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Off-grid renewable energy grids will contribute to the achievement of SDG 7 on universal energy access, espe-
cially in off-grid communities. But the scarcity of resources for development aid requires very tight designs
that minimize the cost of investment and operation of the mini-grid. To do this, the future energy demand of
the community must be analysed very well, which is very difficult due to the lack of previous data. In the litera-
ture, twomain approaches to analyse future energy demand, deterministic and stochastic methodologies. In this
article, we compare both methodologies for a real case study in Honduras and discuss their advantages and dis-
advantages. Although the deterministic approach requires less information and less mathematical processing, it
generates less accurate results. In contrast, the stochastic approach consumes more resources but gives more re-
alistic results for the correct design of the mini-grid. In conclusion, the deterministic approach methods can be
useful for the early stages of the project, when the investment is being sized. But for the advanced phases of
the project, when the installation is being designed, the stochastic approach is recommended.
© 2021 The Authors. Published by Elsevier Inc. on behalf of International Energy Initiative. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Keywords:
Rural electrification
Demand forecasting
SDG7
Deterministic methods
Stochastic methods
Introduction

Electricity access is a key element to achieve social development and
improve living conditions (Aevarsdottir et al., 2017; Mandelli et al.,
2016a). Electrification correlates with reductions in poverty and migra-
tion, and improvements in gender equality, education, and health
(Kanagawa & Nakata, 2008) and its absence corresponds principally
with rural areas in developing countries (IEA, 2020). As a result, devel-
oping countries and development aid are carrying out significant efforts
for rural electrification over the last years. But, the lack of capital, insti-
tutions, and regulatory frameworks are among the main barriers to
progress (IEA, 2017). Therefore, there is a need for sustainable and
cost-effective solutions for the electrification of rural areas (IRENA,
2018). The industrialized countries' model of oversizing electricity gen-
eration and distribution cannot be applied. Among the solutions, iso-
lated mini-grids have been considered a cost option for rural
electrification (IEA, 2017; Alliance for Rural Electrification, 2015) as
they present several benefits, including technical and operational flexi-
bility as well as wider power operation rates (GIZ, 2016; IRENA, 2017;
RECP, 2014).
on behalf of International Energy Ini
Mini-grids design has to provide solutions that are safe, efficient,
scalable, and adequate (SEforALL, 2019). Forecasted and expected en-
ergy demand is one of the parameters with a greater impact on the de-
sign. It influences the system's size, and thus, costs and operational
parameters (GIZ, 2016). Despite that, no common methodology for
the assessment of the energy demand of rural areas in developing coun-
tries has been defined yet, mainly due to the difficulties and unavailabil-
ity of data (Blodgett et al., 2017; Lombardi et al., 2019; Louie &
Dauenhauer, 2016; Mandelli et al., 2016b). The criticality of this param-
eter is strongly accentuated in rural isolated areas of developing coun-
tries where lack of previous electricity and uncertainty in the data
directly influence the quantification of the energy demand, thus result-
ing in under and over-dimensioned mini-grids (Lombardi et al., 2019).

Over the last years, mini-grids designers and research institutions
have tested and applied different methodologies, approaches, and
models implemented in computational tools aiming at reducing uncer-
tainty in the data and obtainingmore accurate estimations of the energy
demand, hence more reliable mini-grids designs. These designs depend
on the curve and total energy needed to select the optimal energy tech-
nologies (Ribó-Pérez et al., 2020). Hence, a proper demand analysis
must be done as it directly affects the cost of producing energy and
the reliability of the system. On the one hand, oversizing will increase
investment and operational and maintenance costs and thus the pay-
back period. On the other hand, an undersized system will result in a
lack of reliable and continued energy supply, generating discontent in
the customers. Besides, it reduces the operational life of the components
tiative. This is an open access article under the CC BY license (http://creativecommons.org/
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because of overusing, thus, increasing operational and maintenance
costs (GIZ, 2016).

Forecasting demand is a laborious and challenging work, especially
for off-grid rural areas in developing countries, as they are characterized
by the unavailability of load data (Mandelli et al., 2016b). It results in
difficulty to analyse electricity demand in rural communities that
never had electricity before. But, assessing forecasts withmore complex
approaches that gather more data imply an exponential growth in the
efforts required (GIZ, 2016). These approaches vary in several
dimensions: usage of historical data or specifically obtained data, and
deterministic or stochastic predictions. Approaches with real data and
on-site surveys combined with stochastic predictions are the most la-
bour intensive methods but also the more accurate as (Lombardi et al.,
2019; Mandelli et al., 2016b) expose.

Researchers have traditionally employed two main methodologies
for load forecasting in rural communities: deterministic and stochastic
methods. On the one hand, the first ones assume that there is an exact
relationship among the variables, thus there is no error when obtaining
the results. In this regard, Mahmud (2011) proposed a linear regression
deterministic model to forecast load demand of isolated areas, with ap-
plication to the Swandip community of Bangladesh. Islam et al. (2013)
also applied linear regression in their research, together with inverse
matrix calculation. On the other hand, stochastic models consider the
randomness of the variables that define load prediction. Hence, Boait
et al. (2015) introduced a stochastic methodology to determine load
prediction in rural communities considering a bottom-up basis from
three data elements: the population that will potentially use each type
of electrical device, their corresponding load, and their probability of
use.Moreover,Mandelli et al. (2016b) developed a novel stochastic pro-
cedure to forecast load profiles in off-grid rural areas based on the soft-
ware LoadProGen. Finally, other researchers just based load prediction
on simple estimations (Bastida-Molina et al., 2020a; Gambino et al.,
2019). Although these estimations can provide a general overview of
the energy needs, they lack accuracy and generate big divergences.

The suitability of using deterministic and stochastic methodologies
has been proven separately, especially for deterministic methods. For in-
stance,Murugaperumal et al. (2020) andMurugaperumal and Raj (2019)
presented comparisons among three load curves obtained with three de-
terministic models: neural network, regression trees, and multiple linear
regressionmodel. However, and to the best of the authors' knowledge, no
previous research compares the performance of deterministic and sto-
chastic methodologies for assessing load demand forecasting in rural iso-
lated communities. Therefore, there is a need to understand the trade-offs
between different approaches and their potential misguided solutions
arising from one or another. Consequently, designers and project devel-
opers need to have funded judgment onhowandwhen to use eachmeth-
odology to provide a balance between cost and accuracy depending on
the size, uncertainty, and project stage.

In this paper we study the trade-offs and differences obtained with
demand forecasting methodologies, considering both deterministic
and stochastic approaches in a real case of study in El Santuario,
Honduras. An almost 500 people non-electrified rural community in
the Mesoamerican dry corridor. We assume that predicting the future
demand of a non-electrified area is a challenging but also necessary pro-
cess. So here, we inquire and compare the two methodologies that ap-
proach the problem with more detail. By doing so, we draw a set of
conclusions and good practices that can allow practitioners and de-
signers to decide and choose between these methods when forecasting
electricity demand in future off-grid mini-grids.

The rest of the paper is organised as follows, Literature overview sec-
tion discusses the current literature around demand forecastingmethod-
ologies, Materials and methods section presents both methodologies
applied. Case study: El Santuario Honduras section presents the case
study while Results and discussion section shows the results from both
approaches and compares them. Finally, Conclusion section concludes
summarizing the main findings.
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Literature overview

Among the scientific literature, only a few studies evaluate the en-
ergy needs and load profiles (Mandelli et al., 2016b). Moreover, they
do no reach an agreement in terms of a commonly accepted approach
to predict the load (Mandelli et al., 2017). This fact is mainly due to sev-
eral factors affecting the demand profile. One approach is to consider
any community or village is exactly alike to another (GIZ, 2016). There-
fore, varying the number of consumers, consumer type and activities,
consumer penetration or growth rates can help to predict the load.

Some studies base the demand assessment on expert knowledge in
similar installations' experiences (Blodgett et al., 2017), usually assum-
ing averaged daily constant load profiles (Louie & Dauenhauer, 2016).
However, other researchers propose mathematical models based on
statistics. These models require input specific data for each area and
can only be gathered through on-site surveys andmeasurements, there-
fore providing more detailed results for a more reliable project design.

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), in
itsmanual “Which size shall it be?” (GIZ, 2016), proposes recommenda-
tions for mini-grids designing, mostly based on the demand assessment
step, as it is crucial for system design and sizing, especially for obtaining
proper results through simulation tools such as HOMER Software. Fig. 1
shows a flow chart that contains the different actions required and the
results obtained for the electrical demand assessment process.

The demand assessment process starts with an initial assessment of
the requirements of the area or community. Overall, surveys are the
most common approach and have beenwidely used for energy demand
assessment (Blodgett et al., 2017; Oladeji & Sule, 2016; Sahu et al., 2013;
Singh, 2011). However, questions need to be well defined specifically
for each area (GIZ, 2016). Due to unfamiliarity with energy services or
data, surveys can cause prediction errors, which can result in the im-
proper design of the energy installation.

According to the Renewable Energy Cooperation Programme (RECP)
(RECP, 2014), the electricity demand depends also on other factors such
as the incomes of the customers and their ability to pay for electrical ser-
vices. These factors are known as Ability to Pay (ATP), which depends
on incomes and current energy sources expenses (GIZ, 2016), andWill-
ingness to Pay (WTP): “the maximum amount that an individual indi-
cates that he or she is willing to pay for a good or service” (NRECA,
2016). GIZ (2016) proposes the application of certain correlation factors
to obtain the EffectiveDemand, “demand for goods and services that are
backed by the resources to pay for it” (NRECA, 2016).

Future Demand Forecasting depends on several factors that may
vary during the lifetimeof themini-grid. Not only socioeconomic factors
(Blodgett et al., 2017; GIZ, 2016) as population growth, economic
growth, lifestyle, and consumption patterns, which will result in an in-
creased number of customers and kWh consumed per year but also
other factors such as time factors (season, type of day, hour of the day,
day of the week) or climate conditions variations (mainly temperature
and humidity) should be considered (Feinberg & Genethliou, 2005).

When estimating the demand and load profile of an area, both the
period and the ranking of the study have to be determined (Hong &
Shahidehpour, 2015). Short-term (less than 5 years) is the optimal
and most used approach for energy demand forecasting, as for
medium- and long-term historical series and data are needed, which
are not often available for isolated rural areas, and when assumed as
known, can cause errors in the amount of energy demand estimated
or the load profiles formulated (Islam et al., 2013). Regarding the rank-
ing of the data, the bottom-up approach is recommended despite being
inefficient in terms of the amount of data to be gathered (individual data
for each consumer o group to be extrapolated), as this approach pro-
vides more accurate results.

We carried out a reviewwith the aimof identifying themainmodels,
approaches, and methods that have been used for future demand pre-
diction in isolated areas. From the analysis, it can be concluded that
the current approaches for future demand estimation are mainly



Fig. 1. GIZ assessment methodology. Own production based in GIZ (2016).
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based on statistics (deterministic, non-deterministic or stochastic). Ad-
ditionally, some researchers base load prediction on simple estimations.
These studies estimate the typical use schedule of the potential con-
sumers of the region in question that ensure a decent standard of living
for their inhabitants (Bastida-Molina et al., 2020a). They do not look for
great accuracy, but they provide a quick overview of the energy needs.
Hence, Gambino et al. (2019) introduced an inclusive method for this
aim, which can be adaptable for each case study. Aberilla et al. (2020)
proposed a loadprediction curve based on a simple estimation for a pro-
totypical rural community in the Philippines while Bastida-Molina et al.
(2020a) focused on the specific case study of Masitala, in Malawi.

Deterministic models assume that there is an exact relationship
among the variables, thus there is no error when obtaining the re-
sults. This fact directly implies the necessity of specific and enough
initial data. Even though obtaining accurate data to ensure precise
results is especially complicated in rural isolated areas of developing
countries without previous electricity access, deterministic statisti-
cal models have been used in order to estimate the energy demand
in different cases.

Linear regression analysis (LRA) has been widely studied for de-
mand forecasting among several scientific papers (Islam et al., 2013;
Mahmud, 2011), or combinations with other techniques (Miswan
et al., 2016). It is a statistical technique developed by Dr. A. Hoque in
1990 based on the identification of the factors on which electrical load
growth depends that may vary depending both on the type of load
and the area (Mohiuddin, 1997). Inverse matrix calculation analysis
also considers the dependence of a total load of an isolated area on cer-
tain variables. The difference is that in this method, the variables are
expressed by a matrix and the results are obtained from its inverse.
Islam et al. (2013) considered the two methods for short term load
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forecasting on isolated areas worldwide with a lack of previous load
data, inverse matrix calculation, and linear regression analysis,
obtaining similar results for both.

The main advantage of these statistical methods is that the demo-
graphic data needed for the calculation can be gathered from countries'
statistics offices or other sources, so the process is simplified. However,
the predictions are more general, and thus the mini-grid design less re-
liable (Blodgett et al., 2017), and the methods require both data from
the area to be analysed and from another similar area, which increases
the prediction error.

Stochastic models consider the randomness of the variables that de-
fine load prediction, i.e., population or economic growth. In the last
years, non-deterministic or stochastic models have been developed
and programmed by scholars. The ESCOBox mini-grid load model is a
tool developed by De Montfort University under the ESCOBox pro-
gramme, which, given a certain group of consumers and their appli-
ances, can predict the peak and average electricity demand (Boait
et al., 2017). For the prediction of the energy demand curve the central
limit theorem is used. The result is that the variation of the total electric
consumption decreases as the number of connected appliances in-
creases, by a factor of 1/√n (Boait et al., 2015). Demand Analyst© is a
tool developed by a consulting and engineering firm, the Innovation
Énergie Développement (IED) of France. The tool estimates the future
energy demand and how it will grow during the years for different cus-
tomers of a community or village (residential, public services, and
economic activities) based on on-site surveys' data and regional socio-
economic parameters.

Non-deterministic models assume that different results can be ob-
tained from the same input data. These approaches are more suitable
for demand estimation for rural electrification in rural isolated areas



Table 1
Literature review about methodologies used to forecast load demand in rural communities.

Reference Method In situ
surveys

Uncertainty in input
data

Tools

Aberilla et al. (2020) Simplified estimation No Not considered Simple assumption of a typical load profile
Bastida-Molina et al. (2020a) Simplified estimation No Not considered Simple assumption of a typical load profile
Gambino et al. (2019) Simplified estimation Yes Not considered Simple assumption of a typical load profile
Islam et al. (2013) Deterministic No Not considered Regression lineal and inverse matrix
Mahmud (2011) Deterministic No Not considered Linear regression
Miswan et al. (2016) Deterministic No Not considered ARIMA and regression modelling
Allee et al. (2021) Deterministic Yes Not considered Model LASSO (machine learning)
Murugaperumal and Raj (2019),
Murugaperumal et al. (2020)

Deterministic No Not considered Neural network, regression tress and multiple
linear regression models

Boait et al. (2015), Boait et al. (2017) Stochastic Yes Not considered ESCOBox
IED (2021) Stochastic No Not considered IED-Demand Analyst
Mandelli et al. (2016b) Stochastic No Considered LoadProGen
Lombardi et al. (2019) Stochastic No Considered LoadProGen with definition of duty cycles
Narayan et al. (2020) Stochastic No Not considered Multi-tier framework
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due to the uncertainty in the input data. Mainly, those models re-
quire as inputs at least: period, population, the load of each electrical
appliance, and the assessment of the probability that the electrical
appliance will be used at a given time of a day, which is known as
the “Coincidence Factor”. Based on this information, a software de-
termines randomly a load profile for each time interval and gener-
ates the aggregate demand curve.

According toMandelli et al. (2016b),who reviewed the scientific liter-
ature regarding the most common approaches used to formulate load
profiles for off-grid rural areas, two main characteristic methods are
found depending on the Coincidence Factor's approach. The first method
considers a 100% Coincidence factor by assuming that all the devices will
be operating at the same time for all the customers. This results in
overestimated load curves with high peaks of demand. The second ap-
proach distributes the maximum power required of a type of appliance
for all the customers along the whole usage period. Therefore, it leads to
underestimated load curves and flat profiles. In addition, in both ap-
proaches, only one single profile is generated. Therefore, the intrinsic un-
certainty in the input data for non-electrified areas is not approached.

Among the differentmodels for load forecasting identified in the liter-
ature review, the Software LoadProGen combined with the RAMPmodel
has been identified as one of the most complete and functional tools for
forecasting the demand of rural isolated communities in developing
countries (Lombardi et al., 2019; Mandelli et al., 2016b, 2017). Especially
for those off-grid areas without previous access to electricity. Load Profile
Generator (LoadProGen) is a software developed by the Energy4Growing
research group of Politecnico di Milano that is implemented in MATLAB
and it generates load profiles from field information about the area (au-
dits or interviews) using a stochastic approach by considering the differ-
ent profile parameters and building up the coincidence behaviour of the
appliances and the power peak value (Mandelli et al., 2017). Then, the
RAMP model builds on the previous work developed in LoadProGen and
it develops to include other energy uses (Lombardi et al., 2019).

Moreover, it results important considering how a load profile may
change in the future years, especially in recently rural electrified areas
(Debnath et al., 2015). Demand in such areas increases year by year,
since new households connect to the novel microgrids (Rajbhandari
et al., 2022). For instance, (Rajbhandari et al., 2022) revealed a yearly in-
crease of 38% in rural electrified zones of Nepal. Focusing on each con-
sumer, Nixon established that the electrification of rural isolated areas
to basic electricity stimulates the future increasing of power demands.
Main reasons for this statement lied in the results extracted from their
survey-gathered data: once households get access to basic electricity,
they begin to realise its socio-economic benefits and start to desire
more luxurious appliances, especially through social pressure and
neighbourhood influence (Opiyo, 2020).

In this regard, different techniques have been applied in research to
forecast electricity demand increase. Bastida-Molina et al. considered an
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unchanged demand curve affected by amultiplying factor, which repre-
sented the proportional relation between the future electricity demand,
based on extrapolation, and the current one (Bastida-Molina et al.,
2020b). Adeoye and Spataru forecasted annual electricity demand for
14West African countries from 2016 to 2030 using multiple regression
analysis (Adeoye & Spataru, 2019). Finally, Riva et al. relied on System
Dynamics, based on a load stochastic tool (LoadProGen) to predict fu-
ture rural electricity demand, considering the community of Ikondo
(Tanzania) (Riva et al., 2019).

To sum up, Table 1 reflects the literature review about the three
main methodologies for load prediction in isolated communities of de-
veloping countries. This table shows how no comparisons between dif-
ferent methodologies exist in the literature.

Materials and methods

As advanced, the paper proposes a comprehensive comparison of
approaches for Energy Demand Analysis for mini-grid designing in
rural electrification. Choosing the right analysis method will help to re-
duce investment andmaintenance costswhile ensuring reliability in the
energy supply. Whereas it is applicable to any rural electrification pro-
jects, it is specially oriented to off grid mini-grids design in non-
electrified areas, due to the inherent uncertainty of the data.

In order to minimize the prediction error, the two main demand as-
sessment procedures have been applied and tested for sizing a mini-
grid in a rural isolated community. Definitions and processes proposed
by (GIZ, 2016) regarding Energy Demand Analysis have been taken as
starting the point for developing the comparison:

- Initial Energy Demand: preliminary estimation of the energy needs
of the area based on the data collected. It includes the average en-
ergy demand of the area in kWh, besides the loadprofile for a certain
period.

- Effective Energy Demand: it is the result of the application of socio-
economic correlation factors specific to the area's context.

- Future Energy Demand: To apply probabilistic models imple-
mented in computational tools in order to obtain more accurate de-
mand assessment, including average energy demand of the area in
kWh and load profile for a certain period.

Fig. 2 shows a flowchart of the followed Energy Demand Analysis
methodology and its integration in rural electrification projects through
mini-grids. The area selected for the development of a rural electrifica-
tion project requires a preliminary overall context analysis. In order to
set an enabling environment for the development of the project, several
factors may be assessed, which include countries' policies and regula-
tory framework regarding rural electrification promotion and reliable



Fig. 2. Methodology followed during the study.

Table 2
Required information in a bottom up method.

Information
type

Required information

Community • Total population of the area.
• Main productive activities (agriculture, fishery, farming, forestry, etc.).
• Number of households and GPS coordinates.
• Number of community facilities and GPS coordinates (schools, health
services buildings, religious buildings etc.), usage schedule, load
requirements (type, quantity and power (W)).

• Distance among the consumers.
• Street lighting requirements (load type, quantity and power (W)).
• Land conditions and available area for installing the mini grid.

Customers • Serial number.
• Name, age and contact.
• Type of customer (Household, Business or other).
• Current energy sources, usage schedule and cost (if any):
- Solar Home Systems (SHS): installed power (W) and battery

capacity (Ah and V).
- Electric generators: power (W) and consumption (diesel/-

month or year)
- Other: Kerosene, batteries, wood etc. and daily/monthly/yearly

consumption.

• Current or desired electricity consuming devices:
- Type of load (most common for rural communities are:

lights, TVs, radios, fridges, fans, water heaters, motors for
pumping, etc.).

- Power for each (in W).
- Usage hours.

• Average monthly or yearly incomes (USD) and ability to pay for
energy services (USD/kWh).

• Willingness and ability to pay for energy services.
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economic feasibility (financial model, access to funding or grants), etc.
The first observations should be oriented to identify information such
as the availability and adequacy of renewable energy sources or the
availability of land where to install the mini-grid, as well as ensuring
the proactivity and involvement of the customers in the decision-
making process.

The result of the application of the proposedmethodology is the En-
ergy Demand of the area for a certain period,whichwill be used as input
for mini-grid sizing through simulation computational tools or mathe-
matical models.

Data collection

Data collection is thefirst andmain step in the EnergyDemandAnal-
ysis process for rural electrification. In order to reach more accurate re-
sults, it is recommended to follow a bottom-up approach through
surveys. The more individuals are interviewed, the more accuracy will
be achieved. In that regard, customers need to be segmented into
groups or facilities. The questionnaires should be designed to evaluate
both general information about the customers and their load require-
ments, as well as their present electricity demand, in case the area
was already electrified or had electricity consuming devices. Visits' pe-
riods should be used as well to identify community background. Refer-
ence data regarding economic activities may be useful for identifying
future needs, barriers, or possibilities for the development of financial
models (Table 2).

Deterministic energy demand assessment

Based on this gathered data, the initial demand assessment can be
carried out. Experts need to process the gathered data and translate it
into useful data for performing the energy demand assessment. The
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average daily energy demand of the area in kWh/day can be obtained
as shown in Eq. (1), as a result of the sum of the load's power require-
ments multiplied per the number of usage hours within a day of all
the consuming devices that the community and individual customers
are expected to use (Mandelli, 2015):

D ¼ ∑
User class

j
Nj ∗ ∑

Appliance

i
nij ∗ Pij ∗ hij

 !
kWh=day½ � ð1Þ

where i refers to the type of electrical appliances and j to the type of cus-
tomer, thus Nj is the number of users and nij the type of appliance of
each customer class (TVs, lights, phones, etc.); Pij represents the
nominal power of the different type of appliances for each customer,
and hij the daily hours that are turned on.

The daily demandprofile of the area can be obtained from the aggre-
gation of hourly load's power requirements for each individual cus-
tomer or sector (residential, commercial, productive activities,
communitarian or street lighting, among others). Load peak and load
factor can be also obtained from the analysis (GIZ, 2016). This daily
load profile can be assumed constant and extrapolated to the whole
year. However, other segmentations, for instance depending on the sea-
son (summer/winter, rainy/dry) are also possible and will result in a
more accurate and reliable system design (Sahu et al., 2013).

The load curve represents the temporary evolution of the electrical
power requirements of the community throughout a typical day. Once
coincidence factors for different appliances are defined, the daily load
curve can be obtained as the result of the sum of the hourly power
demanded by each appliance multiplied by the coincidence factor of
each appliance every hour.

Dh ¼ ∑
i
Pih ∗ f ih ð2Þ

where

h: Time-step. In this case hourly time-steps have been considered
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i: Individual appliances, e.g. TVs, lights, phones, etc.
fih: Coincidence factor for each individual appliance i in each time
step h.
Pih: Electrical power demanded by each individual appliance i for
each time-step h.

Finally, the total daily energy consumption of the community is ob-
tained as the sum of all the hourly load consumptions throughout a day.
The total yearly energy consumption is obtained by multiplying the
total daily energy consumption by 365 days:

Eyear ¼ 365� Eday ¼ 365� ∑
24

h¼1
Dh ð3Þ

The demand estimation and load profile formulation must be in line
with the requirements of the customers. However, expertise is crucial to
formulate the load profiles. For instance, some appliances present more
flexible usage schedules that the designers can readapt to distribute and
equilibrate the energy consumption during the day. This will allow
maximising the use of energy sources and the correct operation of the
system.

Once the Initial Energy Demand Analysis is carried out, it is recom-
mended to apply certain Correlation Factors tominimize the error asso-
ciatedwith the demand assessment in rural areas. Those factors depend
on the area socioeconomic background. Therefore, they need to be de-
fined specifically for each project, depending on the amount of data or
experience in the assessment process. Generally, it is recommended to
base the correlation factors on customers' Willingness and Ability to
pay for energy services. By applying Correlation Factors, the Effective
Energy Demand is calculated.

In addition, it is recommended to validate the data by comparing the
obtained onewith other similar electrification projects and energy con-
sumption standards.

Stochastic demand forecasting

Complementary approaches or tools are needed to forecast the fu-
ture demand of the community, which is defined as Future Demand
Forecasting. This will allow tominimize asmuch as possible the predic-
tion error and ensure accuracy, reliability, and economic sustainability
in the hybrid mini-grid design. In that regard, the term “forecasting” is
used as a generic concept, but it is intended to refer to the “estimation”
of the future energy needs and the formulation of loadprofiles bymeans
of models or methodologies. Therefore, both terms will be used
throughout the paper.

Considering how a load profile may change in the future years is es-
sential, especially in recently rural electrified areas (Debnath et al.,
2015). Nixon states that novel consumers of these areas begin to realise
their new socio-economic benefits and start to desire more luxurious
appliances, especially through social pressure and neighbourhood influ-
ence (Opiyo, 2020). This situation leads to future yearly electricity de-
mand increases. Several researches demonstrate this electricity
demand increase in recently rural electrified areas. For instance, study
(Rajbhandari et al., 2022) revealed a yearly increase of 38% in rural elec-
trified zones of Nepal, whereas results from Adeoye and Spataru (2019)
also indicate that in 2030, electricity demand in theWest African region
is estimated to be five times its 2016 level.

As mentioned, non-deterministic or stochastic models are proposed
to reduce uncertainty in demand estimation for rural electrification pro-
jects. In that regard, LoadProGen is identified as a complete and func-
tional tool and will be the basis of the proposed method for Future
Energy Demand forecasting (Mandelli et al., 2016b).

The input data to introduce in the software to obtain the daily load
profile curves can be divided into electrical appliances and customers.
Regarding electrical appliances (TVs, radios, lights, phone chargers,
etc.) a type classification and quantification should be carried out. The
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nominal power of each electrical appliance in Watts needs to be re-
corded. Customers need to be counted grouped (residential, school,
commercial, agriculture, etc.).

These specifications can be assumed or collected through field sur-
veys or audits resulted from previous steps of the demand-assessment
process. However, to address uncertainty, stochastic models require
certain value's assumptions due to the intrinsic characteristic of isola-
tion in rural areas (Mandelli et al., 2017):

- Functioning cycle is defined as theminimum time that an appliance
is functioning after is turned on. It is defined for each appliance and
customer and is measured in time units, normally minutes or hours.

- Daily functioning time represents the total amount of time during a
day that a type of appliance is turned on, again for each appliance
and customer, and measured in time units.

- Functioning windows for each appliance and customer, are pe-
riods during the day that exists a probability to the appliances
to be turned on.

- Random variation of functioning time/window. A certain per-
centage is set considering that the daily functioning time and
functioning window can experiment with certain variations.

Those parameters may be set up based on similar context assump-
tions or information provided by the customers. However, following
the Software's logic formulation to address uncertainty, the functioning
cycle must be shorter than the functioning time; and the functioning
time must be shorter or equal to the total duration of the functioning
window (wfij).

Once the input data is introduced in the stochastic software, the
number of profiles to generate and the sample time (1 s, 1 min, 15
min, or 1 h) must be defined. Consequently, the simulations are carried
out. The output file of the software is a file in the form of am× nmatrix,
inwhich the number of rows (m) is equal to the number of profiles gen-
erated and the number of columns (n) depends on the selected sample
time. The software also allows to visualise the generated profiles in the
users´ interface. Due to the stochastic nature of the Software, the greater
the number of profiles n that are simulated, the more accurate the re-
sults will be.

Once the software generates the profiles, to determine the represen-
tative number of profiles to reduce the uncertainty to themaximum, the
convergence criteria proposed by is considered. This criterion estab-
lishes that the percentage variation of the average load profile values
generated, and its average standard deviation must be less or equal to
0.25% formore than 95% of the values generated or time-steps. The con-
vergence conditions are defined as in Eqs. (4) and (5):

y kð Þn − y kð Þnþ1

y kð Þn
≤ 0:25% for k ≥ 95% of time steps ð4Þ

std y kð Þn
� �

− std y kð Þnþ1

� �
std y kð Þn
� � ≤ 0:25% for k ≥ 95% of time steps ð5Þ

where,

• k: Profile time steps. In this case, the load profiles are constituted by
averaged values over 1-hour time-steps.

• y kð Þn: Average load profile value of the n generated profiles at the
time step k.

• std y kð Þn
� �

: Average standard deviation of the average load profile
value of the n generated profiles at the time step k.

From the results, the Energy Demand for the community is a short-
term forecast. An average load profile for a certain period of time as
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well as the amount of energy demanded in kWh are obtained. The re-
sults might be valid for at least 5 years of mini-grid life.

Case study: El Santuario Honduras

The proposedmethodology has been applied for the assessment of the
energy demand of an isolated community as part of a rural electrification
project through a mini-grid in Honduras. The selected community is
physically isolated and has no access to the national electricity grid either,
which is not expected to change in the short ormedium term. Inhabitants'
needs, and willingness to pay were assessed from the beginning to set a
proper socio-economic context of the area and ensure the long-term sus-
tainability of the project. The rural community of El Santuario, belonging
to the San Ramón de Arriba Village, is in the department of Choluteca,
Honduras. Fig. 3 shows the location of the community.

The community is composed of 77 households, 71 in themain urban
area and the other 6 located 1.75 km from the rest. Households have on
average 5 members, and 4.4 rooms each. Communitarian buildings in-
clude a church, which the inhabitants use for meetings and other activ-
ities, a school, and a kindergarten. Inhabitants use kerosene, fuel cells,
and candles for generating electricity and for the illumination of the
households. Firewood is themain energy source and is used for cooking,
lighting, and heating; fuel cells are used for radios and lanterns. More-
over, 7 households have small photovoltaic systems, with 100 W
panel, inverter and storage, which cover part of the lighting, and
phone charging needs.

Surveys were carried out at different levels following a bottom-up
approach. Individuals were interviewed face to face and in different
groups; and thenwere grouped by gender, age, and occupation. Further
information of the project can be found in (Ribó-Pérez et al., 2020,
2021a,b). Tables 7, 8, and 9 in theAnnex show the questionnaire distrib-
uted along with the inhabitants. Overall, questions were orientated to
gather information about demographic status, current energy sources
and use, energy requirements, the potential of renewable energy re-
sources, incomes, and ability to pay for electricity services, among
others. The data gathered requested information about basic electric ap-
pliances. Inhabitantswere asked about their forecasts for the use of elec-
trical appliances. As the community was not previously electrified,
information about basic electrification needs was shared with inhabi-
tants. Finally, specific questionswere addressed to establish inhabitants
Willingness To Pay (WTP) for energy services. WTP is crucial over time,
as access to electricitymight become a new resource, which has, as a re-
sult, an increase in the consumption and a decrease in theWTP for that
resource.

Overall, inhabitants showed support to the electrification project.
Among the 69 surveyed representatives of each family, 93% state that
electricity access would improve their livelihoods, the other 7% did
not know and none of them showed upset or opposition to the electri-
fication process.
Fig. 3. Location of the El S

107
Results and discussion

This section presents the results from the survey and their appli-
cation to the energy demand analysis above mentioned. Showing a
comparison between the deterministic model and the stochastic
predictions.

Data collection

The energy needs identified and expressed by the inhabitants of the
community were limited to electricity. On the one hand, regarding the
thermal energy needs, the tropical climate characteristics of the area
make unnecessary both the heating and cooling of the households. On
the other hand, the mechanical energy needs were also discarded as
currently the agriculture is not mechanized in the community and
other sources ofmechanical energy needs such as construction or trans-
port were not identified.

Energy demand profiles

Table 3 shows a summary of the expected electricity needs in the
households. The power of the loads in W was estimated based on data
from typical electrical appliances of the area and the national electricity
company's (ENEE) publication (ENEE, 2017).

Currently,most of the electrical appliances does not exist in the com-
munity, thus, the acquisition will not be immediate. Moreover, if the
economy of the community grows, the number of devices and usage
hours may increase. Among the interviewees, 78% agreed on the possi-
bility of paying for electricity services, which would contribute to cover
the costs of the installations such as the replacement, operation, and
maintenance costs or further extensions. The preliminary total energy
consumption estimated in households per day is 142,375 kWh/day,
reaching a value of 51,967.8 kWh/year.

Regarding the community energy needs, they were also identified
according to the needs expressed by the inhabitants. 86% of the inter-
viewees expressed interest in using electricity in agricultural applica-
tions, especially in the irrigation of the small family gardens. Other
electricity needs were identified in the church, school, kindergarten,
and street lighting. Therefore, the technical proposal includes the instal-
lation of 20 street lights, 2 fans per building, and lighting for the church,
school, and kindergarten according to international standards, aswell as
IT equipment, including a computer and a printer, for the improvement
of communications in the community.

The water pump for irrigation activities has been selected for a
pumping head of 80 m. It will pump the groundwater located 14 m
deep to a small water reservoir used for gravity-fed irrigation of the
family gardens. Its usage is estimated at 4 h per day. Finally, as it is ex-
pected to include a biomass gasifier in the energy installation, it has
also been considered the energy requirements of a biomass chipper. It
antuario community.



Table 3
Household energy needs in El Santuario.

Electrical
appliances

Units Power
(W)

Units/household Usage
hours
(h/day)

Total energy
consumption
(kWh/day)

Lighting 267 15 3.76 8.50 34.0425
TV 40 150 0.56 5.20 31.200
Radio 43 20 0.61 14.00 12.040
Phone 39 10 0.55 6.00 2.340
Fan 34 50 0.48 3.75 6.375
Fridge 16 500 0.23 1.24 9.920
Other electrical
appliances

19 1000 0.27 2.40 45.600

Computer 1 200 0.01 4.30 0.860
Total 142.3775

Table 5
Application to the design of off-grid electricmini-grids for rural communities without pre-
vious supply.

Deterministic approach Stochastic approach

– Requires an accurate baseline,
based on field work, to determine
safety margins for capacity and
safety measures to prevent unex-
pected occasional outages.

– Requires less accuracy for the
baseline, based on field work, to
determine stochastic factors and
safety measures to prevent
expected occasional outages.

– Delivers straight forward results – Delivers a complex result that
needs interpretation

– Results are a simplification of future
reality

– Results include the uncertainty of
future reality

– Simpler data processing – Larger cost in data treatment, anal-
ysis and recompilation

– Can be done with simple tools and
resources

– Requires complex models and/or spe-
cific software. Also, fast computers
and specifically trained people.

– Due to higher electricity demand
peaks, it tends to oversize the
installation

– Due to lower average electricity
demand peaks, and identified occa-
sional high peaks, allows a tailored
sizing of the installation
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is expected to be used 2 h per day, as will be explained later. Table 4
summarizes the electricity needs in the community.

It is important to highlight that whereas some of the community
needs, such as the street or school lighting, have a fixed usage schedule,
others such as the water pump or the biomass chipper have more flex-
ibility. For instance, it is preferable that the two devices are not used si-
multaneously (i.e. one can be used in the morning and the other in the
afternoon) to contribute to balance the demand curve and ensure the
optimumoperation of the energy installation. The daily preliminary en-
ergy consumption estimated per communitarian services is 58.65 kWh/
day, making 21,408 kWh/year. In total, the preliminary estimation of
the energy demand of the community has a value of approximately
201 kWh/day and 73,000 kWh/year.

Deterministic load profile
Tables 5 and 6 show the Coincidence Factor set for each electrical ap-

pliance during a typical day. For instance, it can be observed that for the
household's lights, although themaximumpower is 4.00 kW (267 units
of 15W), it is only reached during thefirst hours in the day and after the
working hours in the evening, thus the coincidence factor will be equal
to 1. The total installed power for fridges is 8.00 kW but they will be
working at low power during most of the day, thus the energy con-
sumption is reduced. Another example is the water pump that is ex-
pected to be used at maximum power only during central hours on
the day to take advantage of the solar resource. Correlation factors
have been considered equal to 100%, due to inhabitants Ability andWill-
ingness to Pay for energy services. A self-sustaining financial model, in
which inhabitants act as “prosumers” (producers and consumers of en-
ergy at once) will be developed and implemented in order to avoid
over-consumption of energy.

In the analysis, the load profile has been divided into two: one for
households and the other for communitarian consumptions, according
to the electricity needs identified, and it is assumed that does not
change during the year. Fig. 4 shows the deterministic load curve esti-
mated for households and community services, as well as the total con-
sumption of the community.

The maximum load peak is produced between 6 p.m. and 9 p.m., by
the end of the day, and has a value of approximately 18 kW. Another
Table 4
Community energy needs in El Santuario.

Electrical appliances Units Power
(W)

Usage hours
(h/day)

Total energy
consumption
(kWh/day)

Water pump 1 2000 4 8.00
Street lighting 20 50 10.50 10.05
Fan 8 100 10.00 8.00
Lights school, kinder and church 78 15 8.25 9.652
IT (computer and printer) 3 300 12.50 11.25
Biomass chipper 1 7500 1.50 11.25
Total 58.202
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load peak is observed around 4 a.m., when the activity in the
community starts. The increased power consumption between 10 a.m.
and 2 p.m. is due to the biomass chipper and water pump, which were
programmed to work non-simultaneously and to take advantage of
the sun hours. The estimated daily energy consumption per family in
households is 2.83 kWh/day and 0.06 kWh/house day per communitar-
ian services. The total yearly energy consumption of the community is
approximately 73,000 kWh/year and would be the energy that the
hybrid mini-grid system should generate.

Stochastic load profile
To generate the stochastic load profile customers were divided into

three user classes: Households, Communitarian Services, and Produc-
tive Services. Each class includes a certain number of users (Nj): The
Household user class includes the 77 households of the community;
the Communitarian Services include the communitarian buildings
(church, school, and kindergarten); and the Productive Services
category is divided into the water pump and the biomass chipper.

Households: For the Households user class, the type of electrical ap-
pliances required coincides with most of the users. However, the num-
ber of applications varies depending on theHousehold. In order to avoid
long runtimes of the software for the generation of 71 different profiles,
an average value per household has been considered. Overall, whereas
all the inhabitants required light bulbs, not all of them showed interest
in other devices such as TV, radios, etc., mainly due to the lack of these
devices nowadays. Only one of the interviewed showed interest in a
computer. The nominal power needed (Pij) of each device was
estimated considering typical electrical appliances of the area and
ENEE's publications.

Regarding the daily functioning time of each appliance, it has been
defined taking into account the equivalent hours per day that the de-
vices are expected to be used according to the typical daily schedule of
the inhabitants. The same assumption was considered for the function-
ing window. In addition, for some devices, such as lights or TVs, users
have notable differences in the power requirements depending on the
time frame, thus presenting different functioning times and functioning
windows that must be considered in the analysis in order to obtain
more accurate results. All parameters are summarized in Appendix B.

The randomvariation of the functioning time andwindows has been
fixed in 15% following other similar cases of LoadProGen application
(Berti, 2016), except for the fridge inwhich the variation of both param-
eters has been fixed in 5% as it is expected to be turned on during the
whole day with minimum variation. The functioning cycle would be
less than 1 h for the most part of the devices, but when performing
hourly simulations is the minimum possible value to set.



 -

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

)
W

k(
de

d
na

me
D

re
w

oP

Hours

Deterministic load profile

Households' Consumption Community Services' Consumption
Total consumption

Fig. 4. Results of the deterministic load profile forecasting in El Santuario.

Á. Herraiz-Cañete, D. Ribó-Pérez, P. Bastida-Molina et al. Energy for Sustainable Development 66 (2022) 101–116
Communitarian Services: For the Street Light class, 20 units of 50W
were identified during the field visit as approximately required for
lighting the main street. It is assumed that the devices will be working
continuously during the first hours of the morning and the last of the
evening, for instance during no-sun hours. A certain random variation
of the functioning window has been fixed to 10%.

The lighting requirements for the school and kindergarten have been
defined according to international standards. Moreover, 2 units of fan per
building have been considered in order to ensure good conditioning. IT
services (computer and printer) have been also added to the analysis
considering their importance to enhance communication and learn-
ing in the community. Both buildings have an almost fixed schedule
from 7 a.m. to 8 p.m., but a random variation of the functioning win-
dow of 30% has been assumed according to similar rural electrifica-
tion projects (Mandelli et al., 2016a). Again, all parameters are
summarized in Appendix B.

Productive Services: This category includes the water pump, se-
lected for a pumping head of 80 m, and the biomass chipper, with a
power of 7500 W according to the results of the first estimation of en-
ergy needs. Currently, the main economic activity of the community is
subsistence agriculture. For these devices, the functioning windows
and time are more flexible. Therefore, the functioning window has
been fixed during sun hours, and trying that both devices do not work
simultaneously. The value of random variation has been fixed at 40%,
as its usage depends on other parameters e.g. if the solar resource is
not enough during a certain period of time, it will be necessary to use
the biomass chipper out of the expected usage schedule. All the param-
eters are summarized in Appendix B.

The simulations were performedwith an hourly resolution. The pro-
cessing time required by the Software to obtain the load profiles was
around 9 h. The number of load profiles was set randomly in 300, thus
the Software LoadProGen generates 300 different possible realistic
load profiles from the input data. The output file of the Software is a
24 × 300 matrix (i.e. 24 columns representing the 24 h per day, and
300 rows representing the 300 different possible load curves), graphi-
cally represented in Fig. 5.

From these 300 number of profiles set up primarily, the convergence
is reached at 211 profiles following the convergence criteria. Therefore,
the optimum number of realistic profiles and that will be used for the
load profile analysis is 211.
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Fig. 6 shows the estimated future load curve for the rural community
of “El Santuario”. The black line represents the average value of the total
211 profiles simulated. The uncertainty band (area between the maxi-
mum and minimum load curve) represents the maximum and mini-
mum values among which the Software has evaluated scenarios, but
do not present significant probability of occurrence. As can be seen,
the uncertainty band is very broad. According to Berti (2016) this
might be due to the large number of profiles simulated. It can also be
due to different load with variable usage times.

As can be observed in Fig. 6, the load peak occurs around at 7 p.m. in
the evening, when inhabitants come back home after the working
hours. There is also another peak early in the morning, between 5 a.m.
and 6 a.m., time in which the activity starts in the community. Both
peaks are in line with the trend observed in load curves estimation
for rural isolated communities. Moreover, another peak occurs between
10 a.m. and 14 p.m., due to the productive services that include the
water pump and the biomass chipper, which are high-energy consump-
tion devices. Even though a wide random variation of the functioning
window has been considered for these devices, for further studies it
would be interesting to consider different scenarios, e.g. weekday/week-
end or dry/wet season, as the operating hours will differ for both devices.

Discussion

Deterministic and stochastic load profiles have been compared to as-
sess the impact of the energy demand assessment methodology in the
design of mini-grids for rural electrification. The parallel work allows a
comparison of the two approaches in terms of performance, feasibility,
reliability and resources requirement in order to discuss their useful-
ness for mini-grid design. Starting by the performance, Fig. 7 shows
the comparison of load profiles following both approaches.

Regarding the daily energy demand estimation, represented by the
area below the load curve, no significant differences in the values are
observed between the two cases. The total demand reaches 201.09
kWh/day for the deterministic procedure, which turns out to be 2%
higher than the obtained with the average stochastic one: 197.752
kWh/day.

However, some differences can be observed in the shape of both
curves. While load peaks occur in the same time range following both
approaches, load peak values obtained with the average curve in the



Fig. 5. 300 hourly profiles randomly generated.
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stochastic procedure are lower (18.13 kW against 13.76 kW respec-
tively). In contrast, if we compare the maximum possible levels at the
stochastic curve, we can state that peaks also occur during midday
and they reach 24 kW, 20% than the initial evening peak obtained
with the deterministic curve. So, if aiming to deliver all the possible sto-
chastic scenarios, a mini grid designed solely based on the deterministic
curve, could present unexpected outages. Hence, the stochastic simula-
tion provides a more complete forecast of the future consumption, en-
abling a more tailored design of the mini-grid.

The fact that the average stochastic load profile is flatter is extremely
linked with the stochastic nature of the procedure. The formulation of
load profiles for rural isolated areas without previous access to electric-
ity brings aside the intrinsic uncertainty of the input data due to the
users' subjectivity in its definition. Therefore, the common approaches
for load profile formulation in rural areas should consider uncertainty
in the input data, thus formulating a certain number of profiles for rep-
resenting amore realistic situation (Mandelli et al., 2016a). In determin-
istic procedures, one single profile is formulated whereas stochastic
Fig. 6. Results of the stochastic load p
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simulation included 211 different probable profiles based on a conver-
gence criterion.

Another finding of the comparison is related to the data and re-
sources needed for their application, i.e., its feasibility. Demand forecast-
ing is a complex and work intensive process in the two approaches. A
successful process demands a correct baseline, normally based in costly
field work, validate the data obtained with similar projects and case
studies, process the raw data with themethodologies andmethods pre-
sented, and study the possibility to use specialised software to helpwith
the process. The deterministic approach requires less data and simpler
software, but more accurate and precise information. This is really con-
venient at the early stages of the design, when understanding the prob-
lem and sizing, i.e. budgeting, are the main concerns, not technical
optimization.

However, the inherent uncertainty in forecasting the future energy
consumption makes it almost impossible to get the actual future load
profile right, and the smaller the community the more so. Then, safety
margins are applied to avoid outages due to occasional unforeseen
rofile forecasting in El Santuario.
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peaks in demand. A frequent solution is to combine doubling the capac-
ity, compared with the peak demand, with the prevention of unex-
pected demand high peaks through safety systems. These disconnect
loads that were not foreseen at that time, or that turn out to be higher
than expected.

Thus, should that solution remain the initial design of themini-grid,
the stochastic calculation shows that it would be oversized. The safety
systems to prevent mini-grid outages are recommended by both ap-
proaches, producing local outages where demand exceeds the set
threshold. But the stochastic approach offers a more detailed under-
standing of the causes of occasional peaks, optimizing the design, and
reducing problems for users.

On the other hand, the stochastic approach requires more input
information, much of which is difficult to find or estimate: function-
ing windows, random variation, functioning cycles, etc. And the
whole calculation demands a sophisticated mathematical model or
software, which in turn involves some training. That said, the sto-
chastic approach allows working with less accurate data. The more
accurate the data, the smaller the random variations, and vice
versa. Furthermore, reflecting on its feasibility, fast and robust com-
puting equipment is needed if the model is very complex. The model
in this case study can be said of low to medium complexity, yet re-
quired a long period of dedicated computing time for an average
quality PC (9 h for the 300 profiles, with an hourly functioning
cycle, as explained in the previous section). Hence, for larger com-
munities, with a greater variety of electricity demands, and a desired
greater temporal detail, the necessary computing equipment is not
common with current versions of the software.

The implications of these findings for off-grid mini-grid design for
rural electrification can be summarized as follows:

In sum, stochastic methods allow to provide more realistic informa-
tion, to minimize the prediction error and to ensure accuracy in mini-
grid's design, which directly impacts on project cost and reliability of
energy supply. However, they require more effort in both producing
and using the results in a context where even stochastic results face a
degree of uncertainty. On the other side, deterministic models are still
costly, but they produce straight forward results that are easily
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interpreted. Thus, the usage of one method or another would depend
on the available resources, detailed needs, and the answers required,
understanding that each of them has positive and negative elements.

In fact, advancing conclusions, if possible, combining both ap-
proaches mini-grid designers could benefit from the strengths of both.
A deterministic study could be performed first, and gross decisions
could bemade based on the outcomes. And, if the facility is deemed fea-
sible, a stochastic approach based in the data of the former, adding the
completing information, would allow to tailor the mini-grid's design,
optimizing the size and safety systems against general outages.

Conclusion

Forecasting the future energy demand in rural electrification pro-
jects is a key element that directly influences the size and design of
mini-grids relating to the costs and the operation of the system. There
are no standard methodologies for assessing this demand. When de-
signing mini-grids, academics, policymakers and developers use gener-
alised data and deterministic or stochastic methods. While the first
option is just an approach to the real situation,models aim to reproduce
the load curve that will exist in themini-grid but require intensive data
collection and mathematical modelling techniques.

Here, we present a comparison between the two approaches applied
to a case study in a rural community in Honduras. We follow both pro-
cedures to obtain and compare the demand curves thatwill presumably
occur in the community to see the differences and evaluate the costs of
using each methodology. In sum, deterministic models are easier to use
and understand but produce rigid results with a lower amount of infor-
mation.While stochastic methods are resource intensive and result and
require more complex mathematical models and interpretations, but
they provide a more accurate picture of the scenarios in which demand
will occur.

Finally, as a recommendation, the methods of the deterministic ap-
proach can be useful for the early stages of the project, when sizing
the demand and comparing it with available renewable energy re-
sources, economic resources, or others. However, in the advanced
phases of the project, when the installation is being designed, the
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stochastic approach is recommended to ensure the satisfactory perfor-
mance of the mini-grid.
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Appendix A. Questionnaire used

Table 6
Demand assessment questionnaire, household data, energy consumption, and future needs.
Type of user
 Household
 Business
 Other
eference data
 Address:

ustomer information
 Name:
Contact:

Number of people in the household:

Number of rooms per household:

Internal power grid
 Yes
 No
Type of source Weekly expenditure Unit price
urrent energy sources and expenses
 Diesel

Kerosene

Candles

Batteries

Charge of batteries

Wood

Coal

Wood fuel

Pellets

Low pressure gas

Oil fuel

Natural gas

Total
Appliances Power (W) Units Daily schedule (h) Usage hours
urrent energy needs
 Light bulbs (8–20)

TV (45–120)

Radio (20–60)

Iron

Cooking pot

Microwave

Laundry machine 5 kg

Electric boiler

Phone

Fan

Fridge

Computer

Irrigation

Food processing

Other:

Total:
Activity Total Power Inst. (W) Daily schedule (hours) Electricity consumption (kWh)
lectricity consumption per activity
 Construction

Shop

Hairdressing

Small-scale industry

Bar

Restaurant

Other:
Source Amount (low season) Amount (high season)
ources of incomes
 1

2

3

4

5

Total
xpressed ability to pay Monthly amount (low season) Monthly amount (high season)
E
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Table 7
Demand assessment questionnaire, expected evolution.
Expected appliances
L
T
R
Ir
C
M
L
E
P
F
F
C
Ir
F
O

W
W
W
H
W
D
A
Is
W

0
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2

Year 1
 Year 2
113
Year 3
 Year 4
 Year 5
ight bulbs (8–20)

V (45–120)

adio (20–60)

on

ooking pot

icrowave

aundry machine 5 kg

lectric boiler

hone

an

ridge

omputer

rigation

ood processing

ther:

otal:
T
Table 8
Demand assessment questionnaire, qualitative factors for electricity consumption.
hich factor is more important for you regarding to the electrical service?
 Cost
 Quality
 Access time

hat would encourage your connection to the grid?
 Neighbours with access
 Own need
 Low price of connection

ould electricity access enhance your life or business in any way?
 Yes
 No
 Don't know

ow do you think electricity should be provided?
 Free
 Commercially

ho decides the payment for electricity?
 Myself
 My supervisor
 Family

o you possess any single-user electricity generation system?
 Yes
 No
 Under consideration

re you satisfied with your current electric system?
 Yes
 No
 Neutral

your current electric system able to cover your electricity needs?
 Yes
 No
 Percentage

ould you be interested on using electricity for agricultural activities?
 Yes
 No

the answer is yes, in which agricultural activities are you interested?
 Irrigation
 Cold chain
 Drying
 Packaging
 Other
If
Appendix B. Deterministic approach coincidence factors

Table 9
Coincidence factors and power needs in households' appliances.

Households
Hour
 Lights
 Fridge
 TV
 Radio
 Phone
 Fan
 Computer
 Other appliances
CF
 Power (kW)
 CF
 Power (kW)
 CF
 Power (kW)
 CF
 Power (kW)
 CF
 Power (kW)
 CF
 Power (kW)
 CF
 Power (kW)
 CF
 Power (kW)
:00
 –
 –
 0.01
 80
 –
 –
 0
 0
 0.5
 195
 0
 0
 0
 0
 0
 0

:00
 –
 –
 0.01
 80
 –
 –
 0
 0
 0.5
 195
 0
 0
 0
 0
 0
 0

:00
 –
 –
 0.01
 80
 –
 –
 0
 0
 0.5
 195
 0
 0
 0
 0
 0
 0

:00
 –
 –
 0.05
 400
 0.25
 1500
 0.5
 430
 0.5
 195
 0
 0
 0.1
 20
 0.2
 3800

:00
 0.50
 2003
 0.10
 800
 0.50
 3000
 1
 860
 0.5
 195
 0.25
 425
 0.25
 50
 0.2
 3800

:00
 1.00
 4005
 0.10
 800
 0.25
 1500
 1
 860
 0.5
 195
 0.25
 425
 0.25
 50
 0.2
 3800

:00
 1.00
 4005
 0.10
 800
 –
 –
 0.5
 430
 0
 0
 0.25
 425
 0.25
 50
 0.2
 3800

:00
 0.75
 3004
 0.05
 400
 –
 –
 0.5
 430
 0
 0
 0.25
 425
 0
 0
 0

:00
 0.50
 2003
 0.01
 80
 –
 –
 0.5
 430
 0
 0
 0.25
 425
 0
 0
 0
 0

:00
 0.05
 200
 0.01
 80
 –
 –
 0.5
 430
 0
 0
 0.25
 425
 0
 0
 0

0:00
 0.05
 200
 0.05
 400
 –
 –
 0.5
 430
 0
 0
 0.25
 425
 0
 0
 0.2
 3800

1:00
 0.05
 200
 0.10
 800
 0.10
 600
 0.5
 430
 0
 0
 0.25
 425
 0.1
 20
 0.2
 3800

2:00
 0.05
 200
 0.10
 800
 0.10
 600
 1
 860
 0
 0
 0.25
 425
 0.1
 20
 0.2
 3800

3:00
 0.05
 200
 0.05
 400
 0.10
 600
 1
 860
 0
 0
 0.25
 425
 0.1
 20
 0.2
 3800

4:00
 0.05
 200
 0.01
 80
 0.10
 600
 1
 860
 0
 0
 0.25
 425
 0.1
 20
 0
 0

5:00
 0.05
 200
 0.01
 80
 0.10
 600
 1
 860
 0
 0
 0.25
 425
 0.1
 20
 0
 0

6:00
 0.05
 200
 0.05
 400
 0.10
 600
 0.5
 430
 0
 0
 0.25
 425
 0.1
 20
 0

7:00
 0.50
 2003
 0.10
 800
 0.10
 600
 0.5
 430
 0
 0
 0.25
 425
 0.1
 20
 0.2
 3800

8:00
 1.00
 4005
 0.10
 800
 1.00
 6000
 1
 860
 0.5
 195
 0.25
 425
 0.75
 150
 0.2
 3800

9:00
 1.00
 4005
 0.10
 800
 1.00
 6000
 1
 860
 0.5
 195
 0
 0
 0.75
 150
 0.2
 3800

0:00
 1.00
 4005
 0.05
 400
 0.75
 4500
 1
 860
 0.5
 195
 0
 0
 0.75
 150
 0.2
 3800

1:00
 0.50
 2003
 0.05
 400
 0.50
 3000
 0.5
 430
 0.5
 195
 0
 0
 0.25
 50
 0
 0

2:00
 0.25
 1001
 0.01
 80
 0.25
 1500
 0
 0
 0.5
 195
 0
 0
 0.25
 50
 0
 0

3:00
 0.10
 401
 0.01
 80
 –
 –
 0
 0
 0.5
 195
 0
 0
 0
 0
 0
 0

otal
 8.50
 34,043
 1
 9920
 5
 31,200
 14
 12,040
 6
 2340
 3.75
 6375
 4.3
 860
 2.4
 45,600
T
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Table 10
Coincidence factors and power needs in community appliances.

Communitarian services
Hour
0
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2

L
T
R
F
F
O
C
P
L
T

L
T
R
F
F
O
C
P
L
T

Water pump
 Chipper
 Streetlights
114
IT services
 Lights
 Fan
CF
 Power (kW)
 CF
 Power (kW)
 CF
 Power (kW)
 CF
 Power (kW)
 CF
 Power (kW)
 CF
 Power (kW)
:00
 –
 –
 –
 –
 0.50
 500
 –
 –
 –
 –
 –
 –

:00
 –
 –
 –
 –
 0.50
 500
 –
 –
 –
 –
 –
 –

:00
 –
 –
 –
 –
 0.50
 500
 –
 –
 –
 –
 –
 –

:00
 –
 –
 –
 –
 1.00
 1000
 –
 –
 –
 –
 –
 –

:00
 –
 –
 –
 –
 1.00
 1000
 –
 –
 –
 –
 –
 –

:00
 –
 –
 –
 –
 1.00
 1000
 –
 –
 –
 –
 –
 –

:00
 –
 –
 –
 1.00
 1000
 –
 –
 –
 –
 –
 –

:00
 –
 –
 –
 –
 0.50
 450
 0.75
 878
 0.50
 400

:00
 –
 –
 0.25
 1875
 –
 –
 0.50
 450
 0.75
 878
 1.00
 800

:00
 –
 –
 0.25
 1875
 –
 –
 0.50
 450
 0.75
 878
 1.00
 800

0:00
 –
 –
 0.25
 1875
 –
 –
 1.00
 900
 0.75
 878
 1.00
 800

1:00
 –
 –
 0.25
 1875
 –
 –
 1.00
 900
 0.75
 878
 1.00
 800

2:00
 –
 –
 0.25
 1875
 –
 –
 1.00
 900
 0.75
 878
 1.00
 800

3:00
 1.00
 2000
 0.25
 1875
 –
 –
 1.00
 900
 0.75
 878
 1.00
 800

4:00
 1.00
 2000
 –
 –
 –
 –
 1.00
 900
 0.75
 878
 1.00
 800

5:00
 1.00
 2000
 –
 –
 –
 –
 1.00
 900
 0.75
 878
 1.00
 800

6:00
 1.00
 2000
 –
 –
 –
 –
 1.00
 900
 0.50
 585
 1.00
 800

7:00
 –
 –
 –
 –
 –
 –
 1.00
 900
 0.25
 293
 0.25
 200

8:00
 –
 –
 –
 –
 0.50
 500
 1.00
 900
 0.25
 293
 0.25
 200

9:00
 –
 –
 –
 –
 1.00
 1000
 1.00
 900
 0.25
 293
 –
 –

0:00
 –
 –
 –
 –
 1.00
 1000
 1.00
 900
 0.25
 293
 –
 –

1:00
 –
 –
 –
 –
 1.00
 1000
 –
 –
 –
 –
 –
 –

2:00
 –
 –
 –
 –
 1.00
 1000
 –
 –
 –
 –
 –
 –

3:00
 –
 –
 –
 –
 0.50
 500
 –
 –
 –
 –
 –
 –

otal
 4.00
 8000
 1.50
 11,250
 10.50
 10,500
 12.50
 11,250
 8.25
 9653
 10.00
 8000
T
Appendix C. Load Pro Gen parameters by user class

Table 11
Household parameters in LoadProGen A.

Household user class
Type of
appliance
Users
(Ud.)
Electrical appliances per
user (Ud.)
Nominal power of
appliances (W)
Functioning cycle
(hour)
Functioning time
(hour)
Variation of functioning
time (%)
Variation of functioning
window (%)
ights
 71
 3.76
 15
 1
 8
 15
 15

V
 71
 0.56
 150
 1
 5
 15
 15

adio
 71
 0.6
 20
 1
 14
 15
 15

an
 71
 0.478
 50
 1
 4
 15
 15

ridge
 71
 0.22
 500
 1
 1
 5
 5

ther
 71
 0.267
 1000
 1
 2
 15
 15

omputer
 71
 0.014
 200
 1
 3
 15
 15

hone
 71
 0.55
 10
 1
 6
 15
 15

ights 2
 71
 3.76
 15
 1
 1
 15
 15

V 2
 71
 0.56
 150
 1
 1
 15
 15

omputer 2
 71
 0.014
 200
 1
 1
 15
 15
C
Table 12
Household parameters in LoadProGen B.
Type of appliance
 Functioning window 0 (wf0)
 Functioning window 1 (wf1)
 Functioning window 2 (wf2)
ights
 4
 8
 17
 22
 –
 –

V
 3
 5
 18
 23
 –
 –

adio
 3
 21
 0
 0
 –
 –

an
 4
 18
 0
 0
 –
 –

ridge
 1
 24
 –
 –
 –
 –

ther
 3
 6
 10
 16
 17
 20

omputer
 3
 4
 18
 22
 –
 –

hone
 1
 5
 18
 24
 –

ights 2
 9
 16
 23
 24
 –
 –

V 2
 11
 17
 –
 –
 –

omputer 2
 11
 17
 –
 –
 –
 –
C
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Table 13
Streetlight parameters in LoadProGen.

Streetlights user class
Type of
appliance
E

L

L

L
F

L
F

Users
(Ud.)
Electrical appliances per
user (Ud.)
Nominal power of
appliances (W)
Functioning cycle
(hour)
115
Functioning time
(hour)
Variation of functioning
time (%)
Variation of functioning
window (%)
xternal
lights
1
 20
 50
 1
 11
 10
 10
ype of appliance Functioning window 0 (wf0) Functioning window 1 (wf1) Functioning window 2 (wf2)
T
xternal lights
 1
 6
 18
 24
 –
 –
E
Table 14
Church parameters in LoadProGen.

Church user class
Type of
appliance
Users
(Ud.)
Electrical appliances per
user (Ud.)
Nominal power of
appliances (W)
Functioning cycle
(hour)
Functioning time
(hour)
Variation of functioning
time (%)
Variation of functioning
window (%)
ights
 1
 6
 15
 1
 8
 30
 30

ans
 1
 4
 100
 1
 10
 30
 30

ype of appliance Functioning window 0 (wf0) Functioning window 1 (wf1) Functioning window 2 (wf2)
F
T

ights
 7
 20
 –
 –
 –
 –

ans
 7
 18
 –
 –
 –
 –
F
Table 15
School parameters in LoadProGen.

School and kindergarten user class
Type of
appliance
Users
(Ud.)
Electrical appliances per
user (Ud.)
Nominal Power of
appliances (W)
Functioning cycle
(hour)
Functioning time
(hour)
Variation of functioning
time (%)
Variation of functioning
window (%)
ights
 1
 72
 15
 1
 8
 5
 5

ans
 1
 4
 100
 1
 10
 5
 5
1
 3
 300
 1
 13
 5
 5

ype of appliance Functioning window 0 (wf0) Functioning window 1 (wf1) Functioning window 2 (wf2)
IT
T

ights
 7
 20
 –
 –
 –
 –

ans
 7
 18
 –
 –
 –
 –
7
 20
 –
 –
 –
 –
IT
Table 16
Water pump parameters in LoadProGen.

Water pump user class
Type of
appliance
Users
(Ud.)
Electrical appliances per
user (Ud.)
Nominal Power of
appliances (W)
Functioning cycle
(hour)
Functioning time
(hour)
Variation of functioning
time (%)
Variation of functioning
window (%)
ater pump
 1
 1
 200
 1
 4
 40
 40

ype of appliance Functioning window 0 (wf0) Functioning window 1 (wf1) Functioning window 2 (wf2)
W
T

ater pump
 13
 16
 –
 –
 –
 –
W
Table 17
Biomass chipper parameters in LoadProGen.

Biomass chipper user class
Type of
appliance
Users
(Ud.)
Electrical appliances per
user (Ud.)
Nominal Power of
appliances (W)
Functioning cycle
(hour)
Functioning time
(hour)
Variation of functioning
time (%)
Variation of functioning
window (%)
hipper
 1
 1
 7500
 1
 2
 40
 40

ype of appliance Functioning window 0 (wf0) Functioning window 1 (wf1) Functioning window 2 (wf2)
C
T

hipper
 8
 13
 –
 –
 –
 –
C
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