-level scheduler code is executed with the hardware interrupts disabled, as a

form of internal synchronization.

e The real-time level is interrupt driven, as opposed to being tick driven. This means
that the system is not interrupted at each clock tick, but only at certain instants when
significant time events are produced.

e The first-level scheduler is internally designed in order to have a homogeneous three-
step structure for processing all the system events. This structure is formed by the
system update, the event’s particular processing and the task rescheduling. In this struc-
ture, in spite of the actual event being produced, the first and last steps are common.
These steps are executed by calling the rt _update and rt_schedule functions,
respectively.

These three characteristics will be referenced when necessary in the following discussion.

8.4.2 Inclusion of Interrupt Handling

The only hardware interrupt utilized by the FRTL system is the timer interrupt, which is used
to signal the three kinds of time events required by the first-level scheduler: task releases,
end-of-slack instants and wcet exceptions. These three events are handled by the first-level
scheduler rt _t imer_handler function, as explained in Section 7.2.5. The current section
is centered on discussing the two former time events, while timing exceptions are later studied
in Section 8.4.5.

Task Release

Every application task is released as a result of a timer interrupt. In the worst-case, each
release of each task is signaled by a different interrupt, which has to be separately processed,
producing the corresponding overhead!. When such an interrupt occurs, an automatic context
switch is produced from the running rt-task to the rt _t imer_handler function. The actual

I'Within any case other than the worst case, a hardware interrupt may signal the release of several tasks, and, hence,
the cost of processing the interrupt is then shared by all these tasks.

134 CHAPTER 8. COMPLETE FEASIBILITY ANALYSIS

releasing of the task is then produced inside the rt_update function. Assuming that no
exception is produced at the same time as the task release, the function then skips all the code
until the rt_schedule call. Inside this function, the next task to be executed is selected.
The worst case overhead is produced when the newly released task is the same one chosen for
execution, because, in this case, an explicit context switch to this task has to be performed.
The cost of a task release can therefore be expressed as:

Crelease = (2 X Cswitch) + Cupdate + Csched (86)

where Cjyitch, is the cost of a context switch and Cypgate and Csepeq denote the worst-case
costs of rt _update and rt_schedule, respectively.

Since all tasks are potentially released at different times, this release cost executed by the
kernel must be added to the real wcet of each task . Equation 8.7 introduces this calculation.

Cz?deal = Crelease + Z Cik (87)
Vkeman(i)

End of Slack

The end-of-slack event is produced when Linux has been executing during a slack interval
and the hardware timer signals the end of that interval, then producing the execution of the
rt_timer_handler function. In this case, this function first calls rt _update and then
rt_schedule. Itis precisely inside this latter function where the exhaustion of the slack in-
terval is detected and treated. The interesting feature about this event is that it is not necessary
to include its cost in the feasibility test: since this event is produced only when Linux has been
executing in slack time, then this cost may be subtracted from the slack interval itself. In other
words, the code dealing with this event can be considered as being executed in slack time, thus
not being part of the task’s wcet. This can be done at run time by means of subtracting this cost
from the duration of the slack interval, before this interval is scheduled, making the hardware
timer interrupt earlier.

8.4.3 Inclusion of Implicit System Calls

In FRTL, each application task is executed by an rt-task that internally executes the function
rt_task_runner, as explained in Section 7.2.5. Inside this function, three implicit system
calls are invoked: rt_gain_time_update is called after executing each mandatory compo-
nent, rt_run_optional is called each time the task has to execute an optional component
(or more precisely, a contiguous list of optional components) and rt _task_end is called at
the end of the task release, when all its components have been scheduled. As system calls,
these three functions are internally structured in the usual steps of: a call to rt _update, their
specific code and a call to rt _schedule.

The rt _gain_time_update cost contains the execution of these two common functions
plus the cost of the code actually performing the gain-time update; this cost is denoted by

8.4. DEVELOPING A COMPLETE TEST 135

Cyain_code- There is no context switch involved in this system call, since it is directly invoked
by the running task and it cannot produce a change in the task selected to be run next. Its cost
can thus be expressed in the following terms:

Cgain = Cupdate + Cgain_code + Csched (88)

However, the rt _run_optional and rt _task_end calls can actually produce a change
in the running task: as a result of the former call, the rt _schedule function may detect some
available slack and then run Linux, hence producing a context switch. The latter call always
produces a context switch, because it delays the execution of the calling task until its next
periodic release. As a result, their respective costs can be expressed by the following two
expressions, with Copt_code and Cend_code being the costs of their respective specific codes:

Copt = Cupdate + Copt_code + Csched + Cswitch (89)

Cend = Cupdate + Cend_code + Csched + Cswz'tch (810)

The costs of these three system calls are now introduced into the test. Since the calls
produce an overhead which is directly related to each application task i, their costs have to
be added to the calculation of CT¢% in Equation 8.7. The resulting formula is shown in
Equation 8.11.

Cireal = Chretease + Cena + Z (Cikl + Cgain) + Z Copt ®.11)
VkEman(i) Vigman(i)

8.4.4 Inclusion of Explicit System Calls

The current support provided by FRTL only includes three explicit system calls available for
the application mandatory components at the real-time level: the rt mutex_lock, rt mutex_unlock
and rt_task_run_dynamic.mandatory functions. This section calculates their respec-
tive worst-case costs.
The costs of the rt _mutex_lock and rt mutex_unlock system calls presented here
depend on the particular synchronization protocol the system is using;

Cl v = Cupdate + Clock_codecsp + Csched (CSP)
oc =
Cupdate + Clock_codepcp + Csched + Cswitch (PCP)
C lock Cupdate + Cunlock_codecsp + Csched + Cswz'tch (CSP)
unee Cupdate + Cunlock_codepcp + Csched + Cswz'tch (PCP)

(8.12)

136 CHAPTER 8. COMPLETE FEASIBILITY ANALYSIS

However, these two factors do not have to be added to the computation of C] eal because
this feasibility analysis imposes that these factors must be included in the cost of each critical
section inside any mandatory component. This is also required when computing the B; factors
discussed in Chapter 5.

The cost of requesting the execution of a dynamic mandatory component includes the
execution of the corresponding on-line acceptance test, which is executed by the first-level
scheduler. The worst-case overhead occurs when the component is accepted, because it may
then be immediately selected for execution, producing a context switch to it. Thus, this cost
may be calculated by:

Cdynamic = Cupdate + Caccept_test + Csched + Cswitch (813)

Again, the cost Cqynamic is not explicitly included in the test, since the framework forces
this cost to be included in the wcet of any mandatory component using the related system call.

8.4.5 Inclusion of Timing Exception Support

This section completes the discussion of the timer interrupt handling performed by the first-
level scheduler, which was partially discussed in Section 8.4.2. The case of wcet exceptions
being produced is presented below, explicitly addressing how to consider them in the feasibil-
ity test.

When a wcet exception is produced, it is signaled by means of a timer interrupt. The cost
of the kernel processing that interrupt may be computed in the following fashion, with the
term Clegcept_code being the actual cost of detecting and raising the exception:

Cezcept = Cupdate + Cezcept_code + Csched + Cswitch (814)

Although the cost Cegeept is normally related to the release of a certain wcer handler
(in the same sense that the cost Ci.eeqse i related to the release of an application task), it
cannot be added to the handler sum factor in Equation 8.4. This is because that sum factor
included the execution of mandatory handlers, while the overhead Cegcept is produced any
time a task commits a wcet exception, in spite of having a user-defined handler attached or
not. For this reason, this overhead can actually be added to the task real wcet (in the worst
case, each task will produce an exception every time it is released, while it is running one of
its mandatory components). Thus, the cost Cegcept is included in the calculation of C7 eal
However, this case and the non-exception case, in which the task ends normally (by calling
the rt _task_end function and producing the corresponding Cnq cost), are exclusive. The
formula has to therefore choose the maximum of these two values, in order to reflect the
worst-case scenario:

C;!"eal = Crelease + maX(Cend7 Cezcept) + Z (Cikl + Cga‘in) + Z Copt (8'15)
Vkeman(i) vigman(i)

8.4. DEVELOPING A COMPLETE TEST 137

When a handler is executed, it automatically invokes another implicit system call to in-
dicate its end. This system call, which is analogous to the task’s rt _task_end function, is
called rt _handler_end. Its cost can be expressed in the following terms:

Cend_hand = Cupdate + Cend-hand-code + Csched + Cswitch (816)

The cost of this system call has to be added to the cost of each mandatory handler C,’:
in Equation 8.4. This will be done at the end of the section, where the final equation for
calculating R; is presented. Please note that the cost of this system call does not have to be
included when the call is invoked by an optional handler, since in that case the call is assumed
to be run in slack time, just as the handler’s code.

Finally, it must be noted here that the support for detecting deadline exceptions is not
explicitly included in the feasibility test, because it is assumed to be disabled during the regular
execution of the system. Nevertheless, if the application programmer wants to enable this
feature, the related overhead is due to maintaining the ordered list of active deadlines, as
explained in Section 6.5. This is actually performed in two places: when a task is released
and when it finishes its execution. As a result, in this case the actual run-time values of costs
Chretease and Cepq should contain the related overhead.

8.4.6 Final Equation

The assumption that the kernel can be preempted at any time is now removed, since the first-
level scheduler actually executes its code with the hardware interrupts disabled. Two tradi-
tional approaches have been used to model this non-interruptible behaviour: the first one is to
consider that there is an extra task in the system which executes the kernel code at the highest
priority; the second approach is to consider the kernel code as being a part of the task source
code (as presented so far in this chapter) and then to study the system feasibility with a special
technique allowing variations in task priorities [Kle93]. However, a different approach, which
is much more straightforward than these two, is presented here.

The new approach considers the kernel source code which deals with an event related to (or
caused by) a certain task, to be executed at that task’s priority, with a side effect of a potential
delay in the notification of a timer event. In other words, if the timer was programmed to
interrupt at a certain instant, and this instant falls within a non-interruptible section of kernel
code, then the interrupt will actually be produced right after the section of code is finished,
when the interrupts are enabled again. Considering this, the kernel timing analysis developed
in the previous sections is valid, as long as the delay in the time events can also be modeled
and introduced to the test.

Specifically, the way this delay is accounted for in the analysis depends on the type of time
event that is delayed:

a) Task release. The delay in a task release may be modeled in the test as release jit-
ter [Aud95], which is normally denoted by J; (for task 7). The release jitter concept

138 CHAPTER 8. COMPLETE FEASIBILITY ANALYSIS

refers to a situation in which the moments at which a periodic task is released are not
always strictly periodic, but may suffer (typically small) variations from one release to
the following one. This concept is traditionally used, for example, in order to model
situations in which task periods are not exact multiples to the clock rate.

In the FRTL analysis, the jitter for a given task corresponds to the maximum delay that
the kernel may cause to a task release. The worst-case scenario refers to the following
situation: task ¢ has to be released right after the kernel has started the execution of its
longest section of non-interruptible code on behalf of another task j. At this moment
task j produces a wcer exception. In this scenario, the scheduler executes the section,
and when it enables the interrupts again, detects and handles the exception. Therefore,
in this case, the actual release of task ¢ is delayed for the duration of that longest section
plus the exception handling mechanism.

b) End of slack. This event cannot be delayed because it is only programmed to happen
when Linux is put into execution (in order to execute the non-real-time level). Thus, the
interrupt will always arrive while Linux is being run, with no possible delay.

¢) Wecet exception. This particular delay may be caused when the running task exhausts
its weet while the kernel is executing a system call (either implicit or explicit) on behalf
of this task. Then, the exception notification will be produced right after the system call
is finished and the interrupts are enabled again. As a result, the detection of the fault
and the subsequent killing of the faulty task may potentially be delayed for, at most,
the kernel’s longest section of non-interruptible code and this time has to be added
to the task real wcet. Note that this case changes some of the conditions stated for
Equation 8.15, as explained below.

Taking all this discussion into account, the final equations of the feasibility test can be
now presented. The first equation computes the longest non-interruptible section of the kernel
code, which is later needed in the rest of equations. This cost is denoted by C',45-

Cmaz = max(creleasey Cgain; Copt; Cend; Clock; Cunlock; Cdynamic; Cezcept; Cend_hand)
(8.17)
The second equation corresponds to the final expression calculating task ¢’s real wcet. This
equation is formulated in the following terms:

C{eal = Creiease + Cezcept + Craz +
+ 3 (1 +Chain) + Y. Copt (8.18)
Vkeman(i) Vigman(i)

Compared with the previous Equation 8.15, this new equation has substituted the max(Cend, Cepcept)
factor by (Cmaz + Cegcept)- This is now explained. The situation of a task producing a wcet

8.5. OVERHEAD MEASUREMENTS 139

exception has to include not only the cost Cegeept (as assumed in Equation 8.15) but also
the potential delay in the timer interrupt notifying the exception. This delay is modeled by
adding the cost C,q, to the cost of handling the exception, as explained above. On the other
hand, a task may end in two alternative cases, as discussed above in Section 8.4.5: the task
either ends normally, causing a cost of C¢,q, or else produces a wcet exception, producing
a cost of (Crnaz + Cezcept). The worst case to be considered in the computation of CT¢
is obviously produced when the task causes a wcet exception, since the maximum between
(Cmaz + Cegcept) and Cepg is (Crag + Cegcept) by definition.

Finally, the system complete feasibility analysis can be presented. This final test has been
developed by introducing the tasks’ real wcets (calculated by Equation 8.18), the jitter ac-
counting for the delay in tasks releases, and the cost Cq_nqng into the system theoretical test
(Equation 8.4). This test is shown in Equation 8.19. Please note that the term (Cpyaq +Clegcept)
is subtracted in the equation; this is because this term has been added to C}’ eal and, by the time
the kernel is executing the code associated to this cost, the task has actually completed its ex-

ecution.

Ri”'"1 = Creal — (Cezcept + Crmaz) + Bi +
i—1
i "Rn + Cmaw + Cemcept-‘ C;eal +

T;

+

Jj=1

R + Cmaw + Cewce
+ Z ’V : Th Pt-‘ (CI? + Cend_hand) (8.19)
VkEhand(i)

k

Once R; is calculated, the schedulability condition of each task 4 can be expressed in the

following terms:

Task 7; is schedulable if R; + Cpyaz + Cezcept < D (8.20)

It must again be noted that this test is only sufficient, since the framework’s task model
allows tasks to have arbitrary initial offsets.

8.5 Overhead Measurements

According to the previous section, the kernel timing behaviour can be considered in the system
feasibility analysis by means of introducing certain kernel constants in the feasibility test. As
a result, if the designer knows the actual cost of these constants for a given computer, she can
easily apply the complete test to the application, just by introducing the application-dependent
timing information to the test. This information includes the wcet of each mandatory compo-
nent, the worst-case blocking factor of each task, etc.

This section presents actual measurements of such kernel overhead constants, which are
summarized in Table 8.1. In particular, the measured values correspond to the execution of

140 CHAPTER 8. COMPLETE FEASIBILITY ANALYSIS

KERNEL CONSTANTS

Constant Description

Chrelease Cost of releasing one or several tasks
Cexception Cost of handling a timing exception

Cyain Cost of calculating the gain time after running a

mandatory component

Copt Cost of activating an optional component

Cend Cosf of ending the current release of the running
task

Cend.hand Cost of ending the running handler

Clock Cost of processing a mutex lock request

Cuniock Cost of processing a mutex unlock request

Caynamic Cost of processing the request releasing a dy-

namic mandatory component

Table 8.1: Kernel constants introduced in the feasibility test.

some test applications on different hardware configurations, in order to check if the measured
values get significantly smaller as the system runs in a faster computer. The measurements
have been collected by the FRTL integrated debug and profiling mechanism and then tab-
ulated by the atrace off-line tool. The profiling mechanism has been precisely designed
for collecting the kernel information corresponding to the overhead constants required by the
feasibility test (please compare the constants in Table 8.1 and the kernel events in Table 7.1,
page 124).

This section first describes the test applications and the conditions in which the experi-
ments were made. Then, it presents the actual measurements and comments on some signifi-
cant aspects about them.

8.5.1 Experiment Design

The main purpose of the test applications is to reproduce the system execution in real condi-
tions, in order to get significant values of the kernel constants. In this sense, the test appli-
cations have been designed to test every feature of FRTL. All the experiments were made on
PC-like machines running RedHat Linux 5.2 and FRTL version 1.0. In particular, five dif-
ferent hardware configurations were tested. The main characteristics of these machines are
summarized in Table 8.2. In this table, each hardware configuration is numbered, from 1 to 5,
in order to be referenced afterwards. The order of the configurations inside the table denotes
increasing computing power.

Each hardware platform was tested by running three test applications containing 4, 8 and
12 tasks, respectively. In order to get compatible results, the same three applications were

8.5. OVERHEAD MEASUREMENTS 141

HW No. Processor type Mhz. Cache size RAM size
1 Pentium 200 256 Kb 64 Mb
2 Pentium I 233 512 Kb 64 Mb
3 Pentium I 450 512 Kb 128 Mb
4 Pentium IlI 500 512 Kb 128 Mb
5 Pentium IlI 600 512 Kb 128 Mb

Table 8.2: Description of the hardware platforms.

run in every platform. For the sake of achieving incremental results of the overhead on each
platform, the task set of each application included the tasks in the previous set(s) as the higher
priority tasks. In other words, there were actually 12 different tasks: the 4 higher priority tasks
form the 4-task application, the 8 higher priority tasks form the 8-task application and all tasks
form the 12-task application. Table 8.3 summarizes the information about these 12 tasks.

Task Period Deadline Weet Dynamic Exception Mutex U
Ty 10000 8000 300 no no yes 0.030
Ty 25000 15000 600 no no yes 0.054
T3 25000 20000 1100 yes no yes 0.098
T4 50000 40000 2200 no yes yes 0.142
Ts 50000 50000 1200 yes no yes 0.166
T6 100000 80000 1800 no yes yes 0.184
T7 100000 90000 4000 no no yes 0.224
T8 200000 180000 6600 no no yes 0.257
Ty 200000 190000 7500 no no yes 0.295
T10 500000 450000 16000 no no yes 0.326
T11 1000000 800000 22500 no no yes 0.349
Ti2 1000000 900000 30000 no no yes 0.379

Table 8.3: Attributes of tasks included in test applications.

Several issues about the application tasks can be pointed out from the information stored
in Table 8.3:

e The timing attributes of tasks in the table, as well as every timing attribute and measure-
ment hereafter, are expressed in ticks, with one tick corresponding to 0.838 microsec-
onds (us). This is the actual time measurement in RT-Linux (v1).

e The periods of all tasks are harmonic, leading to a hyperperiod of 50000 ticks (0.0419
seconds) for the 4-task set, 200000 ticks (0.1676 seconds) for the 8-task set and 1000000
ticks (0.838 seconds) for the 12-task set.

e The application tasks in each set are ordered by following the Deadline Monotonic

142 CHAPTER 8. COMPLETE FEASIBILITY ANALYSIS

order. The last column in the table expresses the accumulated utilization (U) of the
mandatory load as tasks are being added to the set. Therefore, the 4-task application
has a mandatory utilization of 14.2%, while the 8-task and 12-task applications have a
respective utilization of 25.7% and 37.9%.

e The Dynamic column informs about which tasks invoke the call for releasing dynamic
mandatory components. In particular, tasks 73 and 75 invoke this system call once at
each release. Since task 73 belongs to each application task set, measures of this cost
are available in every experiment.

e The Exception column informs about which tasks commit wcet exceptions. In this case,
tasks 74 and 7¢ have been designed to produce a wcet exception each time they are
released. This feature is also tested in every experiment, since task 74 belongs to all
task sets. Each of the tasks which produce an exception was designed to have its own
mandatory handler, defined at the same priority as the task.

e The Mutex column shows that all application tasks use mutexes. Specifically, each
mandatory component of each application tasks locks and unlocks the same CSP mu-
tex. In this particular issue, the test applications do not vary the number of mutexes
or the synchronization protocol used, since this study has been already presented in
Section 5.6.2.

The information about the tasks in the test applications is completed by Tables 8.4 and 8.5.
These two tables summarize the internal structure of the 12 tasks, informing about the actual
sequence of components forming each task and the attributes of each component.

The structure of tasks in the three task sets was selected in order to meet a main require-
ment: each task must contain at least one mandatory and one optional component, in order to
make its contributions to all the possible implicit system calls. Tasks were also designed in
order to have a reasonable structure.

Finally, this section describes how the experiments were made. As described in Sec-
tion 7.4, the FRTL integrated debug and profiling mechanism collects run-time timing infor-
mation and stores it in a piece of shared memory. This information is retrieved afterwards,
in order to process it appropriately. In such a method of storing the profiling information,
the actual size of shared memory available constrains the amount of events to be collected
by the first-level scheduler. In particular, all experiments were performed with 2 megabytes
of available shared memory, which resulted in nearly 90,000 events. For the specific case of
the test applications, this number of events corresponded to approximately 14 seconds worth
of timing information for the 4-task set, 11 seconds for the 8-task set and 9 seconds for the
12-task set. As a result, all applications were measured over several hyperperiods.

8.5.2 Measurements of the Kernel Constants

This section presents the actual measurement results obtained after running the three test ap-
plications described above on the five hardware platforms summarized in Table 8.2.

8.5. OVERHEAD MEASUREMENTS 143

Task Component Type Slack Fraction WCET

T1 Y11 M - 100
Y12 O 1.0 —
Y13 M - 200
(P Y21 M - 450
Y22 O 1.0 —
Y23 M - 150
T3 Y31 M - 350
Y32 O 0.3 —
Y33 M - 350
Y34 (@] 0.7 -
Y35 M - 400
T4 Ya1 M - 600
Y42 O 0.4 —
Ya3 M - 1000
Ya4 O 0.6 -
Ya5 M - 600
Ts Y51 M - 600
Y52 O 1.0 -
V53 M - 600
T6 Y61 M - 1200
Vo2 O 1.0 -
Ye3 M - 600
7 Y71 M - 1000
Y72 O 0.5 -
Y3 M - 1000
Y74 O 0.5 —
Y75 M - 2000
T8 Y81 M - 2500
Y82 O 0.6 —
Y83 M - 1600
Y84 (@] 0.4 -
Y85 M - 2500

Table 8.4: Internal structure of tasks in the test application (tasks 1 to 8).

144 CHAPTER 8. COMPLETE FEASIBILITY ANALYSIS

Task Component Type Slack Fraction WCET

To Yo1 M - 5500
Y92 O 1.0 -

Yo3 M - 2000

T10 “Y10,1 M - 6000
Y10,2 O 0.5 -

Y10,3 M - 5000
Y10,4 O 0.5 -

V10,5 M - 5000

Ti1 V11,1 M - 15000
Yi1,2 (0] 1.0 -

Y11,3 M - 7500

T12 Y12,1 M — 20000
V12,2 (0] 1.0 -

Y12,3 M - 10000

Table 8.5: Internal structure of tasks in the test application (tasks 9 to 12).

The experiment results are presented here. The following five tables (Table 8.6 to 8.10,
pages 147 to 151) summarize the results of running the three sample applications on each par-
ticular hardware configuration. In each of these tables, there are three subtables. Each subtable
thus presents the results of one experiment corresponding to running a particular application
on a particular computer. These results include the maximum, minimum, average and variance
values obtained for each kernel overhead constant corresponding to the experiment.

Several aspects can be pointed out from the results presented. The following are probably
the most significant ones:

e The first and main aspect is that the values are small, being less than 40us in all cases.
This overhead is really very small, being almost the same order as the original RT-Linux
vl. No implementation of the framework inside the Linux kernel could have offered
such low overhead.

e In each experiment, the measured costs could be broadly separated in two groups: a
group of less-costly constants (including Cggin, Cend_hand> Clock> Cuniock) and an-
other group of more-costly constants (including Creieases Cezception> Copts Cena and
Cdymmic)z. Although there were differences between the values in both groups, it is
worth noting that the costs of all the kernel constants were normally in the same or-
der. This is because all the system events share the same three-step sequence (update,
event processing, rescheduling). A more specific design could have resulted in a more
efficient implementation of some system calls. However, this common sequence has
permitted the kernel timing characterization to be much more direct.

2The costs in the second group are costlier since they include either the processing of a timer interrupt or slack-
related calculations.

8.6. SUMMARY AND CONTRIBUTIONS 145

e Comparing the three experiments in the same machine, the differences of each measured
constant in the three applications were very small. Some constants got slightly greater
as the number of tasks increased, but the increase was clearly small compared with the
absolute value of the constant.

e Comparing the same task set in the five hardware configurations, the measured costs
got clearly smaller as the computing power increased. The differences between the two
extreme configurations (a 200 Mhz Pentium processor and a 600 Mhz. Pentium III
processor) were notable: almost every worst-case cost in the former configuration got
half its value in the latter configuration.

It must be noted here that the maximum values shown in the 12-task experiment for a
given computer may not be exactly the worst-case costs of the related kernel constants in that
computer. These worst-case costs are probably very near to the maximum values measured,
but the former may be a little greater the latter. This is because it is very difficult to get the
very worst case by running only one application, although each constant get thousands of
measures in each experiment. Also, the values to be measured are so tiny in terms of the
software measuring mechanisms used by the first-level scheduler, that a difference of one or
two microseconds may not be detected. For this reason, either several more experiments or a
kernel code analysis should be done in order to strictly characterize the worst-case value of
each constant.

However, the presented values do show the magnitude of the FRTL kernel overhead, which
is typically a few microseconds per system call or interrupt handling.

8.6 Summary and Contributions

This chapter has presented a complete feasibility analysis for the FRTL system. This analysis
includes the characteristics of both the framework for FRTS proposed in this thesis and the
FRTL kernel. In fact, the feasibility test has been developed by first introducing the character-
istics of the task model, that is, the effect of executing mandatory components and handlers.
Then, this test is enhanced by introducing the timing behaviour of the FRTL run-time system.
This is done in two steps. In the first step, the kernel code is supposed to be perfectly pre-
emptable. This assumption permits the execution of the kernel to be considered as being run
at the priority of the task provoking the kernel execution. In the second step, the assumption
is removed by considering that the execution of the kernel with the interrupts disabled can be
considered not as blocking but as a delay in the notification of a timer interrupt, which can
then be specifically modeled depending on the type of time event. For example, the delay of a
task release is modeled here as a release jitter.

The first contribution of this chapter is thus the introduction of a complete feasibility test
that considers a realistic scenario in which the kernel is analyzed as is, without making sim-
plistic assumptions. Furthermore, the resulting analysis has presented a reduced set of factors
to be measured (or analyzed) in the real kernel.

146 CHAPTER 8. COMPLETE FEASIBILITY ANALYSIS

The second contribution is the measurement of these kernel overhead factors. The mea-
surements were collected by running different applications on different hardware platforms.
The presented measurements give an idea of how low is the overhead produced by the FRTL
kernel and how well the kernel scales as the processor computing power increases. In particu-
lar, the measured overhead values were typically in the order of 10 to 20 microseconds in any
modern processor tested (Pentium-III or equivalent). Therefore, the experiments show that the
FRTL system is not only predictable but also efficient.

8.6. SUMMARY AND CONTRIBUTIONS 147

4 TASKS
Min. Max. Avg. Var.
Crelease 8 40 17.7446 8.291
Cezception 24 28 25.3452 0.3570
Cyain 8 21 10.6328 15199
Copt 6 47 239352 4.5915
Cend 14 35 202760 2.3307
Cend_hand 8 12 10.8511 0.4480
Clock 7 17 10.1496 0.4716
Cunlock 6 17 9.6103 0.5870
Caynamic 12 26 17.7425 0.7030
8 TASKS
Min. Max. Avg. Var.
Chrelease 10 52 19.6818 9.7462
Cezception 26 34 287403 8.2018
Cyain 9 20 124907 17154
Copt 7 46 263334 8.3542
Cend 15 48 23.56 15.2551
Cend.hand 12 16 13.336 1.325
Clock 8 23 11.7148 0.5676
Cunlock 8 20 11.2964 0.6438
Caynamic 16 31 253193 15114
12 TASKS
Min. Max. Avg. Var.
Chrelease 12 37 21.8914 20.87
Ceacception 27 36 30.3558 8.4991
Cyain 10 23 141576 1.9901
Copt 8 53 28.6935 12.5830
Cend 15 47 249405 25.4424
Cend.hand 12 18 144417 0.8846
Clock 10 18 13.2099 0.7040
Cunlock 9 17 12.8891 0.7460
Caynamic 17 36 29.1408 6.8530

Table 8.6: Experiment 1: kernel overhead measurements for the three test applications running on a 200

Mhz. Pentium processor.

148 CHAPTER 8. COMPLETE FEASIBILITY ANALYSIS

4 TASKS
Min. Max. Avg. Var.
Chrelease 7 25 12.5753 1.6394
Cewception 19 23 19.8313 0.3691
Cyain 6 14 8.7809 1.3650
Copt 3 22 17.1079 2.4585
Cend 11 22 17.5918 2.2024
Cend._hand 9 11 9.8433 0.3851
Clock 5 13 8.8399 0.3797
Cuniock 5 12 8.7083 0.4162
Caynamic 7 16 14.6881 0.5804
8 TASKS
Min. Max. Avg. Var.
Chreiease 9 25 14.5443 1.4385
Cewception 20 27 22.6796 3.2662
Cyain 7 15 10.3224 1.5988
Copt 4 34 19.3788 4.6748
Cend 11 32 19.9740 11.5463
Cend._hand 11 13 11.4271 0.2932
Clock 6 14 10.2217 0.5206
Cuniock 6 14 10.1894 0.5257
Caynamic 11 23 20.2012 1.1934
12 TASKS
Min. Max. Avg. Var.
Chreiease 10 35 157238 1.9528
Ceaccept'ion 21 28 23.6809 4.1927
Cyain 8 17 11.5241 1.6614
Copt 5 37 20.8114 7.325
Cend 12 38 21.5132 16.5578
Cend_hand 10 14 12.6871 0.4358
Clock 7 16 11.2323 0.4823
Cuniock 7 15 11.3107 0.5946
Caynamic 12 27 23.935 3.9130

Table 8.7: Experiment 2: kernel overhead measurements for the three test applications running on a 233

Mhz. Pentium II processor.

8.6. SUMMARY AND CONTRIBUTIONS 149

4 TASKS

Min. Max. Avg. Var.
Chrelease 5 18 9.9253 1.563
Cezception 13 15 13.5238 0.2851
Cyain 4 11 6.9844 1.6916
Copt 8 16 11.9316 0.8598
Cena 7 17 13.5123 1.5466
Cend.hand 7 10 8.1547 0.2974
Clock 4 9 7.4165 0.3707
Cunlock 4 9 7.3545 0.3378
Caynamic 10 12 107767 0.2745

8 TASKS

Min. Max. Avg. Var.
Crelease 6 23 11.1228 1.456
Cezception 14 18 15.4258 1.9669
Cyain 5 12 7.9015 1.6901
Copt 9 18 13.1334 2.290
Cend 8 22 15.1195 4.1189
Cend_hand 5 10 8.8317 0.3611
Clock 5 10 8.2563 0.3883
Clunlock 5 12 8.1496 0.3966
Caynamic 7 18 13.9808 2.3010

12 TASKS

Min. Max. Avg. Var.
Crelease 7 26 11.6371 1.4459
Cemception 14 21 16.3999 2.3127
Cyain 5 13 8.6684 1.6827
Copt 9 20 13.9412 2.5745
Cend 8 26 15.9196 6.2467
Cend_hand 9 11 9.5636 0.3186
Clock 5 12 8.8596 0.4235
Cunlock 5 11 8.8408 0.4232
Caynamic 8 19 15.6282 2.4884

Table 8.8: Experiment 3: kernel overhead measurements for the three test applications running on a 450

Mhz. Pentium II processor.

150 CHAPTER 8. COMPLETE FEASIBILITY ANALYSIS

4 TASKS
Min. Max. Avg. Var.
Crelease 5 23 7.757 0.5836
Ceaception 11 14 11.2142 0.2636
Cyain 3 8 5.4645 0.8180
Copt 1 13 9.5614 0.8199
Cena 6 18 10.5087 1.1205
Cend._hand 6 8 6.2500 0.2113
Clock 3 7 57322 0.2352
Cuniock 3 8 5.6718 0.2623
Caynamic 3 9 8.5118 0.3977
8 TASKS
Min. Max. Avg. Var.
Chrelease 5 23 8.1254 0.7381
Ceaception 12 16 12,9523 1.2834
Cyain 4 9 6.3142 0.9288
Copt 8 16 10.9529 1.5495
Cena 6 18 11.7688 3.3607
Cend._hand 6 8 7.476 0.1024
Clock 4 10 6.4919 0.2837
Cunlock 4 9 6.4259 0.3099
Caynamic 6 13 11.5491 0.5353
12 TASKS
Min. Max. Avg. Var.
Chreiease 6 26 8.8501 0.7758
Ceacception 12 16 13.5247 1.5761
Cyain 4 10 6.9696 0.9556
Copt 8 18 11.7372 1.9460
Cena 7 22 12,6772 5.447
Cend_hand 7 9 7.8118 0.1923
Clock 4 10 7.659 0.2048
Cunlock 4 9 7.185 0.2573
Caynamic 6 15 13.397 2.3458

Table 8.9: Experiment 4: kernel overhead measurements for the three test applications running on a 500

Mhz. Pentium III processor.

8.6. SUMMARY AND CONTRIBUTIONS 151

4 TASKS
Min. Max. Avg. Var.

Chretease 3 21 62588 0.4938
Cleaception 9 12 97831 0.2903
Cyain 3 8 4.8906 0.9178
Copt 1 11 83714 0.5472
Cend 5 16 93873 0.7852
Cend_hand 3 9 5.5963 0.4093
Clock 3 6 5.1754 0.1975
Cuniock 3 6 5.1247 0.1658
Caynamic 3 8 7.6386 0.2967
8 TASKS

Min. Max. Avg. Var.
Crelease 4 22 7.965 0.5513
Cezception 10 13 11.825 0.8135
Cyain 3 8 5.6153 0.7440
Copt 6 15 9.4847 1.525
Cend 5 15 104249 3.1972
Cend_hand 6 8 6.2621 0.2031
Clock 3 8 5.8097 0.2355
Cuniock 3 5.7759 0.2398
Caynamic 8 12 10.1115 0.1936

12 TASKS

Min. Max. Avg. Var.
Crelease 5 22 7.6504 0.7844
Cemception 10 14 11.5853 0.9012
Cyain 4 9 6.1741 0.8936
Copt 2 18 10.833 1.6457
Cond 6 19 11.1489 4.2155
Cend_hand 5 8 6.8597 0.1449
Clock 4 9 6.2567 0.2653
Cunlock 4 8 6.2641 0.2490
Caynamic 5 15 11.1740 22323

Table 8.10: Experiment 5: kernel overhead measurements for the three test applications running on a

600 Mhz. Pentium III processor.

Conclusions and Future Work

9.1 Conclusions and Contributions

In the development of hard real-time systems, the focus has traditionally been on guaranteeing
the system timing correctness. In practice, this guarantee is achieved by means of an off-line
feasibility analysis, which mathematically proves the ability of the system tasks in meeting
their deadlines at run time. Systems are thus carefully designed, implemented and analyzed
with the main goal of having a predictable run-time behaviour, in which tasks always meet
their deadlines. For the sake of such predictable behaviour, hard real-time systems normally
implement simple applications dealing with well-defined, predictable environments. It seems
to be generally agreed within the real-time community that the next generation of hard real-
time systems should feature a more intelligent and flexible behaviour while still providing
such hard guarantees. However, there is no agreement yet on which specific requirements
define a flexible behaviour in the context of real-time systems or how to make these systems
meet such requirements.

This thesis has coined the term Flexible Hard Real-Time Systems (FRTS) to denote com-
plex systems requiring both hard timing guarantees and an adaptive, intelligent and flexible
run-time behaviour. The first achievement of this thesis has been to define both the concept
and the requirements of FRTS. In general, these requirements are oriented towards two major
topics. First, the system should combine tasks with different criticality levels and different
cooperative scheduling policies, in order to achieve both strict timing guarantees (by means of
scheduling hard tasks with a hard real-time policy) and an intelligent behaviour (by means of

153

154 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

applying a more sophisticated scheduling to non-hard tasks). And second, the system should
feature fault tolerance capabilities, in order to recover from run-time errors which may occur
when dealing with complex and unpredictable environments.

After defining FRTS and describing their requirements, this thesis has presented a new
general framework for building such systems. The framework is defined in three parts: a
computational model, a software architecture and a set of services. The framework’s com-
putational model is a generalization of both the models for Imprecise Computations and the
ARTIS architecture’s low-level task model. The proposed model permits FRTS to be defined
in terms of a set of tasks, each of which consists of a sequence of mandatory and optional com-
ponents. Mandatory components, which implement time-bounded algorithms, are guaranteed
to always be executed. Optional components, which may implement unbounded algorithms,
are executed in the processor spare capacity, in such a way that they never jeopardize the
guarantee on the mandatory component execution. Each application task can be implemented
by any number of components arranged in any order. The computational model also defines
the concept of dynamic component. A dynamic component is not included in any task but
rather is explicitly released by the application as a result of a particular run-time situation.
Dynamic components can be defined as either mandatory or optional. Mandatory dynamic
components are accepted via an on-line acceptance test which verifies whether the component
can be executed by its deadline while maintaining all the application tasks’ deadlines. Overall,
by structuring tasks in mandatory and optional components, the designer is assisted in break-
ing the solution of a problem down into smaller pieces. Furthermore, the designer is able to
choose which pieces will always execute to achieve a minimum-quality solution (mandatory
components) and which other pieces may possibly be executed to achieve an enhancement of
this solution (optional components).

The second part of this framework is a software organization or architecture in which there
are two scheduling levels, one for scheduling mandatory components (real-time level) and
another for scheduling optional components (non-real-time level). This decoupling permits
the system to have two specialized subsystems, each one devoted to achieving a different
goal. The real-time level is only concerned with two actions: scheduling task mandatory
components in such a way that tasks never miss their deadlines and extracting the maximum
amount of slack time available for executing the non-real-time level. This level has been
designed to carry out both actions by utilizing a fixed priority preemptive scheduling policy. In
turn, the non-real-time level is only concerned with scheduling the task optional components
in such a way that the overall system quality is maximized. This can be achieved by means
of a sort of utility-based scheduling policy, which is not imposed by the framework. The
framework has also specified the interactions between both levels. These interactions have
been designed to be as simple and efficient as possible in order to let each level work as
independently as possible. This general architecture provides three advantages. First, the real-
time level features a simple real-time scheduling policy, which makes this level both efficient
and easy to analyze (from the viewpoint of the feasibility analysis). Second, the non-real-time
level scheduling decisions are separated from the real-time level; this makes the real-time level

9.1. CONCLUSIONS AND CONTRIBUTIONS 155

more robust, since these scheduling decisions cannot jeopardize the real-time level scheduling
policy. And third, the application designer is assisted in developing custom scheduling policies
for the non-real-time level, according to the application requirements.

The third part of the framework definition is a set of services which can be appropriate for
supporting FRTS. Two specific services have been defined in the context of this thesis. The
first service is a synchronization mechanism that allows mandatory and optional components
belonging to any task to safely communicate by sharing memory objects. In this context,
the term safely refers to maintaining both the consistency of the data being shared and the
deadlines of the application tasks. The thesis has presented two alternative synchronization
mechanisms based on the use of mutexes: a variation of the Priority Ceiling Protocol (PCP)
and a variation of the Ceiling Semaphore Protocol (CSP). Each protocol has been adapted to
meet the framework requirements. In particular, the protocol is provided at both application
levels (so that mutexes can be directly accessed by mandatory and optional components) and
it is made compatible with the scheduling policy at each level. At the real-time level, such
compatibility implies adapting the protocol to the particular version of this level’s slack steal-
ing algorithm. At the non-real-time level, compatibility is more difficult to achieve, since the
particular scheduling policy is not constrained by the framework. Because of this, the protocol
has adopted some design decisions which may be considered as simplistic or drastic, but that
allow the protocol to work with any scheduling policy. The thesis has also presented an ex-
haustive theoretical and empirical evaluation of both adapted protocols. The conclusion is that
the CSP is clearly a better synchronization algorithm in the context of this framework, because
it provides better scheduling conditions to optional components (that is, more available slack
and a higher probability of successfully locking the application mutexes).

The second service is an explicit run-time support for timing exceptions. There is a general
and simplistic assumption in many real-time systems that hard tasks never overrun. This
may be true for systems in which tasks implement simple algorithms and the environment
is well-known and predictable. In the application domain of FRTS, however, this is not the
case. Nevertheless, since the framework relies on the accurate estimation of task wcets, it is
required to incorporate explicit mechanisms which can deal with potential timing exceptions
at run time. The thesis has presented a study which discusses which types of exceptions
should be detected and handled, depending on the timing behaviour of the run-time system.
As a result of this study, the framework proposes an explicit mechanism for detecting and
handling task wcet exceptions. This mechanism includes the automatic detection of any wcet
exception and the the possibility of attaching a user-defined handler to each application task.
Handlers can be defined as either mandatory or optional components at any priority, in order
to allow the designer to exactly define the urgency of executing the handler (in comparison to
any task component). The definition of handlers has thus been completely integrated into the
framework’s task model. The framework also proposes an optional detection and notification
mechanism for deadline exceptions, but only to deal with the case in which the system kernel
may exceed its expected maximum overhead.

This thesis has also shown how the framework can be implemented, which was one of the

156 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

main goals established at the beginning of this work. In particular, the framework has been de-
signed and implemented as real RTOS called Flexible Real-Time Linux (FRTL). This system
has been implemented by enhancing the capabilities of RT-Linux v1, which is a minimum hard
real-time kernel. FRTL provides the designer with all the features proposed by the framework,
as well as some system tools for analyzing the execution of the application. Furthermore, this
system has been designed in a way that preserves the predictability and efficiency of the orig-
inal RT-Linux. Predictability has been demonstrated by means of a timing characterization of
the real-time level, which has permitted the development of a complete feasibility analysis,
which includes all types of the kernel overhead. Efficiency has been shown by means of em-
pirical results for this overhead, showing that the longest section of kernel code typically takes
about 20 to 25us in the worst case, when the system is running on a regular current computer
(with an Intel Pentium III or equivalent processor).

The work presented in this thesis has been developed within a research group called
GTI/IA, from the Technical University of Valencia, which is intensively working on other
related topics. These topics include a development tool called Inside (which supports the ap-
plication designer in creating a FRTL application), and the implementation of two example
applications for controlling a simulated chemical plant (using a software simulation control
environment called Proximax) and an autonomous robot. All this work has been supported
by the following grants of the Spanish government: “Enfornos de sistemas basados en el
conocimiento de tiempo real” (TAP94-0511-C02-01), “ARTIS: herramienta para el desar-
rollo de sistemas inteligentes en tiempo real aplicados al control de robots moviles” (TAP97-
1164-C03-01), “ARTIS: herramienta para el desarrollo de sistemas inteligentes en tiempo
real estricto” (TAP98-0333-C03-01) and “Soporte de ejecucion para sistemas empotrados
distribuidos” (TIC99-1043-C03-02). Another related research project, which is funded in this
case by the Valencian Government, is called “Desarrollo de un entorno de ejecucion para la
realizacion de sistemas de tiempo real estricto” (GV98-14-76).

The main contributions of this thesis have been published in the following magazines and
conferences: an implementation of an ARTIS prototype was presented in [Gar96b, Gar97a].
This prototype, which was the predecessor of FRTL, was implemented in Solaris by using
POSIX facilities. Both papers presented a complete timing characterization of the prototype’s
kernel. An early implementation of this prototype in RT-Linux was presented in [Ter98].
In [Esp98], the problem of sharing memory predictably in the prototype was addressed. Fi-
nally, the actual framework proposed in this thesis and the corresponding FRTL run-time
system have recently been published in [Ter99, Terr0Oa, TerrOOb].

9.2 Future Lines of Work

Future lines of work in this still emerging research field are numerous. In the particular context
of the proposals of this thesis, three main areas can be considered for further research. The first
area is concerned with the scheduling paradigm at the real-time level. This thesis is centered
on using the fixed priority preemptive scheduling policy and a slack stealer algorithm in order

9.2. FUTURE LINES OF WORK 157

to schedule the application mandatory components at the real-time level. Improvements could
be obtained in two lines. On the one hand, some restrictions enforced by the task model,
such as not allowing arbitrary deadlines or not directly supporting sporadic tasks, could be
removed. Any improvement in this direction has to carefully take into account the concept of
slack interval, which is a key aspect in the non-real-time level scheduling policy. On the other
hand, the limitations of the scheduling techniques at the real-time level could be overcome by
completely changing these techniques for new ones. For example, the Earliest Deadline First
(EDF) paradigm could be used instead of the fixed priority scheduling, as it is more flexible,
produces more available slack and allows for a higher system utilization. Nevertheless, any
new scheduling paradigm to be introduced at the real-time level has to preserve the framework
architecture of two scheduling levels dynamically sharing the processor, the proposed set of
services and, specially, the ability to perform a complete feasibility analysis of the system.

The second area involves the design and implementation of a library of generic non-real-
time level scheduling policies. The design and implementation of a variety of scheduling
policies is very interesting for the framework. First, because this will help in validating the
proposed interface between the first-level and second-level schedulers, which is supposed to
be both efficient and as simple as possible. And second, because having a library of standard
utility-based policies will allow the designer to choose the one which is best suited for the
application or have a model for developing a custom policy.

The third area corresponds to the design and implementation of real applications using the
framework/FRTL system. This area is currently under development. In particular, an appli-
cation for controlling an autonomous mobile robot is being built. This application includes
completely controlling the robot sensors and actuators, as well as obstacle detecting, trajec-
tory planning, communication with other robots, learning about the environment status, etc.
This kind of problem is very close to the concept of FRTS, since it includes a dynamic, not-
completely-specified and sometimes unpredictable environment, hard deadlines for some tasks
(such as obstacle detecting) and high reasoning capabilities for other tasks (such as mission or
trajectory planning). This application will be a perfect testbed for validating the capabilities
of both the framework and the FRTL system proposed in this thesis. Finally, in the develop-
ment of such real application, exact worst-case values of the kernel overhead will be required
in order to study the application schedulability in real conditions. In this sense, kernel code
associated with each overhead factor needs to be measured (or analyzed) more accurately.

Bibliography

[Aud90]

[Aud9l]

[Aud93]

[Aud95]

[Aud96]

[Bak91]

[Bod94]

[Bol97]

[Bur95]

Audsley, N.C., Burns, A. (1990). “Deadline monotonic scheduling” Technical
Report YCS-146. Department of Computer Science. University of York, 1990.

Audsley, N.C., Burns, A. , Richardson, M.F. and Wellings, A. (1991). “Hard
Real-Time Scheduling: The Deadline Monotonic Approach”. Proceedings 8th
IEEE Workshop on Real-Time Operating Systems and Software, Atlanta. May
1991.

Audsley, N.C. (1993). “Flexible scheduling of hard real-time systems”. Ph. D.
Thesis. Department of Computer Science, University of York. 1993.

Audsley, N.C, Burns, A., Davis, R., Tindell, K., and Wellings, A. (1995). “Fixed
priority pre-emptive scheduling: an historical perspective”. Real-Time Systems
vol. 8, pp. 173-198.

Audsley, N.C, Burns, A., Davis, R.I., Scholefield, D.J., and Wellings, A. (1996).
“Incorporating optional software components into hard real-time systems”. Soft-
ware Engineering Journal. May, 1996. pp. 133-140.

Baker, T.B. (1991). “Stack-based scheduling of real-time processes”. Real-Time
Systems, Vol. 3, No. 1, March 1991, pp. 67-99.

Boddy, M. and Dean, T. (1994). “Deliberation scheduling for problem solving
in time-constrained environments”. Artificial Intelligence, No. 67, pp. 245-285.

Bollella, G. (1997). “Slotted Priorities: supporting real-time computing within
general-purpose operating systems”. Ph.D. Dissertation, Department of Com-
puter Science, University of North Carolina.

Burns, A., Wellings, A. (1995). “Engineering a hard real-time system: from
theory to practice”. Software Practice and Experience, vol. 25(7), pp. 705-726.

159

160

[Bur96]

[Car97]

[Car98]

[Dav93a]

[Dav93b]

[Dav94]

[Dav9s5]

[Dea88]

[Den97]

[Dij68]

[Esp98]

[Fis98]

BIBLIOGRAPHY

Burns, A., Wellings, A.J. (1996). “Dual Priority Scheduling in Ada95 and Real-
Time Posix”. Proceedings of the 21st IFAC/IFIP Workshop on Real-Time Pro-
gramming, pp. 45-50, Gramado, Brazil, 1996.

Carpenter, B., Roman, M., Vasilatos, N., and Zimmerman, M. (1997). “The RTX
real-time subsystem for Windows NT”. The USENIX Windows NT Workshop
Proceedings, August 1997, pp. 33-38.

Carrascosa, C., Garcia. A., Julian, V., Terrasa, A., Tomas, V., Garcia-Fornés, A.,
Botti, V. (1995). “OLA: Una herramienta para andlisis off-line en sistemas de
tiempo real inteligentes”. Actas de la TTIA, November 15-17 1995, pp. 29-41.
(in Spanish).

Davis, R.I., Tindell, K.W., and Burns, A. (1993). “Scheduling Slack Time
in Fixed Priority Preemptive Systems”. Proc. Real-Time Systems Symposium,
Raleigh-Durham, North Carolina, December 1-3, pp. 222-231, IEEE Computer
Society Press.

Davis. R.I. (1993). “Approximate Slack Stealing Algorithms for Fixed Priority
Pre-emptive Systems”. Technical report YCS217, Department of Computer Sci-
ence, University of York, November 1993.

Davis, R.I. (1994). “Guaranteeing X in Y: On-line Acceptance Tests for Hard
Aperiodic Tasks Scheduled by the Slack Stealing Algorithm”. Technical report
YCS231, Department of Computer Science, University of York, May 1994.

Davis, R.I. Burns, A. (1995). “Optimal Priority Assignment for Aperiodic Tasks
with Firm Deadlines in Fixed Priority”. Information Processing Letters, Volume
53, No. 5, pp. 249-254, March 1995.

Dean, T., and Boddy, M. (1998). “An analysis of time-dependent planning”.
Proceedings of the 7th National Conference on Artificial Intelligence, pp. 49—
54, St. Paul, Minnesota, August 1988.

Deng, Z, and Liu, J.W.-S. (1997) “Scheduling Real-Time Applications in an
Open Environment”. Proc. of the IEEE Real-Time Systems Symposium, San
Francisco (California), December 1997, pp. 308-319.

Dijkstra, E. (1968). “The structure of the “THE” multiprogramming system”.
Communications of the ACM. Volume 11, No. 5. May, 1968, pp. 341-346.

Espinosa, A., Terrasa, A., Garca-Fornes, A. (1998). “A predictable module for
sharing memory in RT-Linux”. Proc. of the 23th IFAC/IFIP Workshop on Real-
Time Programming (WRTP’98). Shantou, China.

Fisher, P. (1998). “Building Distributed Real-Time Systems with Windows NT
and INtime”. Real-Time Computer Show. September 22, 1998.

BIBLIOGRAPHY 161

[Gar96a]

[Gar96b]

[Gar97a]

[Gar97b]

[GNU91]

[Gar93]

[Hay90]

[Hay95]

[Hor91]

[Hum99]

(Hyp]

[POS90]

[POS93]

Garcia-Fornes, A. (1996). “ARTIS: Una arquitectura para sistemas inteligentes
en tiempo real”. Ph. D. dissertation. October 1996. (In Spanish).

Garcia-Fornes, A., Terrasa, A., Botti, V., Crespo, A. (1996). “Engineering a
tool for building hard predictable real-time artificial intelligent systems”. Proc.
of the 21st IFAC/IFIP Workshop on Real-Time Programming, Canela, Brazil,
November 1996.

Garcia-Fornes, A., Terrasa, A., Botti, V., Crespo, A. (1997). “Analyzing the
schedulability of hard Real-Time Artificial Intelligence systems”. Engineering
Applications of Artificial Intelligence, Vol. 10, No. 4, pp. 369-377.

Garcia-Fornes, A., Terrasa, A., Botti, V. (1997). “Técnicas de planificacion de
tareas aperiddicas en sistemas de tiempo real estricto”. Novdtica, Sep—Oct. 1997,
No. 129, pp. 22-30. (In Spanish).

GNU General Public License. GNU. Version 2, June 1991.
http://www.gnu.org/copyleft/gpl.html

Garvey, A., and Lesser, V. (1993). “Design-to-time real-time scheduling”. IEEE
Transaction on Systems, Man and Cybernetics, No. 23(6), pp. 317-347.

Hayes-Roth, B. (1990). “Architectural foundations for real-time performance in
intelligent agents”. The Journal of Real-Time Systems, No. 2, pp. 99-125.

Hayes-Roth, B. (1995). “An architecture for adaptive intelligent systems”. Arti-
ficial Intelligence, No. 72, pp. 329-365.

Horvitz, E.J., and Rutledge, G. (1991). “Time-dependent utility and action un-
der uncertainty”. Proc. of the 6th Conference on Uncertainty in Artificial Intel-
ligence, Los Angeles, CA, July, 1991.

Humphrey, M., Hilton, E., and Allaire, P. (1999). “Experiences using RT-
Linux to implement a controller for a high speed magnetic bearing system”.
Proceedings of the Fifth Real-Time Technology and Applications Symposium
(RTAS’99), pp. 121-130, Vancouver, Canada, June 1999.

Imagination System Incorporated. Hyperkernel.
http://www.imagination.com/hyperker.html.

IEEE Std 1003.1 (1990). Portable Operating System Interface (POSIX) - Part 1:
System Application Programming Interface (API) [C Language].

IEEE Std. 1003.1b (1993). Portable Operating System Interface (POSIX) - Part
1: System Application Program Interface (API) [C Language] - Amendment 1:
Realtime Extensions.

162

[POS95]

[POS97]

[POS96]

[Jos86]

[Jul00]

[Kat93]

[K1e93]

[Lam97]

[Leh87]

[Leh90]

[Leh92]

[Les88]

BIBLIOGRAPHY

IEEE Std. 1003.1¢ (1995). Portable Operating System Interface (POSIX) - Part
1: System Application Program Interface (API) [C Language] - Amendment 2:
Threads Extension.

IEEE/ANSI Std. 1003.13 (1997). Draft Standard for Information Technology —
Standardized Application Environment Profile— POSIX RealTime Application
Support (AEP).

ISO/TIEC 9945-1 (1996). Information technology — Portable Operating System
Interface (POSIX) - Part 1: System Application Programming Interface (API)
[C Language].

Joseph, M., and Pandya, P. (1986). “Finding response times in a real-time sys-
tem”. BCS Computer Journal, 29(5), October 1986, pp. 390-395.

Julian, V., Gonzilez, M., Rebollo, M., Carrascosa, C., and Botti, V. (2000).
“InSiDE: una herramienta para el desarrollo de agentes ARTIS”. Proceedings of
the SEID’2000. To appear. (In Spanish).

Katcher, D., Arakawa, H. And Strosnider, J. (1993). “Engineering and analysis
of fixed priority schedulers”. IEEE Transactions on Software Engineering, vol.
19, pp. 920-934.

Klein, M.H., Ralya, T., Pollak, B., Obenza, R., and Gonzilez-Harbour, M.
(1993). “A practitioner’s handbook for real-time analysis”. Kluwer Academic
Publishers. ISBN 0-7923-9361-9.

Lamastra, G., Lipari, G., Butazzo, G. Casile, A., and Conticelli, F. (1997).
“HARTIK 3.0: A portable system for developing Real-Time Applications”.
Proc. of the IEEE Fourth International Workshop on Real-Time Computing Sys-
tems and Applications, Taipei (Taiwan), October 1997, pp. 43-50.

Lehoczky, J.P., Sha, L., and Strosnider, J.K. (1987). “Enhanced aperiodic re-
sponsiveness in hard real-time environments”. Proceedings of the IEEE Real-
Time Systems Symposium, San Jose, CA, December 1987, pp. 261-270.

Lehoczky, J.P. (1990). “Fixed priority scheduling of periodic task sets with arbi-
trary deadlines”. Proceedings of the 11th IEEE Real-Time Systems Symposium,
Florida (USA), 1990, pp. 201-213.

Lehoczky, J.P., and Ramos-Thuel, S. (1992). “An optimal algorithm for schedul-
ing soft-aperiodic tasks in fixed-priority preemptive systems”. Proc. of the Real-
Time Systems Symposium, December 1992, pp. 110-123.

Lesser V., Parlin J., Durfee E. (1988). “Approximate processing in real-time
problem solving”. The Al Magazine, No. 9(1) spring, pp. 44-61.

BIBLIOGRAPHY 163

[Liu73]

[Liu91]

[Loc86]

[Lun99]

[Lyc78]

[Mou92]

[Mus93]

[Mus95]

[Raj89]

[Ram94]

[Rea00]

[RTE]

[Sil94]

Liu, C.L., and Layland, J.W. (1973). “Scheduling algorithms for multiprogram-
ming in a hard real-time environment”. Journal of the ACM, Vol. 20, No. 1, pp.
44-61. January, 1973.

Liu, J.W.S., Lin, KJ.L., Shih, WK., Yu, A.C., Chung, J.Y., and Zhao, W.
(1991). “Algorithms for Scheduling Imprecise Computations”. Computer IEEE
May(1991), pp. 58-68.

Locke, C.D. (1986). “Best-Effort Decission Making for Real-Time Scheduling”.
CMU-CS-86-134 (PhD. Thesis). Computer Science Department, CMU, May 10,
1986.

Lundqvist, T. and Sternstrom, P. (1999) “Timing anomalies in dynamically
scheduled microprocessors”. Proc. of the 20th Real-Time Systems Symposium,
Dec. 1-3, 1999, Phoenix, pp. 12-21.

Lycklama, H., and Bayer, D.L. (1978). “The MERT operating system”. The Bell
System Technical Journal, Vol. 57, No. 6, July-August, 1978, pp. 2049-2086.

Mouabdid, A., Charpillet, F. and Haton, J.P. (1992). “Approximation and pro-
gressive reasoning”. Proc. AAAI Workshop on Approximation and Abstraction
of Computational Theories, San Jose, July 1992.

Musliner, D.J., Durfee, Shin, K.G. (1993). “CIRCA: a cooperative intelligent
real-time control architecture”. IEEE Transactions on Systems, Man and Cyber-
netics, No. 23(6), pp. 1561-1574.

Musliner, D.J., Hendler, J.A., Agrawala, A.K., Durfee, E.H., Strosnider, J.K.,
and Paul, CJ. (1995). “The Challenges of Real-Time AI”. Computer, Jan-
uary(1995), pp. 58-66.

Rajkumar, R., Sha, L., Lehoczky, J.P. (1989). “An experimental investigation of
synchronization protocols”. Proc. of the IEEE Workshop on Real-Time Operat-
ing Systems and Software. May, 1989, pp. 11-17.

Ramamritham, K, Stankovic, J.A. (1994). “Scheduling Algorithms and Operat-
ing Systems Support for Real-Time Systems”. Invited paper, Proceedings of the
IEEE, Jan 1994, pp. 55-67.

Real, J. (2000). “Protocolos de Cambio de Modo para Sistemas de Tiempo
Real”. Ph. D. Dissertation. Universidad Politécnica de Valencia, March, 2000.
(In Spanish).

The Real-Time Encyclopaedia. http://www.realtime-info.be/encyec.

Silberschatz, A., and Galvin P. (1994). “Operating systems concepts”. 4th edi-
tion. Addison-Wesley, 1994.

164

[Sha90]

[Spu90]

[Sta90]

[Sta93]

[Sta98]

[Ste92]

[Ste96]

[Sto88]

[Tan97]

[Ter98]

[Ter99]

[TerrOOa]

BIBLIOGRAPHY

Sha, L., Rajkumar, R., and Lehoczky, J.P. (1990). “Priority inheritance proto-
cols: An approach to Real-Time Synchronization”. IEEE Transactions on Com-
puters, vol. 39, n° 9, Sep(1990), pp. 1175-1185.

Sprunt, B. (1990). “Aperiodic Task Scheduling for Real-Time Systems”. Ph.
D. Dissertation. Department of Electrical and Computer Engineering. Carnegie
Mellon University. August 1990.

Stankovic, J.A., and Ramamritham, K. (1993). “EDITORIAL: What is Pre-
dictability for Real-Time Systems?”. Real-Time Systems Journal, Vol. 2, pp.
247-254. December 1990

Stankovic, J. and Ramamritham. K. (1993).“Advances in Hard Real-Time Sys-
tems”. IEEE Computer Society Press, September 1993, 777 pages.

Stankovic, J., Spuri, M., Ramamritham, K., and Butazzo, G.C. (1998). “Dead-
line scheduling for real-time systems”. Kluwer Academic Publishers. ISBN 0-
7923-8269-2. 1998.

Steward, D.B., Schmitz, D.E., and Khosla, P.K. (1992). “The Chimera II Real-
Time Operating System for Advanced Sensor-Based Control Applications”.
IEEE Transactions on Systems, Man and Cybernetics, v. 22, n. 6, pp 1282-1295.
Nov./Dec. 1992

Stewart, D.B. and Khosla, P.K. (1996). “Policy-independent real-time operating
system mechanisms for timing error detection, handling and monitoring”. Proc.
of the HASE’96, Oct. 1996, Niagara-on-the-Lake, Canada.

Strosnider, J.K. (1988). “Highly responsive real-time token rings”. Ph. D. thesis.
Department of Electrical and Computer Engineering. Carnegie Mellon Univer-
sity. August 1988.

Tanenbaum, A.S., Woodhull, A.S. (1997). “Operating systems: design and im-
plementation”. Prentice-Hall, ISBN: 0136386776.

Terrasa, A., Espinosa, A., Garcia-Fornes, A. (1998). “Extending RT-Linux to
support flexible hard real-time systems with optional components”. Lecture
Notes in Computer Science. Vol. 1474, pp. 41-50.

Terrasa, A., and Garcia-Fornes, A. (1999). “Real-Time synchronization between
hard and soft tasks in RT-Linux”. Proc. of the 6th Real-Time Computing Systems
and Applications (RTCSA’99), Dec. 1999, Hong-Kong, pp. 434-441.

Terrasa, A., Garcia-Fornes, A. and Botti, V. (2000). “Flexible Real-Time Linux:
A flexible hard real-time environment”. Journal of Real-Time Systems, special
issue on Flexible Scheduling of Real-Time Systems. (Accepted).

BIBLIOGRAPHY 165

[TerrOOb]

[Tin93]

[Win92]

[Yod99]

[Zi195]

[Zi196]

Terrasa, A., Garcia-Fornes, A. and Botti, V. (2000). “Including user-defined tim-
ing exception handling in FRTL”. Proc. of the 7th Real-Time Computing Sys-
tems and Applications (RTCSA’00). (Accepted).

Tindell, K. (1993). “Fixed Priority Scheduling of Hard Real-Time Systems”.
Ph. D. Thesis. Department of Computer Science. University of York. December,
1993.

Winston, P.H. (1992). “Artificial Intelligence”. 3rd. Edition. Addison-Wesley.
ISBN 0201533774.1992.

Yodaiken, V. (1999). “An RT-Linux Manifesto”. Proceedings of the 5th Linux
Expo, Raleigh, North Carolina, May 1999.

Zilberstein, S. (1995). “Operational rationality through compilation of anytime
algorithms”. The AI Magazine, No. 16(2), pp. 79-80.

Zilberstein, S. (1996). “Using anytime algorithms in intelligent systems”. The
Al Magazine, No. 17(3).

