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Abstract

The locally optimized chirplet spectrogram (LOCS) is a novel method pro-

posed in this work for generating a high-resolution and cost-effective spectro-

gram of the induction machine (IM) current, suitable for the identification of

fault-related harmonics in transient conditions. Its distinctive novelty is that

it optimizes automatically the parameters of the analysing window used for

building the current spectrogram, at each point of the time-frequency plane,

with the computational cost of a conventional, non-optimized spectrogram. It

is based on the definition of a large dictionary of different chirplet windows,

which are combined into a single, complex time window. A single short time

Fourier transform with this new window generates in parallel the spectrograms

of all the dictionary windows, and the LOCS chooses among them the locally

optimized values in an automatic way. The proposed technique is applied to the

diagnosis of two commercial induction motors with bar breakages and mixed

eccentricity faults.
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spectrogram, condition monitoring

1. Introduction

Induction machines (IMs) are the main mechanical power source of many

industrial processes, specially squirrel cage motors [1, 2], and are also an im-

portant source of power supply networks, specially double fed induction wind

generators (DFIGs) [3]. Their failure means an interruption of these power5

sources, which may lead to sudden stoppage of production lines and may cause

high economic losses. To ensure their reliable operation, it is necessary to detect

their faults at an early stage [4, 5, 6, 7], what allows taking corrective measures

before the fault becomes a catastrophic one. Different condition based mainte-

nance systems (CBMS) for IMs have been described in the technical literature10

[8], based on vibrations [9], sound analysis [10, 11], thermal signals [12], etc.

Among them, motor current signature analysis (MCSA) [13, 14, 15, 16] has

gained an increasing interest, because it can operate on-line, detecting differ-

ent and possibly simultaneous types of fault, and can be implemented using

non-invasive [17] low-cost current sensors, and fast processing algorithms, es-15

pecially the fast Fourier transform (FFT). MCSA is based on the detection of

a set of harmonic components generated by each type fault, whose frequencies

constitute a unique fault signature [18]. These frequencies, for some of the most

frequent IM faults [19], are given in Table 1, where p is the number of pole

pairs, f1 is the supply frequency, s is the rotor slip, and Nb, Db, Dc and β are20

the parameter of the bearing (number of balls, bearing and cage diameter, and

contact angle, respectively).

In spite of its simplicity, the industrial application of MCSA may have serious

drawbacks. In particular, the fault frequencies given in Table 1 depend on the

machine speed (through the slip), and on the supply frequency. Therefore, in25

many industrial processes that operate under varying load or speed conditions,

as in the case of wind generators with variable wind regimes, the fault frequencies

shown in Table 1 are not constant, and the fault signatures are not single spectral

2



Table 1: Frequencies of the Current Components Generated by Different Types of IM Faults

Type of fault Frequency of the Fault Components

Shorted coils [20] f1 ·
∣∣k ± n 1−s

p

∣∣ k = 1, 3, 5 . . .

n = 1, 2, 3, . . .

Rotor asymmetries [21, 22] f1 · (1± 2ks) k = 1, 2, 3 . . .

Mixed eccentricity [23] f1 ·
∣∣1± k 1−s

p

∣∣ k = 1, 2, 3 . . .

Bearing (outer race) [24, 25] Nb

2
1−s
p f1 ·

[
1− Db cos(β)

Dc

]

Bearing (inner race) [24, 25] Nb

2
1−s
p f1 ·

[
1 + Db cos(β)

Dc

]

Bearing (balls) [26] f1 ·
∣∣∣ 1
2Db

Dc
1−s
p f1

[
1−

(
Db cos(β)

Dc

)2]∣∣∣
lines [27], which makes their identification very difficult. This fact limits the

use of the FFT in MCSA to machines working in steady-state conditions.30

To overcome this limitation, the FFT must be replaced by advanced time-

frequency (TF) transforms that can display the energy content of the current in

the TF plane, where the fault harmonics can be accurately detected, even under

transient conditions. Different TF transforms have been proposed for fault

diagnosis of IMs, such as the short-time Fourier transform (STFT) [6, 28, 29],35

the Stockwell transform [30], the Wigner-Ville distribution (WVD) [31], the

wavelet transform (WT) [32], the spectral graph wavelet transform (SGWT)

[33], or the continuous complex wavelet transform (CCWT) [34], among many

others. In this work, the STFT has been selected, being a linear transform that

does not generate cross-terms artefacts.40

The current spectrogram generated by the STFT relies on windowing the

current signal, at every time instant, and obtaining the FFT of this windowed
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signal. The resolution of the spectrogram depends on the type and on the

parameters of the window, and is limited by the uncertainty principle. The

Gaussian window is the only one that reaches this limit [35], what justifies its45

selection in this work. Another factor that affects the capability of the spectro-

gram for displaying the current components is their degree of overlapping with

the analysing window. To maximize it, the frequency-to-time ratio of the Gaus-

sian window must coincide with the rate of change of the frequencies of these

components [36]. An improvement of this approach is the possibility of rotating50

the analysing window in the TF plane, using a window with linearly varying

frequency (chirplet), as in the chirplet transform (CT) [37, 38, 39, 40]. The

extra degree of freedom given by the angle of rotation of the chirplet window al-

lows achieving a better overlap with the fault harmonic and, therefore, a better

spectrogram resolution. The CT has been used for detecting bearing faults in55

[41, 42], rotor imbalances in [43], and for detecting the rotating frequency from

the vibration signal in [44]. The CT has also been applied to the analysis of

the start-up transient of an IM in [45] for bearing fault detection, for rotor fault

diagnosis in [46], and for eccentricity fault diagnosis in [47]. In [48], a variational

non-linear component decomposition (VNCD) is proposed to overcome the limi-60

tations of the variational nonlinear chirp mode decomposition (VNCMD), which

requires a prior knowledge that limits its practical application.

Maximizing, at each point of the TF plane, the overlap between the analysing

window and the fault components of the current requires a thorough evaluation

of their expected trajectories in this plane [47]. To avoid this process, an alter-65

native approach is the post-processing of the current spectrogram, concentrating

the energies of their elements in the most prominent ones, either by reassign-

ment [49, 50], synchrosqueezing [51, 52] or synchroextraction [53] techniques.

In [54] an enhanced post-processing method applied to the mono-components

signals extracted using he instantaneous frequency has been proposed to detect70

misalignments of the outer and inner race of the bearings of an induction mo-

tor. These techniques help improve the contrast of the spectrogram, but their

computational cost is very high. Instead, other authors propose the generation
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of a set of different spectrograms, using different windows stored in a dictionary

[55], as in the matching pursuit approach [56], or in the locally optimized spec-75

trogram proposed in [57], using a fractional Fourier transform. For each TF

position, the maximum value computed with all the different spectrograms is

chosen to represent the energy content of the current signal at that point. This

method has the advantage of not needing an a priori estimation of the fault

harmonics trajectories. Nevertheless, its computational burden may be very80

high: a different spectrogram must be built for each analysing window, which,

depending on the size of the dictionary, can be computationally very costly.

That imposes a limit to the size of the dictionary, and thus to the resolution of

the current spectrogram.

To avoid the use of windows dictionaries, an alternative approach consists85

in using different windows in different zones of the TF plane. The WT achieves

a multi-resolution analysis by shifting and scaling a mother wavelet. The WT

has been used for the diagnosis of electrical machines in [58], using the discrete

WT (DWT) with a Daubechies wavelet, in [59], using the dual tree complex

WT (DTCWT), and in [60] using the empirical WT (EWT). Nevertheless, the90

dyadic nature of the DCTWT or the scaling frequency of the WT are not well

adapted to represent accurately the TF trajectories of the current components.

To overcome these limitations, this paper introduces a new method desig-

nated as ”local optimized chirplet transform” (LOCS). This name refers to one

of the outstanding characteristics of the new method, which consists in that95

it automatically selects the parameters of the analysis window that optimize

the extraction of the fault components, at each point of the time-frequency

plane. Furthermore, this optimization process does not increase the computa-

tional costs compared with conventional TF transforms, in which the chirplet

parameters are constant throughout the TF plane. The LOCS defines a large100

number of chirplet windows, with different parameters, and combines them into

a single, complex time window, as in [61]. In this way, it can perform the

chirplet transform of the current signal using a high number of chirplet win-

dows in the dictionary, while keeping an extremely low computing cost, similar
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to the cost of computing a conventional, non-optimized spectrogram, based on105

a single window. It is based on:

1. Building a dictionary of chirplet windows with a wide range of rotation

angles.

2. Combining all these windows into a single, complex time window, using

non-overlapping frequency bands. A single run of the STFT algorithm us-110

ing this novel complex window gives, in parallel, as many spectrograms as

the number of windows in the dictionary. This feature makes the LOCS

approach especially well-suited for embedded diagnostic systems of IMs

working under transient conditions, such as modern field diagnostic de-

vices that are physically attached to the machine core, and have a limited115

computing power.

3. As no previous knowledge is required about the expected signatures of

the current components, the process can be fully automated, making it

suitable for implementing artificial intelligence diagnostic systems for IMs.

Up the best of the authors’ knowledge, it is the first time in the technical120

literature that a complex time window has been proposed to locally optimize

the spectrogram of the current signal, using a chirplet windows dictionary with

the computing cost of a single window.

The possibility of generating an optimized spectrogram of the current signal

for diagnostic purposes may improve the reliable identification of the trajectories125

of the fault harmonics by trained personnel, or provide high quality diagnos-

tic data for training neural networks under transient conditions [28, 62, 63],

including load oscillations [64], for designing support vector machines for the

diagnosis of broken bars in squirrel cage motors [65, 66] or stator short-circuits

[67], for implementing deep transfer learning diagnostic systems [13, 68], for130

building multisource transfer learning networks [69], for managing predictive

maintenance strategies bases on machine learning approaches, as in [70], or for

implementing other artificial intelligence methods [71, 72] and expert systems

[29]. Other application of the LOCS could be the location of informative fre-
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quency bands for machine performance degradation assessment, as in [73]. Ad-135

ditionally, the optimized spectrogram generated by the LOCS may be needed

to distinguish between multiple, simultaneous faults of the IM, as in [74].

This paper is structured in the following way. Section 2 gives a brief pre-

sentation of the chirplet transform, and in Section 3 the LOCS is described. In

Section 4, it is applied to the diagnosis of two commercial squirrel cage induction140

motors with different types of faults, a bar breakage and a mixed eccentricity.

Section 5 presents the conclusions.

2. The chirplet transform for TF analysis of the machine current

In this section the chirplet transform is described briefly, because it is the

foundation of the LOCS.145

The detection of fault components under transient conditions, whose fre-

quencies vary with the speed as indicated in Table 1, requires a high resolution

spectrogram of the machine current i(t). The process for obtaining it using the

STFT consists in multiplying, at each time τ , the current signal by the con-

jugate of the analysing window h(t), centred at time t = τ , and squaring the

modulus of its Fourier transform (FT), as

ISP (τ, ω) = |Iτ (ω)|2 =
∣∣∣ 1√

2π

∫
e−jωti(t)h(t− τ)∗dt

∣∣∣2 (1)

Once this process is finished, the analysing window is shifted to the next

instant, and the process is repeated. The set of all the spectra obtained at

different times is the current spectrogram, which reflects the energy content of

the current at each time and frequency.

2.1. The chirplet window150

The spectrogram resolution is related to the characteristics of the analysing

window h(t) used in (1), which must have a high concentration of energy. The

highest energy concentration is achieved by the Gaussian window [34, 75],

g(t) =
(α
π

)1/4

e
−α
2 t2 (2)
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with a standard deviation σ2
t = 1/(2α). The FT of the Gaussian window is

G(ω) =
( 1

απ

)1/4

e−
1
2αω2

(3)

with a standard deviation σ2
ω = α/2. The product of the duration σt and the

bandwidth σω of the Gaussian window gives σtσω = 1/2, the minimum value

allowed by the uncertainty principle [76]. Fig. 1 shows the Heisenberg box of

the Gaussian window in the TF plane, which is a rectangle with a time width

σt and a frequency height σω, and a time frequency centre which coincides with155

the window’s.
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Figure 1: Gaussian window showing its Heisenberg box, which depends on the α parameter

of the window.

To optimize the diagnostic spectrogram, the height-to-width ratio of the

Gaussian window (σω/σt = α) must be adjusted to match the slope of the fault

components [36, 77]. As this can be difficult to achieve in case of fast time-

varying conditions, some authors [37, 38, 43, 78] propose the use of a rotated

Gaussian window in the TF plane, the chirplet window, by adding a rotation

parameter β, as

h(t) = g(t)e
jβ
2 t2 =

(α
π

)1/4

e−
α
2 t2e

jβ
2 t2 (4)

Fig. 2 shows the chirplet window that is obtained by rotating the Gaussian

window of Fig. 1 an angle of π/4.
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Figure 2: Chirplet window, obtained by rotating the Gaussian window of Fig. 1 an angle of

π/4.

Using (1) and (4), the chirplet transform is defined as

ISP (τ, ω, α, β) =
∣∣∣(α

π

)1/4 1√
2π

∫
e−jωti(t)e−

α+jβ
2 (t−τ)2dt

∣∣∣2 (5)

2.2. Optimization of the chirplet window parameters160

The couple of parameters of the chirplet window in (5), α and β, must be

adjusted to obtain an optimal overlap between the window and each of the

current components, what requires a detailed analysis of the machine charac-

teristics and working conditions, and trained maintenance personnel. An alter-

native approach consists of obtaining many current spectrograms (5), using a

large number of windows with different values of α and β, and selecting for each

time and frequency the maximum value among all the spectrograms.

α∗, β∗ = argmax
α,β

ISP (τ, ω, α, β) (6)

Due to performance considerations, only a discrete subset of the possible values

of α and β can be explored in (6)

α∗, β∗ = argmax
m,n

ISP (τ, ω, αm, βn) (7)

9



with m = 1 . . . Nα and n = 1 . . . Nβ . Nevertheless, the number of different

spectrograms needed to find the optimal values α∗ and β∗ for each point (τ, ω)

of the TF plane is Nα × Nβ , which can be very high depending on the values

of Nα and Nβ . This drawback is solved by the proposed LOCS using a single,

complex time window.165

3. Proposed method for calculating the locally optimized complex

chirplet spectrogram (LOCS) of the machine current

The machine current is sampled at a rate fsamp during an acquisition time

TS , what generates a total number of current samples Nsamples = TS × fsamp.

Its FFT gives the current spectrum in the frequency band [0 - fsamp/2]. The170

sampling frequency fsamp can be very high, but only a small fraction of this

frequency band is of diagnostic interest, because the main fault harmonic com-

ponents evolve in a narrow frequency band [0 - FS ] (FS << fsamp), which

depends on the fault type. For the main fault components (k = 1 in Table 1),

and using industrial supply frequencies, FS is usually limited to a few hundred175

Hz [29, 79]. To apply the proposed method, first the harmonic components of

the current outside the frequency band of interest are filtered out. In this work,

a frequency filter [80] has been used for zeroing the current spectrum outside

the diagnostic frequency band.

To obtain the current spectrogram in the diagnostic area (that is, in the180

rectangular strip of the TF plane of size TS × FS where the fault harmonics

show up), a two-step process is developed: first, a suitable dictionary of chirplet

windows is built; and, second, all these windows are stored in a single, complex

analysing window, which is used to obtain the spectrograms generated by all

the windows in the dictionary with a single execution of the STFT algorithm.185

3.1. Building of the chirplet dictionary

For building the dictionary (7), first a Gaussian window with the same

height-to-width ratio as the diagnostic region is generated. To achieve this,
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a value of parameter α in (2) equal to 2πFS/TS is used, as

g(t) =
(α1

π

)1/4

e
−α1

2 t2 , with α1 =
2πFS

TS
(8)

This Gaussian window is rotated using the parameter β in (4), which is related

to the rotation angle φ by [44, 39]

β(φ) =
2πFS

TS
tan(φ) = α1 tan(φ) φ ∈ (−π

2
,
π

2
) (9)

When rotating the Gaussian window, its time width must be reduced to keep

its length constant in the joint TF plane, by adjusting the parameter α in (4) as

α(φ) =
2πFS

TS

1

cos(φ)
=

α1

cos(φ)
φ ∈ (−π

2
,
π

2
) (10)

A discrete set of angular values has been selected to divide the TF region into

Nφ sections averagely, as in [44]

φk = −π

2
+ k · π

Nφ + 1
k = 1, 2, . . . , Nφ (11)

Nevertheless, the maximum angle can be reduced from π/2 in case of numerical

instabilities.

Using (11), a dictionary with Nφ chirplet windows is built. The kth (k =

1, 2, . . . , Nφ) window is given by

hk(t) =
(αk

π

)1/4

e−
αk
2 t2e

jβk
2 t2 (12)

where αk = α(φk) and βk = β(φk).

3.2. Combining the chirplet windows of the dictionary in a single, complex time190

window

The use of a large dictionary of chirplet windows for the analysis of the cur-

rent signal has an important drawback: a new spectrogram must be build with

each dictionary window. Only after all the spectrograms have been obtained

it is possible to select the highest value obtained for each time and frequency195

point. In this section, a single, complex time window is defined in the time do-

main, which contains all the dictionary windows. In this way, a single execution
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of the STFT with this novel window generates in parallel all the spectrograms

corresponding to the elementary windows of the dictionary.

As only the frequency band [0-FS ] is of diagnostic interest, data outside this200

band is normally discarded when using the FFT as signal processing tool. A

possible solution to avoid this waste of processing power could be to apply the

FFT only to this frequency band. Nevertheless, the number of frequency bins

generated by FFT is the same as the number of current samples [81]. Therefore,

a reduction of the frequency region results in the reduction of the number of205

current samples, what may compromise the spectrogram resolution. Another

possible solution could be to compute only the spectral bins inside the frequency

band of interest [0-FS ] via the discrete Fourier transform (DFT), which makes

use of the full time window. Nevertheless, the computational complexity of

the DFT is much higher than the computational complexity of the FFT, what210

makes this solution inefficient.

The novel solution proposed in this work consists in using the FFT as the

signal processing tool for computing the STFT, taking advantage of its speed,

and, at the same time, using the full spectral range [0 - fsamp] for storing all the

windows of the dictionary (11) in a single, complex time window. This solution

makes full use of the FFT output, without wasting any computed data. To

achieve this goal, the available spectral range of the current spectrum generated

by the STFT with a sampling frequency fsamp, [0 - fsamp], is partitioned into

adjacent frequency bands of equal width FS . Each elementary chirplet window

is allocated in one of these frequency bands, by shifting its frequency, as detailed

in [61]. Therefore, the number Nφ (11) of elementary chirplet windows that

can be allocated is

Nφ = fsamp/FS (13)

To allocate Nφ chirplet windows in consecutive, non-overlapping frequency

bands of width FS , the kth window (1 ≤ k ≤ Nφ) is shifted up in the frequency

axis, as in [61],

hωk
(t) = hk(t) · ejωk =

[(αk

π

)1/4

e−
αk
2 t2e

jβk
2 t2

]
· ejωk (14)
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with ωk = (k − 1)2πFS . Finally, the shifted windows are added in the time

domain to build the new complex window proposed in this work, as

h(t) =

Nφ∑
k=1

hωk
(t) (15)

Each elementary chirplet windows contained in the complex time window

(15) generates an elementary spectrogram of the current (1). For the kth win-

dow, it is given by

ISP (τ, ω, αk, βk) =
∣∣∣(αk

π

)1/4 1√
2π

∫
e−j(ω+ωk)t · i(t) · hk(t− τ)∗dt

∣∣∣2 (16)

In this way, the spectrogram generated by the kth chirplet windows is also

shifted in the frequency axis by ωk. A single execution of the STFT using (15)

as the analysing window generates, in parallel, as many different elementary

spectrograms (5) as elementary windows are contained in (15), allocated in non-215

overlapping frequency bands. The maximum values obtained at each point of

the TF plane among these spectrograms are selected in the final result, according

to (7).

3.3. Summary of the proposed methodology

The proposed methodology for obtaining the LOCS of a current signal can220

be summarized in the following points:

1. The current signal is acquired during a time TS with a sampling frequency

rate of fsamp.

2. The width of the frequency band with diagnostic interest is selected as FS

(FS << fsamp). This defines a Gaussian window with the same height-to-225

width ratio than the diagnostic region FS/TS , (8), the number of rotated

versions of this base window (13) and their shapes in the TF plane (14).

The content of the current signal outside this frequency band is filtered

out.

3. A single complex time window is built by displacing each rotated window230

to a unique frequency band and adding all of them (15). This window

13



is able to display optimally all the possible harmonic components in the

selected TF region.

4. The STFT of the current signal is calculated using this complex time win-

dow in the usual way (5): for each time instant, the window is shifted235

to that time, multiplied by the current signal, and the result is processed

using the FFT. This process is repeated for each current sample, and

generates a single spectrogram, which contains all the spectrograms cor-

responding to the elementary chirplet windows, allocated in different, non-

overlapping frequency bands.240

5. All the elementary spectrograms are combined to produce a final result

by selecting for each point in the TF region the maximum value obtained

for that point (7).

3.4. Practical example with a synthetic current signal

To better illustrate the proposed methodology, the LOCS is calculated for

a synthetic current signal i(t) (Fig. 3), which contains three components: a 60

Hz sine wave, and two linear chirps with a frequency slope of ±1 Hz/s, with

an initial frequency of 60 Hz. The simulation time is 30 s, with a time step of

1/360 s, as

i(t) = cos(2π60t) + 0.05 cos(2π(60t± 0.5 · t2)) (17)

The bandwidth of the region with diagnostic interest has been chosen to245

be FS=120 Hz, higher than the maximum frequency expected for the current

components. The Gaussian window with the same height-to-width ratio as this

region has a parameter α1 = 2π120/30 (8). As the signal has been generated

at a rate of fsamp = 360 Hz and the diagnostic bandwidth is FS = 120 Hz,

three elementary chirplet windows can be allocated in the [0 - 360] Hz spectral250

range generated with the STFT, applying (13) fsamp/FS = 360/120 = 3. The

proposed complex time window, defined by (15), is built by combining three

copies of this elemental window, rotated [−π/8, 0, π/8] respectively, as given by

(11). This complex window is depicted in the time domain in Fig. 4, showing

14



0 5 10 15 20 25 30

Time (s)

-1

-0.5

0

0.5

1

C
u

rr
e

n
t 

(A
)

0 5 10 15 20 25 30

Frequency (Hz)

0

50

100

T
im

e
 (

s
)

Figure 3: Synthetic current signal (17) (top) and frequency of its chirp components (bottom).

both its real (top) and its imaginary part (top). Its three elementary chirplet255

windows are allocated in three consecutive, non-overlapping frequency bands,

and their amplitudes in the frequency domain are represented in Fig. 4, bottom.

Its spectrogram, shown in Fig. 5, left, displays these three elementary chirplet

windows in adjacent, non-overlapping bands of the TF plane, showing their

different orientations.260

A single STFT of the synthetic current signal (17), using the single, complex

time window shown in Fig. 4, generates in parallel three elementary spectro-

grams, located in three different frequency bands, as seen in Fig. 5, right.

Each elementary chirplet windows highlights the harmonic component with

its same slope. The pure Gaussian window has a maximum overlap with the265

fixed-frequency component of the current, and the two chirplet windows have

maximum overlap with the chirp components of the current. Their combination,

following the rule (7), generates a high resolution current spectrogram, shown

in Fig. 6. As the three elementary spectrograms are generated in parallel, the

computational cost is that of a single execution of the STFT.270
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Figure 4: Real part (top) and imaginary part (middle) of the complex time window used to

analyse the synthetic current signal. This window contains 3 elementary chirplet windows,

with rotation angles [−π/8, 0, π/8], allocated in three consecutive, non-overlapping frequency

bands, whose amplitudes in the frequency domain are represented in the bottom plot.

4. Experimental validation

The LOCS is applied in this section to asses the condition of two different

commercial motors, with two different faults, one with a bar breakage and the

other one with mixed eccentricity.

4.1. Application of the LOCS to detect a bar breakage275

For this experimental test, the IM of Appendix A has been used. Bar break-

ages can be produced by the high mechanical and thermal stresses that the rotor

cage supports, especially during the startup process, due to the high currents

flowing through the cage. These high currents produce small deformations in

the bars and end-rings that, combined with the expansions and contractions280

caused by the thermal processes, and with the unavoidable manufacturing pro-

cess, produce small cracks in the junction that may led to the complete breaking
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Figure 5: Current spectrogram of the synthetic signal (17) (right), generated with a single

execution of the STFT algorithm with the proposed complex time window (left). Each elemen-

tary chirplet window generates in parallel a current spectrogram that highlights the harmonic

component with its same slope.

of the bars in this region of maximum stresses [82, 83]. To better reproduce this

type of fault, a hole has been drilled in one bar at this junction, as in [84]. Fig. 7

shows a faulty and a healthy rotor cage (left), and a close view of the provoked285

fault (right).

Fig. 8 shows the test-bench used in this work, and Fig. 9 shows the schema

of the experimental setup. In this test-bench, two identical induction motors are

mechanically coupled. One of them is the motor under test, with a broken bar

provoked fault, and the other one is fed from a variable speed drive (VSD), and290

works in generator regime. By adjusting the VSD output frequency it is possible

then to adjust the load level of the IM under test. As shown in Fig. 9, one of
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Figure 6: Spectrogram of the current signal (17), obtained by combining the three spectro-

grams of Fig. 5, right, according to (7). It shows with a high resolution the sinusoidal and

chirp components of the current.

Figure 7: Experimental motor of Appendix A with a provoked broken bar. Comparison with

a healthy rotor (right) and close view of the bar breakage, at the junction with the end ring

(right).

the stator currents of the motor under test has been measured with a Chauvin

Arnoux MN60 current clamp (nominal measuring scope: 100 mA–20A, ratio

input/output: 1 A/100 mV, intrinsic error: ≤ 2% + 50 mV, frequency use: 400295

Hz–10 kHz), the speed with a 200 pulse/revolution encoder, and all the data has

been collected using a Yokogawa DL750 oscilloscope, as depicted in Fig. 9. The

acquired data is transferred through an Ethernet link to the personal computer
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(CPU: Intel Core i7-2600K CPU @ 3.40 GHZ RAM memory: 16 GB), where

it is processed using Matlab (Version: 9.10.0.1602886 R2021a) to produce the300

results and images shown in this work.

Figure 8: Condition monitoring test-bench used in this work.

Figure 9: Schema of the condition monitoring test-bench used in this work.

The stator current, shown in Fig. 10, has been acquired during a start-

up transient (10 seconds), at a frequency rate fsamp = 5000 Hz. It is worth

mentioning that it has multiple components due to noise and to the non-ideal

characteristics of the motor, as can be observed in the enlarged view of Fig. 10,305
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Figure 10: Current of the motor of Appendix A with a broken bar, during the start-up

transient. This signal has multiple components caused by noise and non-ideal characteristics

of the motor, as can be observed in the enlarged view.

The main fault harmonics generated by a bar breakage (k = 1 in Table 1)

have a frequency that is given by

fbb = f1(1± 2s) (18)

In particular, the main fault harmonic that has a frequency

fLSH = f1 · (1− 2s) (19)

is commonly used for the diagnosis of broken bars, and is denoted as the

lower side-band harmonic (LSH). According to (19), during a start-up transient

the LSH generates a typical V-shaped fault signature [14, 36], shown in Fig. 11.

The ability to display this fault signature in the spectrogram of the experimental310

current signal constitutes a validation of the LOCS.

The frequency band of diagnostic interest has been chosen to be [0 - 125

Hz], where the LSH given by (19) is expected to show up, for f1 = 50 Hz.

The number of chirplet windows that can be stored in the single, complex time

window with a sampling frequency of 5 kHz is Nφ = 5000/125 = 40 (13). The
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Figure 11: Measured speed during the start-up of the motor of Appendix A (top), with

a broken bar, and theoretical evolution of the LSH fault harmonic, according to (19). The

ability to display this fault signature in the spectrogram of the experimental current signal

constitutes a validation of the method proposed in this work.

rotation angles of these windows are (11)

φk = −π

2
+ k · π

41
k = 1, 2, . . . , 40 (20)

The parameters α and β of these chirplet windows are obtained from (20), using

(9) and (10). The resulting complex time window (15) is shown in Fig. 12, which

depicts its real (top) and imaginary part (middle). It contains 40 elementary

chirplet windows, allocated in 40 contiguous 125 Hz bands, whose amplitudes315

in the frequency domain are represented in Fig. 12, bottom.

Fig. 13 depicts the spectrogram of the current of Fig. 10, obtained using this

complex analysing window. A single run of the STFT algorithm (5) generates

40 elementary spectrograms, in adjacent frequency bands, as shown in Fig. 13,

right. Each elementary spectrogram is located in the same frequency band320

as its chirplet window (Fig. 13, left). Fig. 14 shows an enlarged view of two

of these frequency bands. As the components of the complex window have

different rotation angles, each elementary spectrogram highlights the current

component with the same slope as the corresponding chirplet window. As the
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Figure 12: Complex time window used to generate the current spectrogram, real (top) and

imaginary part (middle). It contains 40 elementary chirplet windows, allocated in 40 contigu-

ous 125 Hz bands, whose amplitudes in the frequency domain are represented in the bottom

plot.

chirplet windows dictionary has been designed to divide the TF diagnostic region325

into 40 sections averagely (20), it is flexible enough to capture a wide range

of harmonic components, independently of their slope or their time position,

without any additional adjustment. It has to be noted that, to avoid the strong

leakage of the fundamental, this component has been extracted as in [85, 86]

(using a digital filter), and processed separately.330

All the elementary spectrograms shown in Fig. 13, right, are combined using

the rule (7), what generates a high resolution current spectrogram, depicted

in Fig. 15. It shows clearly the ridges of both the fundamental and the LSH

components. Second-order components generated by the fault are also displayed,

which helps get a more reliable diagnostic. Fig. 16 shows a 3D view of Fig. 15,335

to better display the TF trajectories of the current components.

For comparison purposes, the current spectrogram has also been obtained

using a single Gaussian window, with a parameter α given by (8), without any
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Figure 13: Current spectrogram of the faulty motor of Appendix A during the start-up

transient (right). It shows the 40 elementary spectrograms obtained in parallel, using the

single, complex time window of Fig. 12 (left).
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Figure 14: Enlarged view of two different frequency bands of the spectrogram shown in Fig. 13,

corresponding to elementary chirplet windows of slopes with different sign (left). The portions

of the spectrogram generated by these different elementary windows (right) highlight the

harmonic components with similar slopes in the TF plane.

Experimental

LSH

Figure 15: High resolution current spectrogram of the motor of Appendix A obtained with

the LOCS using the complex window of Fig. 12. The time needed to build it has been 12.68

seconds.

rotation, and it is shown in Fig. 17. The spectrogram obtained with the proposed

complex window (Fig. 15) improves clearly the visibility of the components340

ridges compared with Fig. 17, without increasing the computational cost. It
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Figure 16: 3D view of the high resolution spectrogram displayed in Fig. 15, showing the TF

trajectories of the current components.

takes 12.68 seconds to obtain Fig. 15, and 12.43 seconds to obtain Fig. 17,

practically the same.

One of the possible applications of the LOCS is the extraction of relevant

features in order to train and apply expert systems, such as deep learning neural345

networks or support vector machines. To this end, the spectrogram displayed in

Fig. 15 has been processed with the harmonic order tracking approach (HOTA)

described in [87], which reduces the 2D spectrogram of Fig. 15 to 1D plot that

displays the amplitudes of the harmonic components in the harmonic order

domain of the broken bar fault (Fig. 18, top). As only the harmonic components350

with an integer harmonic order are generated by the broken bar fault, the small

set of the eight amplitudes corresponding to the fault harmonics up to the

fourth order, plus the fundamental one (Fig. 18, bottom), extracts the relevant

information contained in the full spectrogram, and can be used as the input

features of automatic expert systems for fault diagnosis. Additional harmonics355

with non-integer harmonic index have been displayed in Fig. 18, bottom, to

facilitate the assessment of the fault.
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Figure 17: Traditional spectrogram of the analysed TF region, obtained using a single, non-

rotated Gaussian window with the same height-to-width ratio as the diagnostic region. The

ridges of the fault components are not clearly defined in this spectrogram, although the time

needed to build it has been 12.43 s, practically the same as the LOCS.

4.2. Application of the LOCS to detect a mixed eccentricity fault

For this experimental test, the IM of Appendix B has been used, with a

mixed eccentricity that has been provoked using eccentric rings as in [88, 89]. A360

motor whose characteristics are given in Appendix B has been endowed with an

artificially provoked mixed eccentricity fault, by replacing the original bearing of

the motor (see Fig.19.a) a new one (Fig. 19.d) with a smaller outer diameter and

a greater inner diameter. Besides, two precision eccentric machined steel rings

(Fig. 19.b and Fig. 19.c) have been used for adjusting the new bearing to the365

bearing housing (Fig. 19.b) and to the shaft (Fig. 19.c). The cylindrical surfaces

of both rings are eccentric, 0.4 mm in the case of the outer ring b, and 0.4 mm

in the case of the inner ring c. Fig. 19.e shows the new assembly mounted on

the shaft, obtaining in this way a rotor with a 30% of static eccentricity and a

30% of dynamic eccentricity.370

The measurement equipment used for this test is the same one used in Sec-

tion 4.1. The stator current has been acquired during a start-up transient (10
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Figure 18: Amplitude of the harmonic components in the spectrogram generated by the

LOCS (Fig. 15), represented in the harmonic order domain of the broken bar fault (top).

The eight amplitudes of the harmonics with integer harmonic index up to the fourth order,

the only ones generated by the broken bar fault, plus the fundamental component, have

been extracted (bottom). Additional harmonics with non-integer harmonic order have been

displayed to facilitate the assessment of the fault.

seconds), at a frequency rate fsamp = 5000 Hz.

The frequencies of the main fault harmonic produced by a mixed eccentricity

fault are (k = 1, p = 2 in Table 1)

fecc = f1 · (1±
1− s

2
) (21)

According to (21), a mixed eccentricity fault generates during the start-up

of a line fed IM (50 Hz) two main signatures, one increasing from 50 Hz to-375

wards 75 Hz and other decreasing from 50 Hz towards 25 Hz. Both of them

become horizontal components parallel to the supply frequency component at

steady state. Again, the ability to display this fault signature in the current

spectrogram constitutes a validation of the LOCS.

The frequency band of diagnostic interest has been chosen to be [0 - 125 Hz],380
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Figure 19: Rotor of the eccentric motor unit. Top, from left to right: a) original bearing, b)

external and c) internal eccentric rings, and d) new bearing. Bottom: e) mounted unit on the

shaft.

where the mixed eccentricity fault harmonics with a frequency given by (21) are

expected to show up, for f1 = 50 Hz. As the dimensions of the diagnostic TF

strip are the same as in Section 4.1, the complex window of Fig. 12 has been

reused to detect the eccentricity fault.

The current spectrogram obtained with the complex window of Fig. 12, de-385

picted in Fig. 20, shows with a high resolution the ridges of the fundamental and

the eccentricity related components. Moreover, second-order fault components

can also be observed in this spectrogram, which helps get a more reliable diag-

nostic. Fig. 21 shows a 3D view of Fig. 20, to better display the TF trajectories

of the current components.390

It is worth mentioning that the V-shaped characteristic signature of an in-

cipient rotor asymmetry can be also observed in this spectrogram, with a much

lower level than the one detected in the spectrogram of Fig. 15 (-35 dB instead
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Figure 20: High resolution current spectrogram of the eccentric motor of Appendix B obtained

with the LOCS using the complex window of Fig. 12.

Figure 21: 3D view of the high resolution spectrogram displayed in Fig. 20, showing the TF

trajectories of the current components.

of -20 dB). This fact is common in industrial machines, due to imperfections

in the process of cage manufacturing, and the capability of LOCS to detect it395
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shows that it can be applied also to the detection of incipient damages, such as

partial broken rotor bars.

The remarkable capability of the proposed approach to correctly display fault

harmonics with different slopes, generated by different, simultaneous types of

faults, under different types of transients, using a single time window, is due400

to the novel design of the LOCS. This is precisely one of the strengths of the

diagnosis of IMs using transient stator currents [58], obtained over a wide range

of rotor slip values: the ability to display the unique trajectories of the fault

harmonics in the TF plane. This enables their reliable identification even in case

of simultaneous faults, in spite of the presence of intersection points where these405

harmonics have the same instantaneous frequency. On the contrary, the analysis

of permanent stator currents assumes a single value of the slip, which may lead

to misdiagnosis if different harmonic components have the same frequency for

that slip value, as for example in the case of slow varying loads with the same

frequency as the bar breakage fault harmonics [90].410

It is also remarkable that the same complex window of Fig. 12 has been

used to detect different types of faults with different motors. This is due to

the flexibility of the proposed approach, which is able to identify many different

current components within a given TF area, thanks to the high number of

different chirplet windows that are included in the proposed complex analysing415

window.

It must be mentioned that the proposed approach may be difficult to apply to

the analysis of very short transients, as the start-up of unloaded low-power IMs

driving very low inertia loads [91]. In this case, the electromagnetic transient

and the border effects of the STFT at the beginning of the start-up transient may420

blur the fault harmonics during a great part or this transient, if it is very short.

This limitation is common to all linear time-frequency transforms. Nevertheless,

due to the flexibility of the LOCS, the fault harmonics are also clearly displayed

in stationary regime, as seen in Fig. 15 and Fig. 20. Besides, the combination

of elementary chirplets with a wide parameters range help reduce the border425

effect, as can be seen by a direct comparison of this effect in Fig. 15, with the
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LOCS, and in Fig. 17, which uses a single type of analysing window.

4.3. Comparison with related works

To further assess the validity of the proposed approach, it is compared in

this section with other methods proposed in the technical literature for the IM430

diagnosis based on the analysis of the transient stator current, the single-window

chirplet transform used in [46], the multi-window Gabor transform used in [61],

and the wavelet transform used in [34], the CCWT. These transforms have been

applied to generate the spectrogram of the current signal of the IM of Appendix

A with a broken bar fault, shown in Fig. 11, and their results will be compared435

with the spectrogram generated with the proposed approach, shown in Fig. 15.

Fig. 22 shows the spectrogram of the start-up stator current of the motor of

Appendix A with a broken bar, obtained with the chirplet transform proposed

in [46] using a single chirplet window. The time needed to build it has been

12.74 seconds, practically identical to the LOCS. This spectrogram shows with440

a high resolution the ascending part of the LSH, whose slope in the TF plane

matches the slope of the chirplet window used for the analysis. Nevertheless,

all the other harmonic components of the current appear blurred, because their

slope do not match the orientation of the chirplet window. To achieve the same

result than the LOCS, this method should be applied 40 times, each one with a445

different chirplet orientation, and the maximum value obtained for each point

of the TF should be selected for the final spectrogram. This would increase the

time needed with this approach up to more than 500 seconds, that is, over 40

times the time needed by the LOCS.

Fig. 23 shows the spectrogram of the start-up stator current of the motor450

Appendix A with a broken bar, obtained with the multi-band Gabor transform

proposed in [61] using multiple Gaussian windows stored in different bands of a

single complex time window. The time needed to build it has been 13.35 seconds,

practically identical to the LOCS. Nevertheless, due to the fixed orientation of

the Gaussian windows used in [61] (only the aspect ratio of this type of window455

can be adjusted), the trajectories of the fault harmonics in Fig. 23 lack the
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Figure 22: Spectrogram of the current of the motor of Appendix A with a broken bar obtained

with the chirplet transform proposed in [46] using a single chirplet window. The time needed

to build it has been 12.74 seconds.

resolution obtained in Fig. 15, where the added degree of freedom of the chirplet,

its orientation, allows for a better matching between the analysing windows and

the slopes of the harmonic components of the current.

Fig. 24 shows the scalogram of the start-up stator current of the motor460

Appendix A with a broken bar, obtained with the CCWT proposed in [34].

This scalogram, which has been generated using the ’Wavelet Analyzer’ toolbox

available in Matlab, displays the modulus of the complex coefficients obtained

when applying the CCWT using as analysing mother wavelet the derivative of

a Gaussian (DOG) of order 8, with 400 scales. The scalogram displays correctly465

the LSH, but fails to display any other current harmonics components, except

the fundamental one.

5. Conclusions

A novel technique for obtaining a locally optimized chirplet current spec-

trogram, the LOCS, has been proposed and tested in this work. It consists of470
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Figure 23: Spectrogram of the current of the motor of Appendix A with a broken bar,

obtained with the multi-band Gabor transform proposed in [61], using multiple Gaussian

windows stored in different bands of a single complex time window. The time needed to build

it has been 13.35 seconds.

a two-step process: first, a suitable dictionary of chirplet windows is built, by

rotating a base Gaussian window to divide the TF plane averagely; and, second,

all these dictionary windows are stored in a single complex window in the time

domain, using non-overlapping, adjacent frequency bands. A single STFT with

this novel complex time window generates in parallel the spectrograms corre-475

sponding to all the elementary chirplet windows, allocated in separated spectral

bands, what avoids the need of applying the STFT to each chirplet window in

the dictionary and reduces the computational cost. The locally optimized value

of the current spectrogram is obtained as the maximum value among all the

elementary spectrograms for each time and frequency points. Moreover, once480

designed, this complex time window can be reused for the analysis of the diag-

nostic region with different machines or with other types of faults. The LOCS

has been tested in this work with a motor with a bar breakage and another with

mixed eccentricity. Compared with equivalent works, which built a different
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Figure 24: Scalogram of the current of the motor of Appendix A with a broken bar, repre-

senting the modulus of the complex coefficients obtained when applying the CCWT with a

DOG analyzing mother wavelet of level 8, and 400 scales. The scalogram displays the LSH,

but fails to display any other current harmonics components, except the fundamental one.

spectrogram for each window from a dictionary, the proposed LOCS generates485

the same high-resolution spectrogram in a fraction of 1/40 of the total time, in

the case of the motors analysed in this work.

The application of LOCS to the diagnosis of other types of faults, such as

interturn short circuits, is currently being developed. Another line of research

is the use of LOCS for extracting relevant features from the TF representation490

of the transient stator current that can be used for training neural networks,

support vector machines and other automated expert systems.
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Appendix A. Rated characteristics of motor A

Three-phase induction machine. P = 1.1 kW, U = 230/400 V, I = 2.7/4.6

A, f = 50 Hz, n = 1410 r/min, cosφ = 0.8.495

Appendix B. Rated characteristics of motor B

Three-phase induction machine. P = 4 kW, U = 230/400 V, I = 4.65/8.06

A, f = 50 Hz, n = 1426 r/min, cosφ = 0.85.
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