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Abstract: The European Union advocates for legislative support to local energy communities. Mea-
sures include the promotion of dynamic energy allocation and discriminatory electricity tariffs such as
the recent Spanish framework. However, the impact of these normative changes is not yet evaluated.
This paper inquires into the impact of dynamic allocation coefficient and different electricity tariffs
on the profitability of local energy communities. To do so, a linear optimisation model is developed
and applied to real consumer data in Spain around a variable capacity photovoltaic generation plant.
Comparing the economic performance of the static or variable power allocation under the effect of
changing electricity tariffs. While both measures are beneficial, the new electricity tariffs result in
larger profitability increases than the planned variable coefficients. The combination of measures
allows for profitability improvements of up to 25% being complementary measures. However,
installations that maximise the potential for electricity generation are still not as profitable due to
the low purchase price of surplus energy. While discriminatory electricity price tariffs and variable
allocation coefficients are positive measures, further measures are needed for these communities to
install generation plants as large as the potential that each case allows.

Keywords: local energy communities; self-consumption; variable coefficients; electricity tariff;
prosumers; Spain

1. Introduction

Local energy communities (LEC) will be an essential cornerstone for the success of the
Energy Transition [1]. The European Union (EU) acknowledges in the “Clean Energy for all
Europeans” package the need for regulatory frameworks that empower renewable-based
self-consumers (commonly referred to as prosumers) to generate, consume, store, and sell
electricity back to the grid [2]. Thus, the EU introduces the notion of renewable energy
communities as entities managed by natural persons, local authorities, or small enterprises.

Interest in LECs rises from the various benefits the concept of LEC presents. First of
all, on the economical side, LECs produce reductions on the electric bills of residential and
commercial consumers [3]; this even has the potential to fight against energy poverty [4–6].
In addition, deployment of self-generation installations enhances competition and reduces
wholesale market prices [7]. Small enterprises can profit from these schemes to reduce their
environmental impact and rise energy efficiency in their supply chain management [8–10].

On the technical side, LECs produce power generation closer to the consumption
point. Thus, reducing power losses [3], leverages the potential flexibility existing at the
residential level [7], and increasing the resilience of the users without having to overinvest
in grid expansions [11,12].

On the social side, LEC allows an energy system with more participation and demo-
cratic control by citizenship [5,13,14], a new source of funding for renewable energy projects,
energy-related knowledge generation, expertise and cohesiveness among the members
of the community [13] and increase community awareness on sustainable issues [6,13].
Moreover, LECs promote renewable energy production by energy users that did not have
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access to the necessary space or funds to undertake the installation of renewable instal-
lation [15]. Thus, LECs are capable to deliver the benefits of low carbon technologies to
lower-income socioeconomic groups compared with individual installations [16]. This has
great potential since cities consume two-thirds of the energy supply worldwide, and 70%
of CO2 emissions come from urban environments, making cities a key player in the energy
transition [17,18].

Spain has introduced the concept of shared self-consumption in Royal Decrees 244/2019
and 23/2020 [19,20] after eliminating the controversial self-generation legal framework
know as “tax to the sun” [21]. However, the current normative only allows sharing
generated power under static allocation coefficients. Meaning that the same coefficients
are employed during all the hours of the year regardless of the demands of the members.
Nonetheless, it is expected that new regulations will allow the use of variable allocation
coefficients and, therefore, the power-sharing between users can be adjusted to their
different demand curves during the day or the year [22]. This change could improve the
process of matching generation with demand and, therefore, increase the self-consumption
rates of LEC members. Besides, in June 2021, came into force a new electricity tariff that
accentuates the differences between high and low electricity price periods. In it, central
hours of the day experience tariff prices over ten times more expensive than night hours.
This new billing regulation, together with the introduction of variable allocation coefficients,
affects the profitability of LEC, and their efficient performance.

However, the extent of the individual and combined effects of both measures (tariff
and variable coefficients) in future LECs is unknown. Understand these effects is vital to
both installers and citizens in their decision making around new LECs, their dimension-
ing, expected performance, and optimal size. To address these questions, we develop a
mathematical model of a LEC based on rooftop PV solar generation. In it, we define a
Linear Program (LP) problem to minimise the overall electricity costs of LEC consumers by
optimising the sharing coefficients (both static or variable) under different scenarios (new
and old tariff schemes). With the model, we inquire three main questions. First, which are
the effects on the LEC profitability of the sharing coefficient types. Second, which effect
would produce the new tariff structures in the profitability of the LEC under the Spanish
legislative framework. Third, how these two effects combine depending on the Solar PV
generation capacity of the LEC. To do so, we apply the model and analysis to a case study
in the city of Valencia with real consumers data.

In the case study, we assume a LEC of 20 residential members. The energy demands
from these users employed in the model are real load curves of residential users of Valencia.
Then, we have simulated the LEC under different configurations. We study 200 scenarios
with capacities from 2 to 100 kWp, the use of fix or variable allocation coefficients and the
enforcement of the old or the new electricity tariff. Thus, we can evaluate the economic
and self-consumption implications of each variable independently and, also, the synergies
they create.

The rest of the paper is organised as follows, Section 2 discusses the current literature
around energy communities and their modelling, Section 3 presents the mathematical
formulation to optimise and assess the community performance. Section 4 shows the Case
Study analysed. Section 5 shows the results from the different simulations and discusses
them and their implications. Finally, Section 6 concludes by summarising the main findings
of the paper.

2. Literature Review

LEC concept can involve very different legal and financial models of ownership that
undertake a variety of activities within the energy sector [13]. Therefore, to describe them
involving all the existing possibilities is a non-trivial task. A reason for the diversity of
projects embraced by the LEC concept is that community energy projects have emerged for
decades in many countries with no specific regulation [5]. Nonetheless, some characteristics
are usually associated with LECs. In general, LECs are local and cooperative: all the
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members of the community are situated close to the renewable energy installation they
own and that are managed with open and voluntary participation by all the members.
LECs members can be natural persons, local authorities or small enterprises that manage
the community autonomously and whose participation is not their primary commercial or
professional activity.

To unlock the potential of LECs, a normative framework that promotes these projects
is needed. For this purpose, the European Union (EU) enforced the “Clean Energy for all
Europeans” package to define a regulatory framework that empowers renewable-based
self-consumers (commonly referred to as prosumers) to generate, consume, store, and
sell electricity back to the grid [2]. Inside this package, the EU recasts Renewable Energy
Directive [23] and Electricity Market Directive [24] and all Member States have to transpose
into national law. Therefore, Spain enforced the Royal Decree 244/2019 completing the new
regulation for renewable self-consumption promoted by Royal Decree-Law 15/2018. This
regulation introduced a compensation mechanism for prosumers with installed power until
100 kW, establishing an offset price for self-consumption surpluses supplied to the national
grid [3]. Next year, the Royal Decree 23/2020 introduced the LEC concept into the Spanish
regulation. This regulation established that LEC members should be within 500 m from the
generation point and the generated power should be allocated employing coefficients fixed
in time. Nonetheless, regarding the allocation coefficients, the Royal Decree anticipates
the future regulation to allow the use of variable allocation coefficients, so prosumers
can adjust each hour the power allocated to each of them following their variable power
demand. In this line, in April 2021 a proposal of regulation for this feature was issued by
the Spanish regulators that would allow prosumers to establish at the beginning of each
year the allocation coefficients of each hour for each LEC’s member.

On the other hand, since June 2021 new network tariffs and levies apply to electricity
consumers in Spain, including small residential and commercial consumers (less than
10 kW). The new electricity tariff aims to incentivise changes in consumption patterns to
reduce consumption peaks in the hours of maximum consumption (midday and evening
during weekdays) by moving it to hours with historical valley consumption. Thus, this
tariff reduces the capacity charge and moves from one volumetric charge to three volumetric
charges [25,26].

Previous work has simulated shared self-consumption between residential users
to minimize electricity costs. Models simulate a group of prosumers sharing their re-
sources [27,28] or considering a group of common renewable generators [29]. One step
further is considering these prosumers not just as collaborators, but as members of a LEC.
On this line, Dorotić et al. [30] simulated a community energy system on an island employ-
ing only intermittent renewable energies, Chakraborty et al. [31] simulated a LEC under
different billing mechanisms, Awad et al. [32] developed a model to simulate the LEC
demand and a method to maximise self-consumption and minimise the energy cost, Lilla
et al. [33] modelled mathematically the day-ahead scheduling power allocation of a LEC
and Grzanic et al. [34] developed a method to share and bill energy within a LEC in a fair
way for all members. On the Spanish framework, Gallego-Castillo et al. [35] performed
a regional analysis of optimal self-consumption for energy communities under the new
energy Spanish regulation passed in 2019 concluding that self-consumption is cost-effective
in all territory. A summary of the literature review compared with our work is presented in
Table 1. On this table, the references are compared by their novelties, whether they evaluate
different regulatory frameworks, different sharing strategies, present a case study or it is
applied to the Spanish context.

However, to the best of our knowledge, no work assessed the economic implications
that would have for the LECs in Spain the application of variable allocation coefficients
or the recent change in the tariff regulations. Probably, this has not being done because
the allocation coefficients change has not yet taken place and the tariff regulation is very
recent. In any case, we consider that these are relevant questions that deserve proper study



Sustainability 2021, 13, 10555 4 of 18

to provide a concise answer to help LEC developers and users to understand and optimise
their generation facilities.

Table 1. Summary of the literature review , using keywords like “Local energy communities”; “Regulatory framework”;
“Variable coefficients”; “Electriciity sharing strategies”; “Electricity tariff”.

Reference Novelty Regulatory
Framework

Sharing
Strategies Case Study Spanish

Context

This work

Assessment of economic implica-
tion of the new Spanish electric-
ity tariff regulation and the imple-
mentation of variable coefficients
in LEC.

X X X X

[36]

An integrated cost optimisation
model of PV BESS systems in-
cluding system sizing and battery
ageing.

X

[27]
Design of an online algorithm to
tackle cost-aware energy sharing
among a cooperative community.

X X

[32]

Develop a generic and systematic
framework that analyses, simu-
lates, and optimises community
dwellings equipped with commu-
nity shared solar PV systems.

X

[28] New energy cost minimisation strat-
egy for cooperating households.

[31]

Conditions under cooperative en-
ergy sharing that decreases total
cost, the development of alloca-
tions rules and comparative an-
alytical of the main billing pro-
grams (feed-in-tariff, net metering,
net purchase and sale).

X X

[30]
Analysis of the island system with
100% intermittent renewable en-
ergy sources.

X

[29]

A mathematical framework to op-
timize the use of renewable en-
ergy across households and two
approaches to solve the optimisa-
tion problem.

[37]

Development of a model to estimate
the cost-optimal large-scale eco-
nomic potential of shared rooftop
PV systems based on LECs.

X

[33]

Designing a specific distributed
procedure based on the alter-
nating direction method of mul-
tipliers (ADMM) to plan the
day-ahead operation of a grid-
connected LEC.

X
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Table 1. Cont.

Reference Novelty Regulatory
Framework

Sharing
Strategies Case Study Spanish

Context

[35]

Regional analysis of optimal self-
consumption installations under
the new legal framework recently
passed in Spain.

X X

[34]

Centralised post-process sharing
method by introducing a two-
stage mechanism and impact of
different flexible appliances on
electricity cost reduction.

X X

3. Methodology

This section presents the methodology used in this paper. To answer the research
questions, we model a LEC to simulate and optimise its performance. A scheme of the
method followed is presented in Figure 1, which results in a Linear Problem due to the
specific physical and economic objective and constraints of the optimisation.

Scenarios

- Type of allocation
coefficients 
- Electric tariff
- PV power

- LEC size and location
- Curve loads 
- PV capacity factors

Coefficients
Optimization

Conclusions

Discussion of results

Economic results
calculation

LEC cost

Case Study

Lower cost

Yes

No

Julia JuMP

Figure 1. Methodology employed to develop this work.

The methodology starts by defining the case study where it is going to be applied
and the different scenarios. The case study is defined by the location and size of the LEC,
meaning the number of consumption points that the renewable installation will provide
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with energy, the curve of the loads in those consumption points and the capacity factors of
the PV installation, determined by factors as the orientation, inclination and power losses.

The scenarios are determined by three variables, related to each research question:
the type of allocation coefficients that will be employed, the electric tariff under which the
LEC will perform and the peak power of the PV installation. The different possibilities for
each variable will be established and combined generating all the scenarios to evaluate. A
summary of the scenarios is depicted in Figure 2.

OT-SC
Old Tariff

Static Coefficients
2-100kW

OT-VC
Old Tariff

Variable Coefficients
2-100kW

NT-SC
New Tariff

Static Coefficients
2-100kW

NT-VC
New Tariff

Variable Coefficients
2-100kW

Figure 2. Scenarios considered in the study.

Thus, for each scenario allocation coefficients are optimised. For that, we use the
modelling language for mathematical optimisation JuMP, embedded in Julia [38]. When the
scenario involves static coefficients, the best set of coefficients is obtained for all the hours
of the year while, if the scenario employs variable coefficients, the best set of coefficients
is optimised for each hour of the year. To establish which is the best set of coefficients we
measure the cost of electricity for the LEC. To do that, the process on Figure 3 is followed.
Thus, on each hour the allocated power to each user is compared with their demand to
evaluate if all demand can be supplied by the allocated power. Furthermore, if some
surplus is generated or only a part of the demand is self-consumed and there is a power
deficit. In any case, this generated deficit or surplus is balanced with the grid buying or
selling power, respectively. This will ultimately determine the cost of electricity for the LEC
giving us an objective metric to compare scenarios. Hence, for each scenario, we obtain
independent results that are assessed and compared in the discussion of results. Once we
have processed all the scenarios and have discussed the results, conclusions are drawn.
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Figure 3. LEC power allocation and purchased methodology.

3.1. Mathematical Model

The objective is to minimise the total energy cost of the energy community:

min CostLEC =
G

∑
g

T

∑
t
·
(

PP
t,g

(
πDA

t + πT
t

))
+

G

∑
g

Y

∑
y

(
PCont

g,y · πCont
y

)
−

G

∑
g

T

∑
t

(
PV

t,g · πDER
t

)
(1)

The energy cost of the LEC is established by adding the variable term of electricity
price, which depends on how much electricity each user acquires from the grid, with the
price of the contracted electricity term, which depends on the contracted power of each
user and subtracting the price of the electricity sold to the grid, that will depend on the
surplus power generated on each hour.

The optimisation will run subject to the following restrictions:

PP
t,g ≥ 0 ∀t ∈ T, g ∈ G (2)

PSC
t,g ≥ 0 ∀t ∈ T, g ∈ G (3)

PV
t,g ≥ 0 ∀t ∈ T, g ∈ G (4)

PCont
g,y ≥ 0 ∀g ∈ G, y ∈ Y (5)

The previous constraints establish that no power variable can have negative values.

0 ≥ βt,g ≥ 1 ∀t ∈ T, g ∈ G (6)

The coefficients can only take on values between 0 and 1, as they represent fractions
of generated power.

PP
t,g + PSC

t,g = PD
t,g ∀t ∈ T, g ∈ G (7)
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This constraint indicates that purchased and self-consumed power by a certain user
will always cover the demand from the user.

PP
t,g ≤ PCont

g,y ∀t ∈ y, g ∈ G (8)

The power purchased from the grid will never be higher than the contracted power
for any member of the LEC.

PSC
t,g + PV

t,g ≤ βt,g · PV · CFt ∀t ∈ T, g ∈ G (9)

Depending on whether allocation coefficients on each scenario are static or variable
Equation (10) will be applied, respectively.{

∑G
g βt,g + βS

t ≤ 1 ∀t ∈ T if coefficients are variable

∑G
g βg ≤ 1 if coefficients are static

(10)

3.2. Metrics

To evaluate the results of this work, we will employ the annual savings generated
by the LEC and the simple payback period required for each PV installation. Annual
savings, Equation (12), are obtained as the difference between electricity cost in the original
situation, Equation (11), and the cost once the LEC is in operation.

Cost0 =
G

∑
g

T

∑
t

(
PP

t,g + PSC
t,g

(
πDA

t + πT
t

))
+

G

∑
g

Y

∑
y

(
PCont

g,y · πCont
y

)
(11)

Savings = Cost0 − CostLEC (12)

To estimate the required investment for the LEC we will use Equation (13). This
equation is obtained with a polynomial regression of the investment estimation for pho-
tovoltaic installations made by IVACE [39]. From there, we obtain the Levelized Cost
Of Energy (LCOE) considering the annual energy PV production and the expected life-
time of the project, Equation (14), and the simple payback period considering the savings,
Equation (15).

Inv = 2.941 · 10−5 · PV5 − 9.473 · 10−3 · PV4 + 1.132 · PV3

− 59.63 · PV2 + 2.33 · 103 · PV + 1.94 · 103 (13)

LCOEPV =
Inv

∑G
g ∑T

t (PSC
t,g + PV

t,g) · N
(14)

PB =
Inv

Savings
(15)

3.3. Limitations and Assumptions

The model aims to use consumption and generation data to evaluate the economic
performance of a LEC. The data used in it can include projected consumption, past real
consumption or statistical consumption. As explained after, in this study we use historical
hourly patterns of Spanish residential consumers. The data is provided by consumers from
the Distribution System Operator webpage, in the case of Valencia, Iberdrola [40].

Regarding the generation, we use PVSyst to generate hourly capacity factors in the
case study [41]. With them, we apply it to different nominal power capacities. Real
installations with divergent nominal capacities may differ in their capacity factor due to
different configuration installations such as the PV capacity inverter relationship. These
potential variations are not considered and all installations have equal capacity factors.
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When comparing historical demand and hypothetical generation, we may miss the
potential flexibility or consumption changes associated with having on-site generation.
Nevertheless, it is important to note that demand is inelastic and even under determined
incentives, demand faces social and technical constraints to become more flexible [7,42].
The potential for studying flexibility measures associated with LEC is out of the scope of
this paper.

In regards to the economic analysis, the model optimises a year-long performance.
Then these values (profit, cost reduction. . . ) are used to compare the presented metrics with-
out considering possible variation between years. The assessment of multi-year demand
periods is out of the scope of the document. Furthermore, financial risks are not considered.
Thus, we do not consider any potential financial risks or electricity price volatility.

Finally, all case studies have been solved using Gurobi under Julia.JuMP [38], while
the data treatment has been performed in MATLAB. We have used an Intel (R) Core (TM)
i7 computer at 1.99 GHz and 16 GB of RAM.

4. Case Study
4.1. Studied Scenarios

To assess the impact of the new tariff regulation and the use of different allocation
coefficients, we have defined 200 scenarios. These scenarios are defined based on the
variables and values indicated in Table 2. The PV installation for the LEC will be assayed
for values from 0 kW to 100 kW in steps of 2 kW. The maximum 100 kW is related to the
maximum power capacity allowed in the legislation to use the simplified selling mode [19].
This way we will be able to evaluate the impact of the changes in tariff and coefficients for
different relations among consumption and generation.

Table 2. Scenarios variables and possible values.

Variable Values

PV Nominal Power 0 to 100 kW
Tariff New or Old
Allocation coefficients Static or Variable

4.2. LEC Characteristics

The location of the case study is a rooftop of a building in Valencia, Spain, South
oriented. The LEC is composed of 20 households located at less than 500 m of the generation
point, as established in the Spanish regulation [19]. These households are residential
consumers for which we will use real data obtained directly from their smart meters that
real consumers have retrieved from the distribution company. Figure 4 shows the average
PV capacity factor and the LEC overall average demand during the year 2019. Figure 4
shows how demand and production shapes do not match; therefore, how produced energy
is shared and the price of the purchased energy from the grid at each hour will have
important economic implications on the LEC.

The PV installation specifications are described in Table 3. As explained before, the PV
nominal power will vary from scenario to scenario between 0 and 100 kW in steps of 2 kW.
We will estimate the installation cost from the PV residential LCOE and a life expectancy of
20 years for the overall installation.

Figure 5 shows the PV investment required according to the power installed and the
LCOE. Results show that investment rises with installed power while the cost of energy
decreases, this implies that the energy produced grows faster than the investment required.
Nonetheless, this effect is seen especially for reduced installed power and for big installed
power the scale economy effect has very little impact.
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Figure 4. LEC demand and PV capacity factor on an average day for the case study.

Table 3. Case study PV installation specifications.

Parameter Values

PV nominal power 0 to 100 kW
Installation lifespan 20 years
Storage system None

Figure 5. Estimated investment and LCOE in relation to the nominal PV power installed.

4.3. Electricity Tariffs in Spain

The new tariff regulation enforced on June 1st changed the volumetric charges of
electricity depending on the hour of the day for small residential and commercial consumers
(less than 10 kW) during weekdays. The goal is to reduce consumption in peak incentivising
consumption in hours with historical valley consumption. The change in the volumetric
charges over a weekday is depicted in Figure 6.

As the figure shows, the old tariff did not change its volumetric charges from one hour
to the other. Thus, there was no incentive for the consumers to change their habits. Nonethe-
less, the new tariff regulation reduces the volumetric charges on valley consumption hours
(late night) and increases it for peak hours (midday and beginning of the night). This aims
to incentivise economically users to avoid consumption at peak hours and increase it on
valley hours.
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Figure 6. Volumetric charges of electricity in Spain in the old and the new tariff in a weekday.

4.4. Allocation Coefficients

The allocation coefficients define how the produced power of a generator is distributed
among the different participants of the LEC. Currently, the regulation only contemplates
static coefficients, but it is expected to incorporate the possibility of using variable coef-
ficients. Thus, we consider both possibilities to evaluate the economic implications that
different coefficients would have on LECs. On one side, static coefficients imply that the
same sharing among users would be applied every hour of the year, no matter the changes
in demand. On the other side, variable coefficients mean that the power share among users
can change from hour to hour.

5. Results and Discussion

This section shows the optimisation simulations for the presented data. After solving
the model, we calculate the payback period and define all the variables for each scenario.
The results are presented separated by the effect of each design variable; namely, the tariff
regulation and the type of allocation coefficient employed. The base case is the old tariff
and static coefficients as is the original situation and the starting point for this work.

5.1. Tariff Effect

The change in tariff regulation has an economic impact even if the LEC sharing process
is the same. Figure 7 shows how the payback period changes based on the PV installation
nominal power employing current static allocation coefficients for the old and the new
tariff regulation. The impact indicated in the figure is calculated as the relative change of
the value obtained with the new tariff with the corresponding value of the old tariff. These
results indicate that the new tariff improves the economic performance of the LEC. This
positive impact is very relevant to evaluate the convenience of the new tariff to promote
local energy communities in Spain.

Nonetheless, the impact is not the same in all circumstances and three phases can be
distinguished. The first phase, for under 10 kW installations, is marked by high payback
periods and the relative great impact of the change in tariff. Payback periods are high
because fixed prices are not compensated by revenues from electricity generation, economy
of scale applies. In this phase, the impact of the tariff is noticeable because, as the power
generation is low, most of the production is self-consumed by the users of the LEC, and
corresponds to peak hours with a high price (see Figure 6). However, they still need to
purchase a big share of their energy from the grid.

The second phase goes from 10 to 40 kW installations and, during this phase, the
payback period improves slowly and the impact of the tariff is still important, though the
impact decreases while installed power increases. The payback period decreases because
the reductions in the electricity bill increase at a higher rate than investment costs as larger
installations benefit from economies of scale. The impact of the new tariff regulation is
significant due to the amount of electricity that users need to purchase to match their
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demands; nonetheless, as generation power increases, the amount of electricity purchased
will decrease.

Figure 7. Payback period in relation to the nominal PV power installed for static coefficients under
the old and the new tariff regulation. The impact of employing the new regulation is also shown.

The third phase is the one for installations with over 40 kW and it is characterised
by an increase in the payback period and a reduction in the new tariff’s impact. The
increase in the payback is due to the increase of the electricity sold to the grid as generation
surpluses. The energy is sold at a lower price than it is purchased and, therefore, to sell
instead of consuming the electricity generated reduces the profitability of the investment.
The reduction in the impact of the tariff is due to the reduction in the amount of purchased
electricity from the grid, as in the second phase.

5.2. Variable Coefficients Effect

The change in the type of allocation coefficients employed has economic impacts and
it can be seen reflected in the payback period of the LEC investment, as depicted in Figure 8.
The impact depicted in the figure is obtained as the relative change of the value obtained
with variable coefficients with the corresponding value obtained with static coefficients.
Results show that variable coefficients would improve the profitability of LECs for all the
nominal power assessed and, hence, it is an interesting tool to promote the development of
these entities.

At a more detailed level, we appreciate once again the abovementioned three phases.
During the first phase, for under 10 kW installations, the impact of the different coefficients
is significant, although the generated power is small because it can all be consumed when it
is properly allocated and, hence, avoid selling energy to the grid that reduces profitability.

During the second phase, from 10 to 40 kW, the impact of the variable coefficients
increases due to the balance between generation and demand. During this phase, there is
enough power generated to cover the demand during many hours, but only if the allocation
process is well adjusted. When static coefficients are employed the surpluses rise quickly,
but with variable coefficients, the energy can be allocated to final users as there is still
enough demand from the LEC.

In the last phase, installations with more than 40 kW, the relative importance of using
variable coefficients decreases. The reason for this is that there is so much power generated
that the allocation process is not so crucial to match the demands of the users and a great
share of the energy is sold to the grid anyway.

These affirmations can be reinsured by taking a look into the degree of self-consumption
achieved by the LEC and the energy sold to the grid. Thus, Figure 9 shows how the degree
of self-consumption increases with the installed PV power. Nonetheless, this increase is
fast during the two first phases but, from 40 kW on, it increases at a much slower pace,
especially for variable coefficients. The reason for this is that, as explained before, for big
power installed, the generation overtakes demand and most of the energy is sold to the
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grid instead of increasing the degree of self-consumption. Moreover, as can be seen in
Figure 9, the use of variable coefficients improve the degree of self-consumption because
it allocates the power generated based on the users’ demands. This is especially true in
the second phase when the generated power and the demand are balanced granting to the
allocation process big importance to maximize the results.

Figure 8. Payback period in relation to the nominal PV power installed using the old tariff using
static and variable coefficients. The impact of employing variable coefficients is also shown.

Figure 9. Self-consumption degree in relation to the nominal PV power installed employing static
and variable coefficients.

Considering the energy sold to the grid, we obtain Figure 10 and we appreciate how
the energy sold rises with the PV nominal power installed. It is important to ponder that
the energy sold to the grid is paid at a lower price than the energy purchased and, therefore,
it is not cost-effective to sell energy and should be avoided as much as possible. The use of
variable coefficients manages to reduce the amount of energy sold by adjusting its allocation
based on the demand of each user. This is especially relevant when the generation is smaller
because the variable coefficients can almost completely avoid the selling of energy to the
grid. In contrast, for larger generation capacities, variable coefficients are not able to avoid
the selling of electricity to the grid as the generation surpasses the LEC demand no matter
how it is allocated.
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Figure 10. Sold energy to the grid in relation to the nominal PV power installed employing static and
variable coefficients.

5.3. Overall Effect

The previous sections have shown how the new tariff regulation and the use of variable
coefficients improve the profitability of the LEC investment. In this section, we are going
to compare both impacts and the combined effect. For that, Figure 11 is presented.

Figure 11. Payback period in relation to the nominal PV power installed applying static and variable
coefficients under the old and new regulations.

First, this figure shows that the combined effect of both changes generates the lower
payback periods and, hence, improve the economic results of the LEC more than any effect
individually. Indeed, for an installation of 12 kW, the combined effect of both variables
improves LEC’s profitability by up to 25%; while the individual effect never reached
beyond an improvement of 16%. Second, when comparing each effect individually, we
realise that the new tariff regulation, in general, has a greater impact on the economy of
the LEC than the use of variable coefficients. However, for capacities installed between
13 kW and 40 kW, the effect of the variable coefficients is just as important as the new
regulation. This is due to the increasing effect of the electricity surpluses. For a range of
increasing PV power capacities, minimizing surpluses by correctly allocating the electricity
generation competes with the effect of saving electricity at peak price periods. Gradually,
as generation increases, the effect of the optimization of variable coefficients, as compared
to the optimization of static coefficients, decreases and the effect of the new tariff prevails.

6. Conclusions

This paper enquired about the impact of the new Spanish regulatory framework on
local energy communities based on Solar PV. These changes are two-fold. The allowance for
moving from static sharing coefficients to the possibility to share with variable coefficients
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the generated electricity between the users of the community. Furthermore, a new network
tariff consistent in different time-varying volumetric charges moving from one with a
constant volumetric charge.

The analysis builds on a linear optimization model. It minimizes the cost of the
Local Energy Community under the possible different scenarios by optimizing the static
or variable coefficients used to share electricity among the community consumers. Our
results show how new regulation improves the situation and profitability of Local Energy
Communities. Following the regulatory changes, this improvement can be decomposed
into two main effects: the tariff regulation effect and the variable coefficients effect.

Regarding the tariff regulation, we concluded that the new tariff with a higher price
during the midday, increases savings and it effectively reduces the payback period of the
installation. Therefore, it has positive economic implications for the community. Especially
for relations of around 2 kW or less of power installed for each user (on average, power
installed: 40 kW and the number of users: 20). For greater power installed, as the generation
increases and the substitution of energy purchased from the grid is compensated by
higher surplus energy sold at a low price, the impact of the tariff regulation is gradually
reduced too.

The impact of using variable coefficients is also positive for the local energy community
as it reduces the payback period of the PV investment. This effect is more relevant for
relations of around 1 kW of installed PV nominal power per user. For smaller relations,
most of the generated power is consumed as it is exceeded by the consumers’ demand.
In contrast, for greater capacity installed per consumer, the generation exceeds the demand
and the community consumption is mostly covered no matter how the generation is
allocated. Hence, in both cases how the generated power is allocated losses relevance.

Overall, the combined effect of the tariff and the coefficients provide greater benefits
than each effect. In the case study, benefits reach up to 25% reduction of the PayBack for
installed power between 5 and 25 kWp However, the effect of the new tariff regulation
is more relevant for the LEC than the use of variable coefficients. Moreover, the new
tariff regulation is easier to apply effectively than to estimate the most optimal allocation
coefficient for each user on each hour. These variable ratios must therefore be established
continuously. For this, users, accountants and companies must be prepared, both conceptu-
ally and technologically, which currently makes real-time variable optimization difficult.
In this sense, the model overestimates the saving associated with the variable coefficient
compared with real applications. Hence, we believe that the impact of applying the new
tariff regulation will be even more relevant than the results of this work indicate.

To sum up, the new Spanish regulatory framework favours the economic performance
of local energy communities. However, these still present an optimal economic capacity
below the environmental optimal. Installations are optimal with generation only displacing
consumption and a small ratio of energy excess, which fails to capture all the potential
benefits of decentralized generation. Thus, future regulatory frameworks should aim to
further promote and incentivize local energy communities as they deliver benefits that
energy markets are not currently capturing.

Finally, in this work, we do not consider the inclusion of energy storage systems
into the community, the supply to different users as those with commercial or industrial
loads, the use of other energy sources to hybridize as could be the wind or the possible
electrification of loads. Therefore, further work should assess more in deep local energy
communities by clustering the consumer typologies and include new energy technologies
such as decentralized batteries or electric vehicles. Moreover, it would be interesting to
evaluate the impact of different coefficients on the lifespan of energy storage systems and
to integrate electric vehicles into energy communities looking for synergies that reduce
the transport sector impact. Besides, it would be of interest to evaluate the impact of
volatile prices on electricity and the use of different various billing mechanisms under these
circumstances. Furthermore, the best strategies to fairly share power among LEC users
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and new regulations to promote the development of local energy communities should
be researched.
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Abbreviations
The following abbreviations are used in this manuscript:

Indices
g Point of consumption index
t Time index (hours)
y Tariff periods index
Sets
G Set of all points of consumption
T Set of all time periods
Y Set of all tariff periods
Parameters
CFt Capacity factor of the PV installation at time t
Cost0 Total original cost of energy for the users of the LEC (€)
CostLEC Total cost of energy for the users of the LEC (€)
N PV Project expected lifetime (years)
PV Nominal power of the photovoltaic installation (kW)
Variables
PCont

g,y Contracted power of consumption point g at tariff period y (kW)
PD

t,g Power demand of point of consumption g at time t (kW)

PP
t,g Power purchased from grid by the point of consumption point g at moment t (kW)

PSC
t,g Self-consumed power of point of consumption g at time t (kW)

PV
t,g Power sold from point of consumption point g at moment t (kW)

βg Static allocation coefficient of point of consumption g at time t
βt,g Dinamic allocation coefficient of point of consumption g at time t
βS

t Dinamic allocation coefficient of sold electricity at time t
πCont

y Price of contracted power at tariff period y (€/kW)
πDA Variable term of the electricity bill at moment t (€/kWh)
πDER

t Selling price of surplus power at time t (€/kWh)
πT

t Variable taxes of the electricity bill at moment t (€/kWh)
Metrics
Inv Inversion required to start the LEC (€)
LCOEPV Levelized cost of photovoltaic energy (€)
PB Simple payback period of the LEC (years)
Savings Difference between electric bills before and after participating in LEC (€)
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