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Abstract—Induction machines are essential components of
many industrial installations and, therefore, their faults must be
detected early. Fault detection using current spectrum analysis
is attracting an increasing interest as a condition-based moni-
toring technique. However, its use to detect rotor asymmetries
in high-power induction machines, which operate at very low
slip, is particularly challenging, due to the closeness of the
characteristic fault harmonics to the fundamental component,
separated only a few mHz. Their reliable detection in harsh
industrial environments requires a very high spectral resolution,
that is, long acquisition times and a huge number of current
samples, what hinders its implementation on embedded, on-
line devices with limited computing resources. To address this
problem, this paper presents a novel combination of diagnostic
techniques, the use of the rectified current as diagnostic signal,
and the Goertzel algorithm as signal processing tool. This unique
combination allows for an optimized implementation ot the
Goertzel algorithm, which provides a high spectral resolution
in the full load range of the machine, with a low computational
cost and a negligible memory footprint. This proposal is validated
experimentally with the fault diagnosis of a high-power medium-
voltage industrial motor.

Index Terms—Condition monitoring, Goertzel algorithm, in-
duction machines, spectral analysis.

I. INTRODUCTION

INDUCTION machines (IMs) are prevalent in industrial
processes, mainly due to their reliability and low main-

tenance. For that reason, IM faults can cause unanticipated
and costly stops of production lines [1]. Therefore, there
is a growing interest in the development of condition-based
monitoring (CBMs) methods that are able to detect IM faults
on line [1], to avoid the sudden stop of IM powered industrial
processes [2].

Motor current signature analysis (MCSA) has become a
successful technique for diagnosing IM failures, as it is non-
invasive and its implementation requires low hardware and
software resources [3], [4]. Besides, MCSA can identify the
current components corresponding to multiple types of faults,
even if they are simultaneous.
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One of the most common types of IM faults is rotor
asymmetries, that is, rotor bar and end-ring breakages, or
asymmetrical resistances of the rotor windings [5]. They can
be produced by a mismatch in the phase windings of wounded
rotor IMs, such as doubly-fed induction generators (DFIGs), or
by poorly manufactured rotor cages of squirrel cage induction
motors (SCIMs), which may lead to rotor breakages due to
the high mechanical and thermal stresses that the rotor cage
supports, specially in the start-up process. Fig. 1 shows the
rotor cage of the high-power (3.15 MW) SCIM used for the
validation of this work, with a broken bar fault.

Fig. 1. Motor of Appendix A (3.15 MW), with a broken bar fault.

Broken rotor bars, broken end-rings, or asymmetrical re-
sistances of rotor windings, induce in the stator current an
amplitude modulation, with a set of characteristic frequencies
given by [6], [7]

fasym = 2ksf1, k = 1, 2, . . . , (1)

where f1 is the supply frequency, and s is the rotor slip.
The stator current of the IM with a rotor asymmetry can be
approximated, using (1), as

i(t) = I cos(ω1t) ·
(
1 + β cos(2πfasymt)

)
, (2)

where ω1 = 2πf1, I is the amplitude of the fundamental cur-
rent component, and β is the amplitude of the fault component,
in per-unit of the fundamental one. In case of incipient faults
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this factor can be very small (β ≪ 1), less than β = 1/200
for partially broken cage bars [2].

The amplitude modulation given by (2) results in sideband
fault components symmetrically located around the fundamen-
tal component, at frequencies

fbb = f1 ± fasym = f1 ± 2ksf1 k = 1, 2, . . . (3)

If only the main fault components are considered, those
with harmonic order k = 1 in (1), these sideband components
appear at a distance 2sf1 from the fundamental, as

i(t) = I
(
cos

(
ω1t

)
+

β

2
cos

(
ω1(1± 2s)t

))
. (4)

The direct use of (4) for the diagnosis of rotor asymmetries is
especially challenging for large IMs [8], inverter fed IMs [9],
or small IMs with light loads [8], [10]. In these cases, the rotor
slip s can be extremely low and, therefore, the distance 2sf1
can be very small. For example, the 3.15 MW IM tested in this
work (see Appendix A) has a rated slip of just sn = 0.006, and
a distance of just 0.6 Hz between the fundamental and the fault
components at rated load. A so tiny spectral distance poses
severe difficulties for the successful application of MCSA [10]:

• To achieve such a high spectral resolution (∆f ), in the
range of hundredths of a hertz, long sampling times are
required [11], because it is the inverse of the acquisition
time Tacq , that is, ∆f = 1/Tacq . Another requirement
for the practical implementation of MCSA is to avoid
aliasing artifacts, which can make the fault harmonics
appear at non-realistic frequencies. This problem can be
solved with analog anti-aliasing filters [12]. Nevertheless,
as modern low cost analog-to-digital converters (ADCs)
can operate at very high speed, it is common to sample
the current with a very high frequency, followed by a
digital low pass filter. The combination of a high sample
rate and long acquisition times produces a large number
of current samples. For the motor used in this work (see
Appendix A), an acquisition time of Tacq = 100 s is
needed to obtain a resolution of 0.01 Hz. As a sampling
frequency fs = 5000 Hz has been used, this gives a total
number of Ns = Tacq ·fs = 100·5000 = 500000 samples,
which must be stored and processed with the fast Fourier
transform (FFT). In case of low cost, embedded devices,
such as field programmable gate arrays (FPGAs) or digi-
tal signal processors (DSPs), this considerable computing
burden and memory footprint hampers its use for the
fault diagnosis of high power induction machines [7],
[13]. Moreover, a growing trend is to add fault diagnostic
capabilities to variable speed drive (VSD) controllers
or to programmable logic controllers (PLCs) [14], what
requires using the least possible resources of the con-
troller to avoid disturbing its normal operation. Besides,
diagnostic data must be sent to servers, which makes it
necessary to reduce the volume of data transmitted for
lower communication costs.

• This high spectral resolution is only needed in a very
narrow spectral band, just 1.2 Hz in the case of the
experimental motor of Appendix A. Therefore, from a
diagnostic perspective, practically the whole spectrum

obtained with the FFT is discarded, because it covers the
range [0-fs/2] ([0 - 2500 Hz] in the experimental case).

• The position of this narrow diagnostic band is not con-
stant but is centred on the fundamental frequency.

• The leakage produced by the fundamental component can
hide the fault harmonics at so a small distance, making
them undetectable, and giving a misdiagnosis.

This challenge is particularly important in case of large,
medium voltage (MV) induction motors, such as the one
considered in this paper, whose unexpected breakdown can
cause extraordinary economic losses, well beyond their high
repair expenses [15]. As these motors have very high starting
currents, they are started usually with a reduced voltage, with
a limited torque. This results in long starting times, with a
reduced cooling ability and high bar currents, which produces
high thermal and electrical stresses in the rotor cage. As these
motors typically have more rotor bars than small machines,
an added difficulty is that the flux imbalance generated by
a single bar breakage, and therefore its signal-to-noise ratio,
is much lower, making it difficult to detect the fault [16].
Besides, as these MV large-sized motors have lower per-unit
stator and rotor resistances and a higher rated efficiency than
low-voltage small motors [15], their rated slip is very low.
These characteristics make the application of MCSA to MV
induction motors a challenging task.

Therefore, the problem to solve is how to obtain the fault
harmonics generated by rotor asymmetry IM faults with a high
spectral resolution, but with a reduced computational cost, and
a minimal memory and code footprint. This problem has been
addressed using diverse methods in the recent literature. As the
FFT is the main signal processing technique used for obtaining
the spectral content of the IM current, different works are
aimed towards reducing its computational burden. The zoom-
FFT (ZFFT) [7], [17] can increase the accuracy within a given
frequency range, with a reduced sampling frequency. The
ZFFT consists in a frequency translation of the current signal,
using a digital complex mixer, followed by a decimation stage
with an anti-aliasing low-pass filter, which reduces the required
number of samples. This reduces the computational cost of the
final FFT stage [7] while keeping the same time acquisition
period and frequency resolution. The implementation of ultra-
long FFT using dedicated hardware has also been considered
in [18], [19]. Other techniques propose the computation of the
Fourier transform (FT) of the current in real-time, as in [20],
where the variation of the leakage effect produced by a broken
rotor bar is measured in a small time window, using the sliding
window discrete Fourier transform (SDFT).

A different line or work is to avoid the use of the FFT. It
has been done using multiple signal classification (MUSIC)
[21] methods, or estimating signal parameters via rotational
invariance technique (ESPRIT) [22]. Other authors propose
instead performing the fault diagnosis of IMs in the time
domain, using an histogram of oriented gradients in [23], or
the analysis of quaternions in [24]. In [15], a combination of
frequency and time domain features, extracted from a Hall
sensor installed between two stator coils, has been used a an
input for intelligent classifiers, able to detect a broken bar fault
at very low slip with a short acquisition time.
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A common problem of the aforementioned techniques is the
difficulty of implementing them in low-cost processors, due
to their complexity of their code or hardware, or due to their
computing time or memory burden. To solve these limitations,
new techniques with a minimal footprint, in terms of code
simplicity, memory usage, and latency, are needed.

In fact, there is an alternative approach to apply MCSA to
induction machines at very low slip without using the FFT,
followed in this paper. It is based on the Goertzel algorithm
[25], which is able to compute directly a set of spectral
components of the machine current. If this set is very small,
its computational cost is much lower than the FFT of the
whole current signal. The Goertzel algorithm has been used
for obtaining only the fault harmonics of a permanent magnet
synchronous generator in [26], using a bank of filters with a
sampling frequency of 1 MHz, of an IM with bearing faults
in [27] and with broken bars in [28]. Nevertheless, in these
works, the exact position of the fault harmonics must be known
before applying the Goertzel algorithm, which may result in
misdiagnosis in case of small frequency deviations. Besides,
in case of a broken bar fault, the current signal must be
windowed to avoid the fundamental leakage, which requires
storing the whole current signal, as in [28], [29]. These
problems are addressed in [30], which avoids the storage of the
current signal by windowing it in the frequency domain, and
extends the calculation of the spectral components to narrow
disjoint frequency bands, to avoid missing the fault harmonics.
Nevertheless, the positions and widths of these bands vary with
the load of the motor, which makes its application difficult.
Besides, in [30] complex number arithmetic is used, which
results in high computing and storage costs.

This paper addresses these problems, proposing a unique
combination of two diagnostic techniques. On the one hand,
the use of the rectified current signal, as in [31], which
allows to define a single diagnostic band that covers the
whole load range, to halve its width, and to translate its lower
frequency to zero frequency. On the other hand, the use of the
Goertzel algorithm, implemented using real number arithmetic
as in [26], but applied only to the frequency bins of the
diagnostic band with minimum leakage, what eliminates the
need of storing and windowing the full current signal. The
combined use of the rectified current signal and the optimized
implementation of the Goertzel algorithm produces a high
resolution current spectrum in the full load range of the IM,
with a negligible memory and code footprint and a reduced
computational burden, what enables its implementation in on-
line low-cost embedded devices, such as FPGAs and DSPs, or
in modern smart sensors, mounted on the machine framework.

This paper is structured in the following way. Section II
presents the use of the rectified current signal for shifting the
signature of the asymmetry fault to a low frequency spectral
band and for halving its bandwidth. Section III presents the
optimization of the Goertzel algorithm to generate a high
resolution spectrum of this band with a low computational
burden. In Section IV the proposed technique is experimentally
validated with the diagnosis of a broken bar fault in a high
power industrial IM. Finally, Section V presents the conclu-
sions.

II. NARROW-BAND FREQUENCY ANALYSIS OF THE
RECTIFIED CURRENT SIGNAL

The first step of the proposed approach consists in fixing
the position of a narrow diagnostic frequency band that covers
the whole load range, and halving its width. This solves the
problem of missing the fault harmonics in case of frequency
deviations, when their frequencies are the only ones computed,
as in [26]–[28], and also eliminates the need of analysing
disjoint narrow frequency bands that may contain the fault
harmonics, whose position and width is load dependent, as in
[30]. This step is done by rectifying the current signal before
spectral analysis, either by using a hardware rectifier or by
changing the sign of the negative current samples, as in [31].

As mentioned in Section I, the main fault harmonics in
(4) can be very close to the fundamental frequency for low
slip values, just 2sf1 apart. Therefore, for an IM with a low
rated slip sn, the frequency band of diagnostic interest, where
the fault harmonics are expected to show up, has a very
small width. Assuming that large induction motors operate at
frequencies equal or lower than their rated one, fn, and taking
into account (1), the width of this diagnostic frequency band
can be established as FS = 4snfn, with FS ≪ fn ≪ fs.
Therefore, only a narrow-band spectral analysis is needed.
Unfortunately, the spectrum obtained with the FFT covers the
full spectral range [0 - fs/2] Hz, thus wasting most of the
calculated frequency bins. An additional problem is that this
narrow band is centred around the fundamental frequency f1,
thus its position depends on the value of f1. To solve these
problems, the band where the fault harmonics are expected to
show up is first translated to the origin, and, at the same time,
its width is halved, FS = 2snfn, using the rectified current
signal, as in [31].

The expression of the rectified current signal in a faulty IM
can be obtained as the product of the current signal (2) and
its sign, as

|i(t)| = i(t) · sgn
(
i(t)

)
= i(t) · sgn

(
cos(ω1t)

)
, (5)

where sgn(·) stands for the sign function [31]

sgn(x) =

 1, if x > 0
0, if x = 0
−1, if x < 0

. (6)

The square signal given by the expression sgn(cos(ω1t)) in
(5) can be expressed as

sgn(cos(ω1t)) =
4

π

∞∑
h=1,3,5,..

[ sin(hπ
2 )

h
cos(hω1t)

]
. (7)

and, substituing (7) in (5) gives

|i(t)| = 4I
π

(
1
2 + β

2 cos(2π(2sf1)t)+

+
∑∞

h=3,5,..

[
sin(hπ

2 )

h cos(hω1t)×
(
cos(ω1t)+

+β
2 cos(ω1(1± 2s)t)

)])
.

(8)
In the expression of the rectified current signal (8) three

terms appear: a direct current (DC) term, 2I
π , a low fre-

quency component corresponding to the main fault harmonic
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2βI
π cos(2π(2sf1)t), and a set of high frequency harmonic

components, centred around f1, 2f1, 3f1, . . . This structure of
the rectified current signal of a faulty IM has an important
benefit from a diagnostic perspective: the signature of the
rotor asymmetry fault in (8) is a single fault component, at
a low frequency of 2sf1, instead of the two fault harmonics
at frequencies f1 ± 2sf1 in (4). Therefore, for a motor with
a rated slip sn, the frequency band of diagnostic interest is
[0 - 2snfn], instead of the frequency band [fn(1 − 2sn) -
fn(1+2sn)] that must be scanned when analysing directly the
non-rectified current signal. Besides, this band starts always at
the origin, independently of the fundamental frequency.

The rectification process generates an additional 4
π factor

in (8), compared with (4). Nevertheless, the amplitude of the
fault harmonic at frequency 2sf1 in (8) is expressed in dB as

î(2sf1)
∣∣∣
dB

= 10 log

∣∣̂i(2sf1)∣∣2∣∣̂i(0)∣∣2 = 20 log
β

2
, (9)

where î(f) stands for the FT of |i(t)|. This eliminates the
influence of the additional 4

π factor.

III. OPTIMIZED IMPLEMENTATION OF THE GOERTZEL
ALGORITHM APPLIED TO THE RECTIFIED CURRENT

SIGNAL

Only a narrow-band of frequency width [0 - 2snfn] of
the rectified current is needed to detect the rotor asymmetry
fault in an IM with rated slip sn. Nevertheless, the FFT
computes the frequency bins in the whole range [0 - fs/2]
(fs >> 2snfn), so wasting the results obtained outside this
diagnostic band. In this work, the Goertzel algorithm is used
for computing only the spectrum band of diagnostic interest,
and its implementation is optimized to calculate only of the
frequency bins with minimum spectral leakage, to avoid the
storage of the current signal, and to use only real number
arithmetic, which help achieve a negligible memory footprint.

A. The Goertzel Algorithm

The diagnostic process begins with the acquisition of the
current signal. The machine current, i(t), is sampled during
an acquisition time Tacq at a rate fs, and its absolute value is
taken, what gives a time-series of N = Tacq · fs current sam-
ples |i[n]|, with the time-index n = 0, . . . , N−1. The N-point
discrete Fourier transform (DFT) of |i[n]| gives a frequency-
series, î[k], with the frequency-index k = 0, . . . , N − 1. Its
kth bin is given by

î[k] =

N−1∑
n=0

e−j2πnk/N |i[n]|. (10)

The FFT is a block algorithm that is able to compute the
N points of the DFT (10) in a very effective way. On the
contrary, the Goertzel algorithm is able to compute a single
output of this N-point DFT. It can be implemented using a
second-order infinite impulse response (IIR) filter, as depicted
in Fig. 2. Its z-domain transfer function is

HG(z) =
1−

(
e−j2πk/N

)
· z−1

1− 2 cos(2πk/N) · z−1 + z−2
(11)

+

2 cos(2πk/N)

−1

z−1

z−1

−e−j2πk/N

+|i[n]| î[k]

Recursive Non recursive

v[k]

v1[k]

v2[k]

Fig. 2. IIR filter that implements the Goertzel algorithm, applied to the
rectified current signal.

The value of k in (11) and in Fig. 2 can be any value
between 0 and N − 1, and is not restricted to integer values
[32]. Therefore, (11) gives full flexibility in specifying the
frequencies of the bins to be calculated with (11), by adjusting
its resonant frequency.

From Fig. 2, it can be seen that the Goertzel algorithm
has a recursive part (Fig. 2, left), which must be processed
with every current sampled, and thus implemented N times,
plus a feed forward part (Fig. 2, right), which needs only be
computed after the last current sample has been processed. The
present work takes advantage of this structure for proposing
the following optimizations, to reduce to a minimum the
computing effort and the memory footprint of (11).

B. Optimized Selection of the Frequency Bins Computed with
the Goertzel Algorithm

The frequency bins of the rectified current spectrum with
diagnostic interest for an IM with rated slip sn, and rated
supply frequency fn, belong to the frequency band [0 - 2snfn].
Within this band, the frequency bins with the lowest leakage
from the fundamental component are selected to be processed
with (11). The process of sampling the rectified current during
a limited acquisition time, Tacq , can be modelled as the
product of a current signal of infinite duration |i∞(t)| and
a rectangular time window of length Tacq , as

|i(t)| = |i∞(t)| · rectTacq
(t). (12)

Therefore, the FT of the rectified current can be obtained,
using the convolution theorem, as the convolution of the FTs
of these two functions,

F(|i(t)|) = F(|i∞(t)|) ∗ F(rectTacq
), (13)

where the symbol ’*’ stands for the convolution operation.
The FT of a rectangular window is a sinc function. Therefore,
as the fundamental component of the current has been dis-
placed to the origin by the rectification process, its leakage at
any frequency can be expressed from (13) as the sinc function
centred at the origin [8], given by

F(rectTacq
) = sinc(f · Tacq) =

sin(πf · Tacq)

πf · Tacq
. (14)



5

The leakage generated by the fundamental component is null
at the zeros of the sinc function (14), given by the expression

πf · Tacq = k · π =⇒ f =
k

Tacq
= k ·∆f k = 0, 1, . . . ,

(15)
where ∆f = 1/Tacq = fs/N is the frequency resolution

achieved with an acquisition time Tacq . Nevertheless, as the
width of the frequency band of diagnostic interest is limited
to 2snfn, the maximum value of k needed in (15), kmax, is
given by the condition kmax ·∆f ≥ 2snfn, that is

kmax = ceil
(2snfn

∆f

)
= ceil

(
2snfnTacq

)
, (16)

where ceil(x) is the ceiling function, which maps x to the
least integer greater than or equal to x.

Combining (15) and (16), the Goertzel algorithm is com-
puted only at the frequency bins within the diagnostic band
with minimum leakage from the fundamental (see Fig. 3),
located at frequencies

f = k ·∆f k = 0, 1, . . . , kmax. (17)

For example, for the motor considered in Appendix A

0 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f k
max

f

Frequency (Hz)

-350

-300

-250

-200

-150

-100

-50

0

M
a

g
n

it
u

d
e

 (
d

B
)

Fig. 3. Spectral leakage generated by the fundamental component of the
rectified current signal, located at the origin, and frequency bins selected
for calculating the Goertzel algorithm (black dots in the frequency axis), the
ones with the lowest leakage. In this plot, ∆f = 1/Tacq and kmax =
ceil(2snfn/∆f)(16).

(sn = 0.006, fn = 50 Hz), and with an acquisition time
Tacq = 100 s, the maximum value of k would be, using (16),
kmax = 60. Therefore, just 61 frequency bins are needed to
be processed and stored for diagnostic purposes, much less
than the 500000 frequency bins generated by the FFT of the
current signal (with a sampling rate fs = 5000 Hz).

It is worth mentioning that obtaining the exact position of
the frequency bins with a minimum spectral leakage, as given
by (17), has been possible thanks to the rectification process,
which translates the position of the fundamental component
to zero-frequency. The exact location of the leakage-free
frequency bins is, in general, not possible for the original,
non-rectified current signal, due to the uncertainty on the exact
value of its fundamental frequency, where a small error (in the
range of the mHz) can cause a huge increase of the spectral
leakage [8].

C. Optimized Implementation of the Recursive Part of the
Goertzel Algorithm

The recursive part of the Goertzel algorithm (Fig. 2, left)
must be computed for each of the rectified current samples
|in|, with n = 0, . . . , N−1, and for each of the desired output
frequency bins î[k], with k = 0, . . . , kmax (17). This part of
the Goertzel algorithm be formulated in a recursive way as

v2[k] = v1[k]

v1[k] = v[k]

v[k] = v1[k] · 2 cos(2πk/N)− v2[k] + |in|
(18)

where v[k] is a buffer of intermediate results, and v1[k] and
v2[k] are memory buffers used to store the content of v[k] in
the previous recursions, as depicted in Fig. 2.

To optimize the memory footprint, (18) is applied as soon
as a new current sample in is available from the signal ac-
quisition system, and after computing (18) this current sample
is discarded. This is possible because the current signal must
not be windowed to eliminate the fundamental leakage, thanks
to the choice of frequency bins made in Section III-B, and
eliminates the need for storing the N samples of the current
signal (N = 5 · 105 in the case of the motor tested in this
work). Nevertheless, this approach limits the time available
for computing (18) to the time interval between consecutive
current samples (∆t = 0.2 ms with the 5 kHz sampling rate
used in the experimental tests). To reduce the computation time
of (18), the factors 2 cos(2πk/N) are pre-calculated and stored
in a memory buffer, what reduces the number of operations
per current sample to a single real multiply and two real adds.
In this way, the total memory storage needed to implement the
optimized recursive part of the Goertzel algorithm, including
the twiddle factors 2 cos(2πk/N), is 4(kmax+1) floating point
numbers, and the total number of operations is (kmax + 1)
real multiplies and 2(kmax + 1) real adds per current sample
(kmax = 60 in the case of the motor tested in this work).

D. Optimized Implementation of the Feed Forward Part of the
Goertzel Algorithm

The feed forward part of the Goertzel algorithm (Fig. 2,
right) gives the final, complex value of the kth output bin,
after iteration N , as

î[k] = v[k]− ej2πk/N · v1[k]. (19)

Nevertheless, for diagnostic purposes, only the modulus
squared of the Goertzel algorithm output is needed, according
to (9), which can be calculated from (19) as [26]

|̂i[k]|2 =
(
v[k]− v1[k] cos(2πk/N)

)2
+
(
v1[k] sin(2πk/N)

)2
=

= v[k]2 + v1[k]
2 − 2 cos(2πk/N) · v[k] · v1[k]

(20)
Using (20), the diagnostic output, in dB scale, is given by∣∣̂i[k]∣∣dB = 10 log

|̂i[k]|2

|̂i[0]|2
. (21)

Optimizing the calculation of the feed forward part of the
Goertzel algorithm for diagnostic purposes as (20) has two
advantages:



6

• The result of (20) is a real number, not a complex one.
Therefore, its computation can be performed in place,
using for storing the Goertzel algorithm output the same
memory buffer as for v[k], whose values are discarded
after the computation. That is, without increasing the
memory footprint optimized for the recursive part of the
Goertzel algorithm.

• The multiplication by the twiddle factors 2 cos(2πk/N)
in (20) can reuse these factors, stored in the pre-calculated
buffer used in the recursive part of the Goertzel algorithm,
thus reducing the computational cost of (20) to 4 real
multiplications and 3 real additions per output bin.

For comparative purposes, the first-order Goertzel algorithm
proposed in [30] for fault diagnosis of IMs uses complex
arithmetic, requiring four real multiplications and two real
additions per current sample and per output bin, rather than
one real multiplication and two real additions as in the
proposed approach. Besides, all the memory buffers must store
complex numbers, what duplicates the memory footprint of
the method proposed in this work. Finally, it is applied to
the current signal, not the rectified one, so it requires spectral
filters to avoid the spectral leakage of the supply component.

E. Flowchart of the Optimized Diagnostic Goertzel algorithm

Combining (16), (18), (20) and (21), the flow chart of the
proposed method is depicted in Fig. 4.

IV. EXPERIMENTAL VALIDATION

To validate experimentally the proposed method, a large
squirrel cage motor (6 kV, 3.15 MW, grid connected), whose
characteristics are given in Appendix A, has been tested,
directly fed from a 50 Hz power line. It drives a low pressure
pump and a high pressure pump in a thermal power plant-
heating plant (TPP-HP), as seen in Fig. 5. This motor had a
broken bar, detected by the proposed approach, and confirmed
with the rotor dismounted, as seen in Fig. 6.

The stator current is shown in Fig. 7. It was acquired at
a rate of 5 kHz, during an acquisition time of Tacq = 100 s,
giving N = 5·105 current samples. During this test, the motor
was partially loaded, running at a constant speed of 2994.6
rpm (s = 0.0018), and the measured supply frequency was
f1 = 49.98 Hz. Applying (1) and (4), the expected frequencies
of the three first fault components are given in Table I.
Additionally, the current signal depicted in Fig. 7 contains
other components generated by electromagnetic noise, and
by the non-ideal character of the machine, as seen in the
enlarged view of Fig. 7. The proposed method is validated
in the presence of these additional harmonic components,
unavoidable in industrial machines.

The conventional spectrum of the current, shown in Fig. 8,
has been obtained using a Hanning window. The theoretical
broken bar fault harmonics calculated in Table I, second row,
around the supply frequency, appear clearly in this spectrum,
what indicates a the broken bar fault, confirmed by visual
inspection. Nevertheless, the memory requirement for this FFT
of 5·105 samples is, at least, 3·5·105 double precision floating
point numbers [33], that is, 11.72 MB of memory storage.

Start

Read |in|

n = n+ 1

v2[k] = v1[k]

v1[k] = v[k]

v = v1 = v2 = n = 0

v[k] = v1[k] · cos(2πk/N)− v2[k] + |in|

k = 0

k = k + 1

True

î[k]2 = v[k]2 + v1[k]
2 − 2 cos(2πk/N) · v[k] · v1[k]

î[k]
∣∣
dB

= 10 log î[k]2

î[0]2

End

k = 0

k = k + 1

k < kmax?
True

False

False

k < kmax?

n < N?
True

False

Fig. 4. Proposed implementation of the optimized Goertzel algorithm. Its
recursive part is executed upon the arrival of each new rectified current sample,
and is implemented using a real multiplication and two real additions per bin.
The final output computes directly the modulus squared of each bin, which
avoids the use of complex numbers. This algorithm is applied only at the bins
with the lowest leakage generated by the supply component in the diagnostic
frequency band [0 - 2snfn], given by (17).

Fig. 5. IM tested with the proposed technique (see Appendix A), operating
in a thermal power plant-heating plant (TPP-HP).
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Fig. 6. Rotor of the tested 3.15 MW IM (left), and close-up view of the
broken bar (right).
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Fig. 7. Current signal obtained while the motor is partially loaded, at a
constant speed of 2994.6 rpm (s = 0.0018). The enlarged view shows that,
in addition to the fault components generated by the rotor asymmetry, this
signal contains other components generated by electromagnetic noise, and by
the non-ideal character of the machine.
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Fig. 8. Conventional spectrum of the experimental current signal of Fig. 7,
using a Hanning window for reducing the spectral leakage. The broken bar
harmonics calculated in Table I, second row, around the supply frequency,
can be detected in this spectrum, which is an assessment of the broken bar
fault, confirmed by visual inspection.

TABLE I
THEORETICAL FREQUENCIES OF THE BROKEN BAR FAULT HARMONICS IN

THE TEST AT A CONSTANT SPEED OF 2994.6 RPM

Fault harmonic order k 1 2 3

fasym = 2ksf1 (3) 0.18 Hz 0.36 Hz 0.54 Hz

fbb = f1 ± fasym (4)
49.8 Hz 49.62 Hz 49.44 Hz
50.16 Hz 50.34 Hz 50.52 Hz

The proposed technique has been applied subsequently to
obtain the spectrum of the rectified current signal of Fig. 7.
This motor (see Appendix A) has a rated speed of 2982 rpm,
(sn = 0.006) and a rated frequency of fn = 50 Hz. Therefore,
the algorithm of Fig. 4 has been applied to compute kmax +
1 = 61 (16) frequency bins in the narrow spectral band [0 -
2snfn] = [0 - 0.6] Hz, shown in Fig. 9 (hollow circles).
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Fig. 9. Spectrum of the experimental rectified current signal of Fig. 7,
generated with the optimized Goertzel algorithm (Fig. 4). The theoretical
broken bar fault harmonics calculated in Table I, first row, can be detected in
this spectrum, what is an indication of the broken bar fault, confirmed later by
visual inspection. The circles mark the 61 points calculated by the optimized
Goertzel algorithm of Fig. 4.

A direct comparison between the spectrum generated with
the classical FFT approach (Fig. 8), and with the proposed
approach (Fig. 9), indicates that the broken bar fault har-
monics are displayed correctly in both spectra. Nevertheless,
the memory needed to implement the proposed algorithm is,
as indicated in Section III-C, 4(kmax + 1) = 244 double
precision floating point numbers (1952 bytes), that is, less
than 2 kB. This represents a 6000-fold reduction compared
with the classical FFT approach (11.72 MB). Besides, the
peaks of the fault harmonics in Fig. 9 (without multiplying
i(t) by any window) are sharper than those in Fig. 8 (with a
Hanning window), because the smearing effect of the window
in the frequency domain is avoided. Finally, the results of the
proposed approach are available right after the last current
sample has been read, while the FFT approach must wait to
fill the whole buffer of current samples before proceeding. As
for the computing requirements, only (kmax + 1) = 61 real
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multiplies and 2(kmax + 1) = 122 real adds are needed per
current sample with the optimized Goertzel algorithm.

To further validate the proposed technique, it has been
applied to the same motor in steady regime with three dif-
ferent loads, shown in Table II. The spectra generated by the
proposed method (Fig. 4) in the tests described in Table II
are depicted in Fig. 10, and show the fault harmonics at the
theoretical frequencies predicted by (1). The circles in Fig. 10
mark the 61 points calculated by the algorithm of Fig. 4 in
each test.

TABLE II
THEORETICAL FREQUENCIES OF THE ROTOR BROKEN BAR FAULT

HARMONICS IN THREE TESTS WITH DIFFERENT LOAD LEVELS

Test no. n s f1 2sf1 4sf1

1 2996.7 rpm 0.0011 49.97 Hz 0.11 Hz 0.22 Hz
2 2995.2 rpm 0.0016 49.99 Hz 0.16 Hz 0.32 Hz
3 2994.3 rpm 0.0019 49.99 Hz 0.19 Hz 0.38 Hz

A. Computing Times and Resources

The proposed algorithm has been implemented on a low-
cost ESP32-DEVKIT-V1 development board, whose charac-
teristics are given in Appendix B. As the sampling frequency
used in this work is fs = 50 Hz, the interval between
consecutive current samples (∆t = 0.2 ms) limits the total
time available for computing the recursive part of the Goertzel
algorithm of Fig. 2, the inner loop of Fig. 4. This total time per
current sample, as well as the time of the non-recursive step
of algorithm of Fig. 2, have been measured and are reported
in Table III. Besides, as the power consumption depends on
the CPU clock frequency (see Appendix B), which can be
selected in this board from 80 MHz to 240 MHz, the time
measurements have been obtained for three different CPU
frequencies (80, 160 and 240 MHz).

TABLE III
COMPUTING TIMES OF THE PROPOSED METHOD IN THE

ESP32-DEVKIT-V1 DEVELOPMENT BOARD OF APPENDIX B, RUNNING
AT DIFFERENT CPU CLOCK RATES.

CPU clock Recursive part, for Non-recursive part
rate each current sample (one execution)

80 MHz 13.8 µs 259.1 µs
160 MHz 6.8 µs 132.3 µs
240 MHz 4.8 µs 91.1 µs

From the results presented in Table III it can be seen
that, even using the lowest CPU frequency clock (80 MHz)
for energy savings purposes, the computing time per current
sample of the proposed method (13.8 µs) is much lower than
the available time between current samples (200 µs), which
represents a very low computational burden, along with the
minimal memory usage (1952 bytes) and code simplicity the
proposed approach (Fig. 4).

B. Comparison with Related Works

The results obtained with the proposed approach are com-
pared in this Section with other related works presented
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Fig. 10. Spectra of the experimental rectified current signal measured in
the three tests of Table II, obtained with the proposed Goertzel algorithm of
Fig. 4. Top: test 1, s = 0.0011. Middle: test 2, s = 0.0016. Bottom: test 3,
s = 0.0019. The theoretical broken bar fault harmonics calculated in Table
II coincide with the experimental fault harmonics in all the spectra, marked
with arrows, what is an indication of the broken bar fault. The circles mark
the 61 points calculated by the optimized Goertzel algorithm in each test.

previously in the technical literature, the Goertzel algorithm
implementation proposed in [30], and the ZFFT [7], using the
current of Fig. 7.

The current spectrum obtained with the Goertzel algorithm
proposed in [30] is shown in Fig. 11, top. It has been applied
to detect the fault harmonics in two sidebands around the
fundamental frequency (121 frequency bins), which requires
484 multiplications and 242 additions for each current sample,
with a computing time of 37.7 µs (with a CPU clock rate of 80
MHz), and a memory storage of 3872 bytes. The output of the
Goertzel algorithm is windowed with a raised cosine window
to avoid the fundamental leakage. On the contrary, thanks to
the use of the rectified current, the method proposed in this
paper analyses only a single band starting at zero frequency
(61 frequency bins), and requires only 61 multiplications and
183 additions per current sample, with a computing time of
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13.8 µs and a memory storage of 1952 bytes (a reduction of
63% in computing time and 50% in memory usage). Besides,
it is not necessary to filter the output, because the proposed
method is calculated directly at the bins with minimal leakage.

The current spectrum obtained with the ZFFT algorithm
[7] is shown in Fig. 11, bottom. The current signal is first
translated in frequency, using a digital complex mixer, and
followed by a decimation stage with an anti-aliasing low-pass
filter. Finally, the FFT is used for obtaining the spectrum of
the decimated and windowed current signal. In this case, the
final stage is a 128-point FFT, with a computing time of 461
µs (with a CPU clock rate of 240 MHz). Nevertheless, using
the ZFFT for detecting rotor asymmetries at very low slip
has a serious drawback: a large decimation factor of 2500 has
been needed to reduce the diagnostic band to a width of 2 Hz,
which requires a very narrowband computationally expensive
filter. In this case, a finite impulse response (FIR) filter with
60000 elements is needed, which rises the computing time
per current sample to 1007 µs, longer than the available
time between current samples. An alternative is the use of
multistage cascaded-integrator-comb filters, as in [34], which
represents an increase in code complexity. Instead, in the
proposed method, there is no need of frequency translation,
low-pass filter, decimation, windowing process or FFT, which
makes it faster and simpler to apply (only the code shown in
Fig. 4 is needed).
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Fig. 11. Spectrum of the experimental current signal of Fig. 7, generated
with the implementation of Goertzel algorithm used in [30] (top), and with
the ZFFT (bottom). The circles mark the frequency bins calculated by both
methods. The fault harmonics can be observed at their theoretical frequencies
(marked with arrow labels), as in the case of the proposed method (see Fig. 9).

V. CONCLUSIONS

A novel approach has been presented in this paper to cost-
effectively calculate the diagnostic current spectrum of IMs

operating with very low slip. The diagnosis of rotor asymme-
tries in these conditions is a challenging task, due to the tiny
spectral distance between the dominant supply component and
the fault harmonics. To obtain this high spectral resolution,
long acquisition times are needed, that is, a high number
of samples, what hinders the use of low-cost embedded
devices. The proposed approach solves this limitation using
a combination of two diagnostic procedures: the analysis of
the rectified machine’s current, and the implementation of an
optimized Goertzel algorithm, which is executed upon the
arrival of every new current sample to avoid its storage. In this
way, the detection of rotor asymmetries at very low slip can
be performed with a very low memory footprint and computa-
tional effort: in the case of the tested motor, just 1952 bytes of
memory storage, and 61 real multiplies and 122 real adds per
current sample are needed to generate the diagnostic spectrum
of a current signal with 500000 samples. The extension of the
proposed approach to transient conditions, and to detect other
types of IM faults, is currently being developed.

APPENDIX A
THREE-PHASE INDUCTION MOTOR

Rated characteristics: Power P = 3150 kW, voltage U = 6
kV, current I = 373 A, supply frequency f = 50 Hz, full-load
speed n = 2982 rpm, power factor cosφ = 0.92, number of
bars = 56.

APPENDIX B
ESP32 DEVELOPMENT BOARD

ESP32 DEVKIT V1 Board. Processor: Tensilica Xtensa
Dual-Core 32-bit LX6 microprocessor, running at 80, 160 or
240 MHz. Voltage applied to power supply pin VDD=3.3 V.
Power consumption (in modem-sleep mode): 30 mA ∼ 68 mA
(240 MHz), 27 mA ∼ 44 mA (160 MHz), 20 mA ∼ 31 mA
(80 MHz). ROM: 448 KB. SRAM: 520 KB. Flash memory: 4
MB. WiFi: 150.0 Mbps. Bluetooth: BLE. Peripheral Interfaces:
12-bit SAR ADC up to 18 channels, 2 × 8-bit DAC, 4 ×
SPI, 2 × I²S, 2 × I²C, 3 × UART, Motor PWM, Hall sensor.
Programming environment: Arduino IDE 1.8.15.c.
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